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Chapter 1

Saturated boundary stabilization of partial differential
equations using control-Lyapunov functions
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Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux
et systemes, 91190, Gif-sur-Yvette, France
hugo.lhachemi@centralesupelec.fr

Christophe Priewf]

Université Grenoble Alpes, CNRS, Grenoble-INP, GIPSA-lab, F-38000,
Grenoble, France

christophe.prieur@gipsa-lab. fr

This chapter reviews some recent results on the boundary stabilization
of different classes of partial differential equations. In order to provide a
self-content chapter with consistent control objectives and notation, we
first review the finite-dimensional case. Controllability and observability
conditions for linear ordinary differential equations are recalled together
with some basic Lyapunov theory for the stability analysis and the design
of saturated controllers. Then we address the boundary control prob-
lem for the stabilization of a reaction-diffusion equation by means of
numerically tractable design methods while considering different norms
and possible constraints on the amplitude of the inputs. Finally simi-
lar control design problems will be studied for the stabilization of the
Korteweg—de-Vries equation and the wave equation.

*This work has been partially supported by MIAIQGrenoble Alpes (ANR-19-P3IA-
0003).
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1. Introduction

The goal of this chapter is to review some recent results on boundary sta-
bilization of distributed parameter systems as those modeled by parabolic
partial differential equations or hyperbolic partial differential equations. No
prerequisite on control theory will be necessary, only basic knowledge on
control objectives. However, background in nonlinear dynamical systems
and essentials on partial differential equations (PDEs) would be helpful,
even if some references will be given throughout the text.

The topics covered in this chapter embrace different potential applica-
tions such as control and stability theory of reaction-diffusion phenomenon
as those modeled by parabolic PDEs. Some control techniques presented in
this chapter will be useful for stability theory of physical dynamics described
by balance laws and modeled by hyperbolic partial differential equation.
Different control objectives will be studied and solved such as the design
of stabilizing control laws ensuring that all the trajectories of the closed-
loop systems converge to a given equilibrium. Different control schemes are
considered, covering in-domain control (the control input appears directly
in the main part of the PDE) and boundary control (the control input ap-
plies at the boundary of the domain as it appears through the boundary
conditions). Moreover, when possible, the described control laws will be
designed based on the only knowledge of a prescribed and limited part of
the state, the so-called output.

For each of the different numerical illustrations reported in this chapter,
the Python code of the numerical simulations is provided, allowing the
readers to easily modify the control objectives and further experience the
control theory of the considered dynamical systems.

The outline of this chapter is as follows. First finite-dimensional control
systems will be considered and some basic definitions will be given on sta-
bility, attractivity, etc., providing a sharp introduction to basics of control
systems theory. Then in Section [3] parabolic PDEs are considered for the
design of finite-dimensional output-feedback controllers towards saturated
control schemes. Section {4 is devoted to the wave and Korteweg—de-Vries
equation, and the use of finite-dimensional controllers to solve the sta-
bilization problems. In these both sections, linear feedback laws and also
cone-bounded controllers are designed. Section [5]contains a concluding dis-
cussion on current research activities and presents some possible research
directions emanating from this chapter.

This chapter has been written following an online course given in
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LIASFMA school by the second author in April 2021. We would like to
thank the Organizing Committee of this school that was composed of Jean-
Michel Coron (Sorbonne Université), Tatsien Li (Fudan University), and
Zhigiang Wang (Fudan University). The help of Xinyue Feng has been
very much appreciated.

Notation used in this chapter

Spaces R™ are endowed with the Euclidean norm denoted by || - ||. The
associated induced norms of matrices are also denoted by | - ||. Given two
vectors X and Y, col(X,Y) denotes the vector [X T, Y T|T. L2(0,1) stands
for the space of square integrable functions on (0,1) and is endowed with
the inner product (f, g) = fol f(x)g(x) dx with associated norm denoted by
| - llz2. For an integer m > 1, the m-order Sobolev space is denoted by
H™(0,1) and is endowed with its usual norm denoted by || - ||gm. For a
symmetric matrix P € R"*™ P = 0 (resp. P > 0) means that P is positive
semi-definite (resp. positive definite) while Ap;(P) (resp. A, (P)) denotes
its maximal (resp. minimal) eigenvalue. For a symmetric matrix, x stands

BT C
For any Hilbert basis {¢,, n > 1} of L?(0,1) and any integers
1 < N < M, we define the operators of projection my : L%(0,1) — RY
and 7y L2(0,1) — RM-N by setting nnf = [(f.é1) ... (f,on)]
and 7y f = [(f.én41) . (f.éar)] . We also define Ry : L2(0,1) —
L2(0,1) by R f = f = S0l (f:6n) b = Tsva (1 6n) b

for the symmetric term. For instance, [i‘ g} stands for { 4 B} .
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2. Finite-dimensional systems

2.1. Stability notions of nonlinear finite-dimensional sys-
tems

This section is devoted to the introduction of control theory for finite-
dimensional systems, as those described by nonlinear dynamics. To be
more specific, let us consider the following dynamical system:

() = f(z(1)) (1)

where the state z(t) is a vector from a finite-dimensional state-space R™
and f is a nonlinear function from R™ to R™. Under suitable regularity
assumptions, such as locally Lipchitz continuity of f with respect to z,
for any given initial condition zy € R™ there exists a unique solution x :
[0,T) — R™ to the Cauchy problem:

2(t) = f(z(), t>0
2(0) = 2z 2)

defined on a maximal interval of existence [0,7) for some T' > 0 (which
depends on zp). See e.g. [30, Theorem 3.1] for such a existence and unique-
ness result. The value 2y is called the initial condition and, at any time
t €[0,T), the value z(t) is called the state at time t.

Assume further that f(0) = 0. This implies that the constant trajectory
z(t) = 0, for all t > 0, is a particular solution to associated with the
initial condition zg = 0. The point 0 € R"™, sometimes referred to as
the origin, is called an equilibrium for . In control theory, the nature
of an equilibrium is characterized by certain “stability” properties. Some
basic definitions related to the concept of “stability” are introduced in the
following definition.

Definition 1. Assume that f(0) = 0. Then the equilibrium 0 of (1)) is said
to be

e stable if for any € > 0, there exists § > 0 such that
|2(0)] <6 =[2(t)| <&, VE=0.
e attractive if there exists § > 0 such that
[2(0)| <0 = 2(t) t—+00 0 .

e asymptotically stable if it is both stable and attractive.
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In the previous definition, it is implicitly required that the solutions exist,
are unique, and are well defined for all ¢ > 0. Even implicit, these require-
ments are of primary importance. Some of them can be difficult to check
in practice depending upon the nature of the studied system.

Assuming that 0 is an attractive equilibrium of , an important con-
cept is the notion of basin of attraction. This is defined as the set of all
initial conditions zg € R™ such that the solution to tends to 0 as t — oo.
In addition, we say that the equilibrium is globally attractive if it is attrac-
tive and the basin of attraction coincides with the whole state-space R™.
When 0 is not globally attractive, we often write that 0 is locally asymptoti-
cally stable (LAS) to emphasize the “local” nature of the property. Finally,
we say that 0 is globally asymptotically stable (GAS) if it is asymptotically
stable and globally attractive. It is worth being noted that the notions of
attractivity and stability are disconnected. More specifically, there exist
systems for which 0 is stable but not attractive (the most simple example
being Z = 0) while there are also systems such that 0 is attractive but not
stable (see for instance the example of |24, Paragraph 40]).

Instead of , let us now consider the case where the dynamics depends
on an external signal, called the control or the input. More specifically,
consider the dynamics described by

2(t) = f(=(1), u(?)) 3)

where u(t) is a vector of R™. The input u is seen as a way to influence
the dynamics of the system, which can significantly vary depending on the
choice of the control. As an example, consider the following control system
described by

Z(t) = u(t)z(t) (4)

with u(t) € R. If u(t) = v € R is constant control, the trajectories of the
system stating at time ¢ = 0 from the initial condition zg € R™ can be
expressed as z(t) = e“'z for all t > 0. For u = —1 (more generally for
any constant control u < 0), the equilibrium 0 is globally asymptotically
stable. For w = 0, any point of R™ is an equilibrium (they are stable but
not attractive). For u = 1 (more generally for any constant control u > 0),
all solutions to with non zero initial condition zy # 0 diverges to infinity
(the equilibrium 0 is neither stable nor attractive).

In the more general setting of a time-varying control, i.e., u = u(¢) for a
suitable function u of the time, (3) is a time-varying system. This implies
that the solution starting from an initial condition zg at time ¢, differs, in
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general, from the trajectory starting from the same initial condition z¢ but
at a different time ¢; # ty. The behavior of these different solutions can be
very different.

Assuming that f in is linear, the system dynamics reduces to

A(t) = Az(t) (5)

where A is a matrix in R™*™. In this case, the stability of the origin is
intimately related to the position of the eigenvalues of the matrix A in the
complex plane (see |26} theorem 6.1]). More specifically, it can be proven
that the origin of is stable if and only if (i) all eigenvalues of A have
a non-positive real part and (ii) for all eigenvalues with a zero real part,
their algebraic multiplicity (exponent associated with the eigenvalue when
computing the characteristic polynomial) coincides with their geometric
multiplicityﬂ (dimension of the eigenspace associated with the eigenvalue).
Moreover, the origin of is asymptotically stable if and only if all eigen-
values of A have a negative real part. In that case we say that the matrix
A is Hurwitz. Finally, for such linear systems, the attractivity of the origin
of implies that the origin is stable and also asymptotically stable.

In this lecture notes, we will first study finite-dimensional control sys-
tems, and then dynamical control systems described by linear partial dif-
ferential equations (PDEs) for which some nonlinear control problems will
be solved.

2.2. Control systems: a basic tour
We focus in the the first part of this section on systems described by
2= Az+ Bu (6)

where z € R™ is the state, u € R™ is the control, A, B are two matrices of
appropriate dimensions. One natural question is the design of a so-called
stabilizing state feedback law. That is, can we compute state-feedback law
z — u(z) so that the resulting closed-loop system

2= Az + Bu(z) (7)

is asymptotically stable? In this context, due to the linearity of the system,
it is natural to try to determine a state-feedback law z — wu(z) that is also
linear, i.e., which tales the form u = Kz where K is a matrix that is referred

aCondition (ii) is crucial as it can be seen by considering the case A = {g [1)}
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to as the feedback gain. In this setting, the closed-loop system dynamics
reads

¢=(A+ BK)z 8)

Consequently the stability properties of the closed-loop system are fully
characterized by the spectrum of the closed-loop matrix A + BK. The
question is: can we compute a matrix K in order to impose the spectrum
of A+ BK to ensure stability properties for the closed-loop system?

For linear finite-dimensional systems, the control theory is complete and
the design of stabilizing state feeback laws is fully solved 28 More specifi-
cally, assuming the following Kalman rank condition (for controllability)

rank [B, AB,..., A"_lB] =n,

there exists a matrix K so that u(z) = Kz makes the system asymp-
totically stable. Furthermore, the matrix gain K can be selected to impose
any arbitrary spectrum assignment for the closed-loop matrix A + BK.
This result is not only an existence result, but it is also a practical design
method. Indeed, it is the base of efficient numerical algorithms to compute
the control matrix K. This is the so-called pole-shifting theorem (see™ for
an existence result and™ for a constructive algorithm), which is stated in
the next result.

Theorem 1. Under the Kalman rank condition assumption, for any poly-
nomial II of degree n and with unit dominant coefficient, there exists a
matriz K such that the characteristic polynomial of A+ BK is II.

With the previous result, computing a matrix K so that the linear state
feedback law z — Kz renders the origin of the closed-loop system
asymptotically stable is numerically tractable.

Example 1. Let us see how to solve this control problem in practice us-
ing the programming language Python. In the next lines, with dimension
n = 3, first a randomly chosen control system is selected (lines 7-8), the
controllability condition is checked and a pole-placement controller is com-
puted using the Python Control Systems Library (lines 10-18). Then the
differential equation is integrated numerically and the phase-portrait of the
solution is plotted (lines 27-33). This givea Figurewhere it can be checked
that a solution converges to the equilibrium 0 in R3.

import numpy as np
import control

3 from scipy.integrate import odeint
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1+ import matplotlib as mpl
5 import matplotlib.pyplot as plt

7 n= 3 # dimension of the state space

s A= np.random.random([n,n])

9 B= np.random.random([n,1])

10 CtrbMatrix= control.ctrb(A,B) # compute the controlability
matrix

12 if np.linalg.matrix_rank(CtrbMatrix)== n:
13 print (’controllable system’)

14 else:

15 print (’uncontrollable system’)

17 p= np.linspace(-n,-1,n) # choice of the eigenvalues of the
closed-loop system
18 K=-control.place(A,B,p)

20 def ode(z,t):
21 return np.dot ((A+np.dot (B,K)) ,z)

23 z0=np.random.random([n,1]); z0=z0.reshape(n,)
24 t=np.linspace (0,10,1000)
25 sol=odeint (ode,z0,t)

27 if n==3: # plot3D

28 from mpl_toolkits.mplot3d import Axes3D

29 mpl.rcParams[’legend.fontsize’] = 10

30 fig = plt.figure(); ax = fig.gca(projection=’3d’)
31 X, ¥y, z =sol.T

32 ax.plot(x, y, z, label=’solution’); ax.legend()
33 plt.savefig(’solution.png’,bbox_inches=’tight’)

We repeat the same procedure for 10 randomly chosen initial conditions.
See the lines 35-41 of the code and the corresponding Figure

35 fig = plt.figure(); ax = fig.gca(projection=’3d’)
36 for i in range (10):
37 z0=np.random.random([n,1]); z0=z0.reshape(n,)

38 sol=odeint (ode ,z0,t)
39 X, ¥y, 2z =sol.T
40 ax.plot(x, y, z, label=’solution’+str(i));

11 ax.legend ()

13 plt.savefig(’solutions.png’,bbox_inches=’tight’)
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- snlution

Fig. 1. Time-evolution of a particular solution to @ with u = Kz

2.3. Lyapunov direct method

The first part of this section was devoted to linear systems for which the
situation is relatively simple as the stability of the origin is fully character-
ized by the spectrum of the matrix A. When considering general nonlinear
systems such as , the situations becomes much more complex. Here
we need tools that allow studying the stability properties of an equilibrium
condition without being able to write down the system trajectories in closed
form (in general, very few nonlinear systems can be analytically integrated
to obtain the closed form of the trajectories). In this context, an impor-
tant tool to prove the attractivity of the equilibrium is the so-called Direct
Lyapunov method which relies on the concept of Lyapunov functions. To
explain this method, let us come back to the nonlinear system described
by . The so-called Lyapunov stability theorem can be stated as follows
(see Theorem 4.1] for a proof.)

Theorem 2. Assume that f(0) = 0 and let D be an open and connected
subset of R™ containing 0. Assume that V : D — R is a C* function such
that

V(0)=0and V(z) >0, Vz e D\ {0}
%—‘Z/(z)-f(z)SO,VzeD.
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solutiond
solutionl
—— =olution2
— solution3
— solutiond
—— splutions
solutiond
solution?
solutiond
solutiond

_?Daﬁﬂ?ﬁw

Fig. 2. Time-evolution of solutions to @ with v = Kz for 10 randomly chosen initial
conditions

Then z = 0 is stable. Moreover, if we have
oV
0z

then z = 0 is locally asymptotically stable.

(z)- f(2) <0, Vze D\ {0},

We often denote
. oV
V= 5(2) - f(2)

since 2 (z(t)) - f(2(t)) is the time-derivative of V'(z(t)) along the solutions

to .

If the Lyapunov theorem applies with the domain D specified as
D={z V(z)<r}

for some given r > 0, then the level set {2z, V(z) < r} is contained in the
basin of attraction. Hence V' can be used in order to estimate the basin of
attraction while trying to maximize the value of 7 > 0 such that Theorem 2]
applies with D = {z, V(2) < r}.

It is worth noting that, for finite-dimensional systems as the ones that
are considered in this section, all norms are equivalent and, somehow, V'
is “equivalent” to any norm (say, e.g., the Euclidian norm). Thus estab-
lishing a stability by considering a particular norm is actually the same as
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establishing a stability by considering any other norm. Such an equivalence
fails in infinite-dimension, which will be the topic of the next sections.

As we saw, Lyapunov functions are very convenient to prove asymp-
totic stability since all we need is to consider a suitable Lyapunov function
candidate V : D — R, that is a C' function such that

V(0)=0and V(z) >0, Vz€ D\ {0}

and then compute the following vectors in R™:

%—‘Z/(z) - f(z), Vze D\ {0} .
and evaluate its sign. Obviously, finding such functions V' highly depends
on the nature of the studied nonlinear system and can be very complex in
practice. Some basic techniques for finding such functions will be reviewed
in this notes, as well as associated numerically tractable methods.

In the context of linear systems as described by , the Lyapunov
theorem is rewritten as follows. Using the Lyapunov function candidate
V(z) = 2" Pz for some symmetric positive definite matrix P, and comput-
ing its time derivative along the system trajectories, the origin of is
asymptotically stable if and only if there exists such a symmetric positive
definite matrix P such that

ATP+ PAT < -1

Let us emphasize the “if and only if” condition from the previous state-
ment, as well as the class of quadratic function V(z) = 2" Pz as sufficient
Lyapunov function candidates. In other words, for linear systems, there
is not need to consider other class of Lyapunov function candidates. This
result is one of so-called converse Lyapunov theorems. Such converse re-
sults of the direct method also exist for nonlinear systems under certain
regularity conditions on the function f (see e.g. |2, Theorem 2.4]). Note
however that converse Lyapunov theorems can hardly be applied to ac-
tually find Lyapunov function candidates since these converse results are
generally not constructive (even if some design methods exist as reviewed
in particular in the references!#63)),

Example 2. (Example [1| continued) In this extension of Example |1} we
compute the eigenvalues of the previous closed-loop system (see line 45)
and we compute a Lyapunov matrix P.

15 AA=A+np.dot(B,K); e, v= np.linalg.eig(AA) # eigen-values, -

vectors
16 m=max (e.real)



December 24, 2021 13:32  ws-rvOx6  Book Title main’vl page 12

12 H. Lhachemi and C. Prieur

17 print (’Largest real part for the closed-loop system:’,"{:.2f}".
format (m))

19 P=control.lyap(AA.T,np.eye(n))

2.4. Separation principle for linear systems

Up to now we only considered the control problem of dynamical systems
such as the ones described by . In this context, we made the implicit
assumption that the full state z(¢) is known in real time at any time ¢ > 0 so
that we can use this information to implement the control law z — u(z). We
say that this control strategy takes the form of a state-feedback. However
in many applications the full state is not available in real-time. Only partial
information are available under the form of sensor measurements y(t) € R?
which are somehow related to the state z(t) € R™ of the system. For control
linear system described by @, the relation between the output y and the
state x generally takes the form:

y=Cx (9)
where C' is a matrix of appropriate dimensions. We say that y is the output
of the system. This output represents the measurements that are assumed
to be available at each time instant. In this context, a natural question is
whether the knowledge of the system (i.e., the matrices A, B, and C), of the
control u(t), and of the measurements y(t), is sufficient to asymptotically
estimate the state z(t). This problem is a so-called observation problem.
For linear systems, this problem is also fully solved and is strongly con-
nected to the so-called Kalman rank condition for observability, which is

written as

C

rank : =n.
CA
C«An—l
Note that this assumption is equivalent to the controllability of the pair
(AT, CT). This is why observability and controllability properties are said
to be dual properties.
Consider now the dynamics described by

2= A2+ Bu+ L(C% —v) (10)

where L is a matrix with suitable dimensions. We say that is an ob-
server for @ The observer mimics the dynamics of the system @ while
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adding an extra term used to correct the dynamics of the observation in
function of the error between the actual measurement y(¢) and its estima-
tion §(t) = Ci(t) obtained from the observer. Introducing the error of
observation e = z — Z, this error satisfies the dynamics described by

¢=(A+LC)e. (11)

Under the abovementionned observability assumption, there exists a matrix
L so that A+ LC is Hurwitz. Selecting this way the observer gain L, the
origin of is asymptotically stable, meaning that the observation error
e(t) = z(t)— z2(t) asymptotically converges to zero. In other words, the state
of the observer zZ(t) “asymptotically observes” the actual (unmeasured)
stated of the system z(t). We say that is an observer for ().

So far, we detailed (i) how an state feedback u = Kz can be designed to
stabilize the linear system @ and (ii) how an observer of the form can
be designed in order to compute Z an estimate of the state z of the system
@ from its outputs y given by @ A natural question is whether we
can reunite these two approaches to obtain a stabilizing output feedback.
In other words, under the controllability assumption of (A, B) and the
observability assumption of (A, C), can we separately design a feedback gain
K and an observer gain L so that the origin of the system @ in closed-loop
with v = KZ where the dynamics of Z is given by is asymptotically
stable? The answer to this question is positive and is referred to as the
separatation principle for linear finite-dimensional systems.

Theorem 3. Let us consider the dynamics:

2= Az+ Bu
12
y=Cz (12)
where z € R™, y € R? and A, B, C are matrices with suitable dimensions.
Assume that the pair (A, B) is controllable and the pair (A, C) is observable.
Then for any matrices K and L such that A+ BK and A+ LC are Hurwitz,
the equilibrium (0,0) of
2=Az+ BK:Z
2=(A+BK)2+ L(Cz —vy)

18 asymptotically stable.

(13)

This theorem provides a design method for a stabilizing dynamic output
feedback controller whose architecture is described by
2= A2+ Bu+ L(C%:—y)
u=K2z
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Proof of Theorem [3l For proving Theorem [3] it is convenient not to

study the asymptotic stability of the origin of in the coordinates (z, 2),

but rather in the coordinates (£, e) which give
Z=(A+BK):+ Ly — C3)

¢=(A+LC)e (14)
Since A+ LC is Hurwitz, there exists a symmetric positive definite matrix
Q such that
(A+LC)' Q+QA+LC)T < —T (15)
and so W (e) = e Qe satisfies
174 < —e'e

along the trajectories of ¢ = (A + LC)e. Hence the e-component of
converges to 0 as time goes to +00. Now pick a symmetric positive definite
matrix P such that

(A+ BK)"P+ P(A+BK)" < —1I. (16)
Letting V(2) = 2T P2 we have

W < —2"2+42:LCe

along the trajectories of 2 = A2 + BK% + L(y — C2). Invoking now Young
inequality and the fact that e(t) — 0 gives that Z(¢) goes to 0 as well
when time goes to +o0o. Therefore, the origin of the linear system is
attractive and thus asymptotically stable.

Note that another proof of the asymptotic stability of the origin of
is based on proving that V + 4||PLC||?W is actually a Lyapunov function.
To do that denote V(2,e) = V(2) + 4||PLC||?W () and compute the time
derivative of V along the solutions to (14):

V=2:"((A+BK)"P+ P(A+ BK)):+2:" PLCe
+4||PLC|2e"((A+ LC)TQ + (A + LO)Q)e

1
< —5lIEP + 2 PLCel|* — 4| PLC|P el ,

where Young inequality, and have been used for the previous
inequality. Therefore V =< —%I ,and V is a Lyapunov function for . O

The computation done in the proof of Theorem [3| will be generalized for
PDEs in the next sections.

Example 3. (Example || continued) In this part of the example, we first
select a ramdomnly chosen matrix, and we check the Kalman rank condition
for observability (lines 54-57). Then we compute a matrix L by placing the
eigenvalues of the matrix A+ LC (line 60), and finally we plot solutions of
for 10 ramdomnly chosen initial conditions (lines 72-79).



December 24, 2021 13:32  ws-rvOx6  Book Title main'vl page 15

Saturated boundary stabilization of partial differential equations 15

51 C= np.random.random([1,n])
52 ObsvMatrix= control.obsv(A,C) # compute the observability
matrix

54 if np.linalg.matrix_rank(ObsvMatrix)== n:
55 print (’observable system’)

56 else:

57 print (’unobservable system’)

59 q= np.linspace(-n-1,-2,n) # choice of the eigenvalues of the
closed-loop system
60 L=-control.place(A.T,C.T,q).T

62 def ode2(ztot,t):

63 z=ztot[:n]; zhat=ztot[n:]

64 u= np.dot(np.dot(B,K),zhat)

65 return np.concatenate ((np.dot(A,z)+u ,np.dot(A,zhat)+u-np.
dot (L,np.dot(C,z)-np.dot(C,zhat))))

67 # set up a figure twice as wide as it is tall
s fig = plt.figure(figsize=plt.figaspect (0.5))

60 ax0 = fig.add_subplot(l, 2, 1, projection=’3d’)
70 axl = fig.add_subplot(l, 2, 2, projection=’3d’)

72 for i in range (10):

73 z0=np.random.random([n,1]); z0=z0.reshape(n,)

74 zhatO=np.random.random([n,1]); zhatO=zhatO.reshape(n,)
75 ztotO=np.concatenate ((z0,zhat0))

76 sol=odeint (ode2,ztot0,t)

77 ztot =s0l.T; z=ztot[:n]; zhat=ztot[mn:];

78 ax0.plot(z[0], =z[1], z[2]);

79 axl.plot (zhat [0], zhat[1], zhat[2]);

51 ax0.set_title(’z’); axl.set_title(’$\hat z$’)
s2 plt.savefig(’solutions2.png’,bbox_inches=’tight’)

Figure |3| presents several solutions to for ranmdonly chosen initial
conditions (z(0), 2(0)), and confirms the attractivity of the origin for this
system.

The Lyapunov function that is considered at the end of the proof of
Theorem [3|is computed on lines 49, 85 and 86. It is checked on Figure
that this function decreases and converge to 0 along the solutions to
for the initial conditons used for Figure

s4 AE=A+np.dot (L,C);

85 Q=control.lyap(AE.T,np.eye(n))
s6 M= 4*np.linalg.norm(np.dot(P,np.dot(L,C))) **2

ss fig , ax= plt.subplots()
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Fig. 3. Time-evolution of solutions to (13) for 10 randomnly chosen initial conditions

ax.set_title(’Lyapunov function’)

for i in range (10):
z0=np.random.random([n,1]); z0=z0.reshape(n,)
zhatO=np.random.random([n,1]); zhatO=zhatO.reshape(n,)
ztotO=np.concatenate ((z0,zhat0))
sol=odeint (ode2,ztot0,t)
ztot=so0l.T; z=ztot[:n]; zhat=ztot[n:]; e=z-zhat; lyapu=I[]
for tt in range(len(t)):
lyapu.append (np.dot(np.dot (zhat[:,tt].T,P),zhat[:,tt])+
M*np.dot(np.dot(el[:,tt].T,Q),el[:,tt]))
ax.plot (t,lyapu)
plt.savefig(’lyapu2.png’,bbox_inches=’tight’)

2.5. Saturated control

For many applications of control problems, the input values are limited in
amplitude. Instead of applying u = Kz, only

u = sat(Kz)

can actually be applied, where sat: R™ — R™ is the saturation map
defined componentwise by, for all i =1,...,m,

sat;(0;) = {Ui if |oi] < si , (17)

sign(o;)s; , else
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Fig. 4. Time-evolution of the designed Lyapunov function along several solutions to

(14)

for a fixed vector s in R with positive components s; > 0. Such function is
a decentralized nonlinear map that makes the closed-loop system as follows:

2= Az + Bsat(Kz) (18)

In the presence of a saturation, system can exhibit various be-
haviors. Even if the matrix A + BK is Hurwitz, there may exist several
equilibrium points, some limit cycle may appear, and there may exist di-
verging trajectories. Sed’%74 for introductory references on stability of such
dynamical systems.

Example 4. As an example, consider
2= Az + Bsat(Kz) (19)

01
10
The matrix A is unstable (eigenvalues located at —1 and +1), and the
matrix A+ BK is Hurwitz (eigenvalues located at —1 and —13). As noted
in Example 1.1], the nonlinear system exhibits several equilibriums
and presents different behaviors depending on the initial condition. These
behaviors are illustrated on Figure 21| based on different initial conditions.
The first trajectory converges to 0 in R2, the second trajectory converges

with A = < ), B = <_01>, K = (13 7), and s = 5 as saturation level.
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ey . -5 . .
to the non zero equilibrium point ( 0 ), and the last trajectory diverges

as the time increases.

7y =[-3 -3}
%
%
— T
. 7z
2 4

Fig. 5. Time-evolutions of three solutions to (19)) for three different initial conditions

The simulation code is given below.

import numpy as np

import control

from scipy.integrate import odeint
import matplotlib as mpl

import matplotlib.pyplot as plt

n= 3 # dimension of the state space

A= np.random.random([n,n])

B= np.random.random([n,1])

CtrbMatrix= control.ctrb(A,B) # compute the controlability
matrix

if np.linalg.matrix_rank(CtrbMatrix)== n:
print (’controllable system’)

GILEE 8
print (’uncontrollable system’)

p= np.linspace(-n,-1,n) # choice of the eigenvalues of the
closed-loop system
K=-control.place(A,B,p)

def ode(z,t):
return np.dot ((A+np.dot(B,K)) ,z)
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23 z0=np.random.random([n,1]); z0=z0.reshape(n,)
24 t=np.linspace (0,10,1000)
25 sol=odeint (ode,z0,t)

7 if n==3: # plot3D
28 from mpl_toolkits.mplot3d import Axes3D
9 mpl.rcParams[’legend.fontsize’] = 10

30 fig = plt.figure(); ax = fig.gca(projection=’3d’)
31 X, ¥y, z =sol.T

32 ax.plot(x, y, z, label=’solution’); ax.legend()

: plt.savefig(’solution.png’,bbox_inches=’tight’)
34 # for 10 randomnly chose initial conditions

35 fig = plt.figure(); ax = fig.gca(projection=’3d’)

36 for i in range (10):

37 z0=np.random.random([n,1]); z0=z0.reshape(n,)

38 sol=odeint (ode ,z0,t)
39 X, ¥y, 2z =sol.T
40 ax.plot(x, y, z, label=’solution’+str(i));

11 ax.legend ()

13 plt.savefig(’solutions.png’,bbox_inches=’tight’)

To analyze the stability of the equilibrium 0 of , let us consider the
following Lyapunov function candidate V : z +— 2" Pz, where P € R"*" is a
symmetric definite positive matrix. The computation of its time derivative
along the solutions of gives

V=2T(ATP+ PA)z 422" PBsat(Kz).

To ease the comparison of the dynamics of and of , we introduce
the deadzone function ¢ defined by

¢(c) =sat(oc) —o, Vo e R™ . (20)
Using this notation we get

V=2"((A+BK)"P+ P(A+ BK))z + 22" PB)(Kz)

_ (¢(fz<z)> ! ((A +BK)TP j P(A + BK) p03> ((ﬁ(;@)

(A+ BK)"P+ P(A+ BK) PB
* 0
general negative semidefinite (except, e.g., for the trivial case B = 0).
Consequently, in order to use the Lyapunov function candidate V' to ana-
lyze the stability of the origin of , we need to find a relation between
z and sat(Kz). This can be done by using the geometric conditions of

Note that the matrix ( > can not be in
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the saturation map, as described by the so-called local and global sector
conditions.

As introduced in/?? for any given G € R™*™ and any given diagonal
positive definite matrix T' € R™, the following local sector condition holds:

(sat(Kz)—Kz)T(sat(Kz)—(K—G)z) <0, Vz such that |((K—G)z);| < s;,
(21)
where (K — G)(;) denotes the ith row of K — G.
Letting in particular G = K in , the following global sector condition
holds for any diagonal positive definite matrix T’

(sat(Kz) — Kz)Tsat(Kz) <0, Vz € R™ (22)

From the local sector condition, we obtain that for any G € R"*™ and
any diagonal positive definite matrix T, as long as |((K — G)z);| < s;,

V < 2T((A+ BK)TP+ P(A+ BK))z + 22T PB$(K>)
—20(Kz2)TT($(Kz) + Gz)

. (¢(Iz{z)> ! <(A +BK)TP *+ P(A + BE) PB_—;JJTT) <¢(1Z<z)>

Considering the special case where G = K, we obtain the following
theorem.

Theorem 4. If there exist a symmetric definite matriz P in R™"*"™ and a
diagonal positive definite matriz T in R™ such that

(A+ BK)"TP+P(A+BK) PB—-K'T
X —or )7V

then the origin of (@ is globally asymptotically stable.

Remark 1. Some observations are in order.

Checking the existence of such matrices P and 7T is numerically
tractable. This is a convex problem that could be solved using different
solvers and method as interior-point method 22 or a primal/dual method %!
See also©

As discussed in/%7 the existence of a globally stabilizing saturating con-
trol is subject to a number of strong conditions such as: (i) A has no
eigenvalues with positive real part, and (ii) the pair (A, B) is stabilizable
in the ordinary sense, that there exists a matrix K such that A + BK is
asymptotically stable.
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Setting G = K is generally restrictive since global asymptotic stability is
generally a too strong property for saturated systems. To derive a sufficient
condition for the weaker property of local asymptotic stability, we use the
local sector condition (2I). To ensure the condition |((K — G)z);| < s;,
we note that {z, 2" Pz < 1} C {z, |((K — G)z2);| < s;} provided the LMI

condition
T
P (K-G) AR
* 512 o
holds. This result is a direct consequence of the Schur complement (see [6,
Page 7]). Returning now to the LMI
(A+ BK)"P+ P(A+ BK) PB-G'T
<0
* =27
we note that there is a product G'T of unknown variables, making the
problem nonlinear. Nevertheless, the problem can be made linear by intro-
ducing a simple change of variable. Indeed, using the change of variables
S=T"1 W=P ! and H=GP~!, we obtain the equivalent condition
(W(A +BK)" + (A+ BK)W BS — HT) -0

* —25
We have thus proven the following sufficient condition for local asymptotic
stability of .
Theorem 5. If there exist W = W' >0, S diagonal definite positive and
G such that
Ka' —Hp '
<W W@~ He > -0 (23)
* s;

(W(A+BK)T +(A+BK)W BSHT) <0 (24)

* —25
then the origin of (@ locally asymptotically stable with a basin of attraction
containing {z, zTW=1z < 1}.

Remark 2. Checking the condition of Theorem [5| reduces to solving a
convex problem. Different optimization criterion can be considered in order
to maximize the estimation of the basin of attraction, as e.g., maximizing
the trace of the matrix W. This idea is illustrated in Example [5] below.

Note that this sufficient condition for local asymptotic stability of the
closed-loop system can also be used in order to compute the matrix of
feedback gain K. See |70, Chapter 3] and in the next sections for infinite-
dimensional dynamics.
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Example 5. (Example4|continued) Solving the matrix inequalities of The-
orem [5| is done with the code below, where the Python cvzpy Library has
been used to write the matrix conditions in lines 52-64 with the unknown
variables introduced in lines 46-48. The optimization problem
t h that (2 d (24) hold
Jnax race(W) such tha an 0

112}

is solved in line 56, using the default solver.

n=len(A); m= 1

16 W=cp.Variable ((n,n),PSD=True)
17 S=cp.Variable ((m,m) ,diag=True)
s H=cp.Variable ((m,n))

10 B=B.reshape (2,1)

50 K=K.reshape (1,2)

52 M11=W @ (np.transpose (A+np.dot(B,K)))

53 M11=M11+M11.T

54 M12=B @ S - H.T

55 matrixConstrl = cp.bmat([[ M11 , M12],

56 [M12.T, -2 *S]1])

57 M22= W @ K. T - H.T

55 matrixConstr2 = cp.bmat ([[W, M22 1,

59 [M22.T ,sO0 ** 2%np.array ([[1]11)11)

61 constr = [S >> 0]

62 constr += [matrixConstrl1<<0] + [matrixConstr2>>0]
63 prob = cp.Problem(cp.Maximize(cp.trace(W)),constr)
64 prob.solve ()

66 P=np.linalg.inv(W.value)
67 z0=z0tot [0]
68 print ("z0"T P z0 is "+str(np.dot(np.dot(z0.T,P),z0)))

It gives

p_ 0.19727007 0.11506782
B * 0.08307019

for which, due to Theorem [5, {z, 2" Pz < 1} is included in the basin of
attraction.

For the first initial condition of Figure |4} that is with z9 = [-1 — 3] T,
we have

29 Pz =0.99 < 1.

Thus zg is indeed in the basin of attraction, as confirmed by the time-
evolution of the first solution in Figure
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2.6. Section conclusion

This section was devoted to finite-dimensional control systems by recalling
some basic definitions and techniques for the stability analysis of equilib-
rium of such dynamical systems. In particular we reviewed the direct Lya-
punov method for the asymptotic stability analysis. The control systems
with saturated inputs have been also considered, and some sufficient condi-
tions for the local (and global) asymptotic stability of the origin have been
recalled. The next section will develop these techniques for the boundary
stabilization of parabolic and hyperbolic systems.
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3. Parabolic equations

3.1. Introduction

This section considers parabolic partial differential equations modeling
reaction-diffusion phenomenon. This class of dynamical systems may be
unstable in open loop. We focus on 1D parabolic equations for which spec-
tral decomposition can be easily handled since the eigenvalues are simple
and the eigenfunctions form a Hilbert basis of the state-space. For further
studies on abstract parabolic PDEs in several dimensional spaces, see” in
particular for controllability properties of such systems.

Based on the basic tools presented in the previous section, we present
design methods for the design of output-feedback laws rendering the equi-
librium asymptotically stable. The approach is based on modal approx-
imation methods that have been shown to be efficient for other control
problems related to parabolic PDEs; see®! as well as more recent references
including 12410835057 The rationale behind the design method presented
in this section is split into several steps. First a finite-dimensional state-
feedback is computed only with a finite number of selected modes of the
model. Then a finite-dimensional observer is designed in a separate fashion
in order to estimate a finite number of modes that include in particular
the modes used for the state-feedback design. Such a control design ap-

SS90 which essentially rely on

proach roots back to the pioneer papers
small gain arguments. Taking advantage of the controller architecture re-
ported in%2 the possibility to recast this control design problem into a
LMI framework was shown in?? for a particular set of input/output maps
and specific norms for the asymptotic stability estimates. This procedure
was enhanced and generalized in a systematic manner in*%#l for general
reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control
and Dirichlet/Neumann measurement while performing the control design
directly with the control input instead of it time derivative (see'” for an in-
troduction to boundary control systems). This generalized and systematic
approach has been shown to be key and very efficient for the predictor-
based compensation of arbitrarily long input and output delays2#*2 the
domination of state-delays## the local output feedback stabilization of lin-
ear reaction-diffusion PDEs in the presence of a saturation# the global
stabilization of linear-reaction-diffusion PDEs in the presence of a Lipchitz
continuous sector nonlinearity in the application of the boundary control 4%
as well as the global stabilization of semilinear reaction-diffusion PDE with
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globally Lipchitz nonlinearity 32

In this framework, the proof of stability of the closed-loop system (com-
posed of the PDE, the finite-dimensional observer, and the state-feedback)
is assessed using the Lyapunov direct method presented in the previous
section, but adapted to the distributed nature of the state. This approach
can be seen as an alternative output feedback design method for reaction
parabolic PDEs to other very efficient tools, such as backstepping trans-
formations for PDEs (see the introductory textbook*!) for which a form of
separation principle between controller and observer designs generally ex-
ists. Nevertheless, the infinite-dimensional nature of the observer obtained
using backstepping methods implies the necessity to resort to late lumping
approximations in order to obtain a finite-dimensional control strategy that
is suitable for practical implementation, inducing in general the loss of the
stability performance guarantees originally obtained during the synthesis
phase. The benefit of the approach reported in this section is that the
observer obtained during the synthesis phase is directly finite-dimensional.

The material presented in this Section of the lecture notes is widely in-
spired from*!' in the linear case and from=# for the saturated input scenario.

The rest of this section is organized as follows. After introducing a
number of notations and properties, the case of Dirichlet boundary control
with a bounded observation operator is considered in Section[3.2] The con-
trol design procedure is then extended to the cases of a boundary Dirichlet
observation in Section [3.3] The case of in-domain control in the presence
of an input saturation in discussed in Section [3.4]

Reminders on Sturm Liouville theory

Let us conclude this introduction with some reminders on Sturm Liouville
theory for parabolic operators in one space dimension. See*!! for a reference
on the mathematical properties that will be extensively used in this section.

Let 01,0 € [0,7/2], p € C1([0,1]), and ¢ € C°([0,1]) with p > 0 and ¢ >
0. Consider the Sturm-Liouville operator A : D(A) C L?(0,1) — L?(0,1)
defined by

Af =—=(f) +af
on the domain
D(A) = {f € H*(0,1) : cos(61) f(0) — sin(#y) f'(0)
cos(62) f(1) + sin(62) f'(1)

I
==
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The eigenvalues (A, )n>1 of A are simple, non negative, and form an increas-
ing sequence with \,, — 400 as n — 400. The associated unit eigenvectors
®,, € L*(0,1) form a Hilbert basis. The operator A and its domain can be
characterized by there eigenstructures in the sense that

n>1
and
D(A) ={f € L*(0,1) : > [Aul?|(f, @) [*< 400}
n>1
where (f, g) fo ),dx, for any f,g € L?(0,1), stands for the inner

product of L2(0,1). Hence using an integration by parts, it can be seen
that, for any f € D(A),

D A (f. ) = (Af. f)
n>1
1

=p(0)f(0)f’(0)—p(l)f(l)f’(1)+/0 p(@)f'(2)* + q(x) f (x)" da.

Using the boundary conditions involved in the definition of D(.A), we infer
the existence of a constant Cy > 0 such that

D A (£ 00)* = (Af, f) < Col fll -

n>1
Moreover, if either (i) 61,02 € {0,7/2} with §; = 0 for at least one ¢ € {0,1};
or (ii) ¢ > 0, this implies the existence of a constant C; > 0 such that

Crllfllm <D A (£, ®0)? = (AL, £) < Call f - (25)
n>1
Hence, for any f € D(A), the series expansion f =} -, (f, ®n) ®, holds
in H'(0,1) norm. Then, using the definition of A and the fact that it is a
Riesz-spectral operator, we obtain that the latter series expansion holds in
H?(0,1) norm. Due to the continuous embedding H*(0,1) C L>°(0,1), we
obtain that
FO) =D (f:8a) 2u(0), £/(0) = D (f, ) 2/,(0).

n>1 n>1
Let p.,p*,¢* € R be such that 0 < p, < p(z) < p* and 0 < g(x) < ¢* for
all z € [0,1]. Then we have:=!

0<m(n—1)*p. <\, <7202 +¢* (26)
for all n > 1. If we further assume that p € C%([0,1]), we have (see again®L)
that

®,(0) = On—s40(1), (I);L(O) = On%JrOO(\/E)' (27)
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3.2. Bounded observation operator

We first consider the reaction-diffusion system described by

z(t, x) = (p(x) 2 (t, 7)), + (ge — q())2(t, 7) (28a)
2:(t,0) =0, 2(t,1) = u(?) (28b)
2(0,z) = zp(x) (28c¢)

y(t):/o c(x)z(t,x)dz (28d)

fort > 0and z € (0,1). Here ¢. € R is a constant, u(t) € R is the command
input, y(t) € R with ¢ € L?(0,1) is the measurement, 29 € L?(0,1) is the
initial condition, and z(t,-) € L%(0,1) is the state.

3.2.1. Spectral reduction

In , the control input u appears in the right boundary condition. Let
us transfer the control input from the boundary into the PDE by invoking
the change of variable:

w(t,r) = z(t,x) — x?u(t). (29)

It has been specifically selected in order to ensure that we still have the
left boundary condition w, (t,0) = 0 while enforcing w(t,0) = 0. Hence, we

have
wi(t,x) = (p(@)we (t, @), + (¢ — ¢(@)w(t, x) + a(z)u(t) + b(z)i(t)
(30a)
we(t,0) =0, w(t,1) =0 (30D)
w(0,z) = wo(x) (30¢)

1
g}(t):/O c(x)w(t, z)dz (30d)

Here a,b € L?(0,1) are defined by a(z) = 2p(x) + 22p/(z) + (g — q(z))x>
and b(x) = —a2, respectively, while (t) = y(t) — (fol x%c(x) dr) u(t) and
wo(z) = zo(z) — 22u(0).

The parabolic equation presents homogeneous boundary conditions
that are much easier to deal with. However, the price of this transfer
is the occurrence of the time derivative % of the control input u in the PDE
(30a)). This is why we introduce the auxiliary command input v(t) = 4(t),
that will be used as the control input for control design. In other words,
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v will be used as the control input for the design of the control strategy.
However, for final implementation of the control strategy, u remains the
actual control input of the plant. In this context, the dynamics of the
system reads

a(t) = v(t) (31a)

C(li—lf(t, ) =—Aw(t, ) + qew(t, ) + au(t) + bu(t) (31b)

with D(A) = {f € H?(0,1) : f(0) = f(1) = 0}. Introducing the coeffi-
cients of projection wy,(t) = (w(t, ), ®n), an = (a,®y), b, = (b, P,,), and
en = (¢, ®,,), the projection of the PDE solutions into the Hilbert basis of
eigenfunctions (®,,),>1 gives

u(t) = v(t) (32a)
Wn(t) = (=An + go)wn (t) + anu(t) + byo(t), n>1 (32b)
(t) = Z cqwg(t) (32¢)

Note that has been obtained from by 1) multiplying by ®,,;
2) integrating on the space domain; and 3) performing two integration by
parts why using the boundary conditions coming from the definition of

D(A).

3.2.2. Control design

We start by fixing an integer Ny > 1 and positive real number § > 0 such
that —A\, +¢q. < —d <0 for all n > Ny + 1. Let N > Ny + 1 be arbitrary.
The general idea, borrowed to52 is to compute a stabilizing output-feedback
controller in three steps. First an observer to estimate the N first modes of
the plant is designed. Secondly the state-feedback is only performed on the
Ny first estimated modes of the plant. Finally a dedicated stability analysis
is performed to prove that the origin of the closed-loop is asymptotically
stable. In this context, inspired by the controller architecture first reported
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in/%2 the adopted control strategy takes the form:

(33a)
W (t) = (= 4 q)in (t) + anu(t) + byv(t), No+1<n<N (33b)

1 N N
a(t) = / (@) Y 0 O®i(w) da = D exti() (33¢)

No
o(t) = a(t) = Z kit (t) + Ky u(t) (33d)

where k;, k, € R are the feedback gains while [,, € R are the observer gains.
Signals w, stand for the estimations of the modes w, for 1 < n < N.
These estimations are used for the computation of ¢ that represents the
estimation of the actual system measurement 3. Note that the feedback
law is computed only based on the observations w,, for 1 < n < Nj.
The remaining observations, namely w, for Ng +1 < n < N, are only
used in to improve the estimation ¢ of the actual system output g.
This estimation g is used to introduce a correction term in the observation
dynamics related to the mismatch between the estimation 7 and the
measurement §y. Note that no such correction is applied in for the
observed modes associated with Ng +1 <n < N.

In order to study the validity of the control strategy , we need to
introduce a number of definitions. Introducing

wq(t) ax b1
W (t) = c | Boe=| |, Bopr=| |
wn, (1) an, b,
Ao = diag(=A1 + e, -+, —AN, + ),
we have from that
WNo(t) = AgWNo(t) + Bo qu(t) + Boyv(t). (34)

Hence, defining

20 =yt 4= [ ] 2= ]

WX (t) = AW () + Bro(t).

we obtain that
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We now define for 1 < n < N the observation error as
en(t) = wy(t) — wy(t). (35)
With ((t) = "5y ciwi(t), we infer from (33a) that

N

for 1 <n < Np. Inspired by Section[2] we write the dynamics in coordinates
of the observer state and of the error variable. To do so we introduce

1 (t) e1(t) eNo+1(t)
Who(t) = o, B =| |, ENTM@)= : ;
W, (1) en, (t) en(t)

C():[ClCQ...CNO], Clz[CNOJrl...CN], L=

Hence we have
WNo(t) = AgW™No () + By qu(t) + Boyv(t) (37)
— LCyENo(t) — LCLEN~No(t) — L¢(1).
With
W = || 2= (39)
we deduce that
Wo(8) = Ay WNo () + Bro(t) — LOENo (1) — LCyEN=No(8) — E¢(t) (39)
In view of we deduce that
v(t) = KW (1), (40)
where K € R'*(No+1) | Hence we obtain that

WNo (1) = (A, + BiE)WNo(1) — LOoENo (1) — LC,EN=No(1) — Le(1)

(41)
and, using and ,
ENo(t) = (Ag 4+ LCo) ENo(t) + LOTEN=No(t) + L¢(1). (42)

Claim 1. The pair (A1, B1) is controllable.
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Proof of Claim [Il Let us compute the Kalman matrix C for controllabil-
ity of (A, By) as introduced in Section [1} Denoting by p, = =X, + ¢, we

get
1 0 0
b1 a1 +,LL1b1 (a1 +,U,1b1),LLiVO_1
Nofl

C—= | b as+psbs ... (a2 + p2ba)py

bNo aNo + /’I’NObN() tee (al + luNObNO)IU’J]:’Ig_l

whose determinant is

1 pg ... ug‘)_l

1 po ... pdo?
det(C) = TN (ay, + finbn) |. . 2

oo

The second determinant appearing in the latter equations is known as the
Vandermonde determinant. Since the pu, are distinct, the Vandermonde
determinant is non zero hence the pair (A4, By) is controllable if and only
if Hfil(an + pnby) # 0. To check this latter condition, let us compute, for
each n =1,..., Ny, the quantity a,, + pnb,. Recalling u,, = —\,, + g, and
from the definitions of the function a and b, we obtain that

G+ finby = / 2p(x) + 20/ (2) + (g — ¢(2))a?]Pp () da
+(_An+QC)A —1,'2(I)n(1')d1'
- / [(2p(x) + 20/ (2)) @ () — 2%q(2) @ ()] da

+ / (=2 (p()®), (1)) + 22q(2) B ()]

1 1
/ (2p(z) + 2 (2)) By () — / 2 (p(2)®), () da
0 0

= —p(1)@;,(1).
Recalling that &, is a non-trivial solution to a second order ODE with
®,,(1) = 0, we must have ®/ (1) # 0. Therefore a,, + p,b, # 0 hence the
pair (Aj, B1) is controllable. O

Claim 2. Assuming ¢, # 0 for all 1 < n < Ny, the pair (Ao, Co) is
observable.
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Proof of Claim [2l Let us compute the Kalman matrix for observation of
the pair (Ao, 00)3
C1 N CN(J
H1C1 <. HUNGCNy
e e e

Since n # m implies p, # fm, this matrix is full rank if an only if ¢, # 0

forallm=1,..., Ny. O
We now define the vectors and matrices:
Wno+1(1) aNo+1 bNo+1
WN7N0 (t) = ) BQ,a = ) BQ,b = )
”LZ)N(t) an bN
Ay = diag(=Ang4+1 + des -y —AN + q)-

From and we obtain that
WN=No() = A;WN=No(4) 4 By qu(t) + Bayo(t)
= A WN=No(t) + (BopK + [Ba,, 0]) WNo(t)  (43)
and, using in addition and ,

EN=No(t) = AgEN=No(¢), (44)
Putting together , we obtain with
X(t) = col(VT/éVO (t), ENo(t), VAVN’NO(t), EN=No(ty) (45)
that
X(t) = FX(t) + L,(t) (46)
where
A+ B K —-LCy 0 —LC4 —L
F= By K +O[BQ,,1 0] h JFOLC0 /(1)2 L(()]1 k= g L
0 0 0 A 0

Defining F = [1 0... 0] and K = [K 00 O], we obtain from , ,
and that
u(t) = EX(t), o(t)=KX(t). (48)
Finally, defining g = ||a||3. + ||b]|3: ]| K|?, we can introduce
G = [lall3-ETE + b3 KK = gI. (19)
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3.2.3. Stability analysis

Theorem 6. Let p € CL([0,1]) with p > 0, ¢ € C°([0,1]) with ¢ > 0,
g € R, and c € L?(0,1). Consider the reaction-diffusion system described
by @ Let Ng > 1 and § > 0 be given such that —\, +q. < —6 < 0 for all
n > No + 1. Assume that ¢, # 0 for all1 <n < Ny. Let K € RIx(No+1)
and L € R0 be such that Ay + B1K and Ay + LCy are Hurwitz with
eigenvalues that have a real part strictly less than —§ < 0. Assume that
there exist N > Ng+1, P> 0, a > 1, and B,y > 0 such that

FTP+ PF+25P P
o — { + +20P 4+ ayG PL <0, (50)
* —B
ﬂH ||L2
PNyt = =AN+1+ge+9 +o + <0, (50b)
1 c||?
Pong1=— <1 - > ANf1+Ge+ 0+ & <0, (50¢)
a 29AN+1

for allm > N + 1. Then, for the closed-loop system composed of the plant

(@ and the controller

(1) the origin is asymptotically stable in L?-norm, that is there exists M >
0 such that, for any 1,(0) € R, any zo € L*(0,1) and any u(0) € R,
the mild solution of the closed-loop system satisfies

N
+Zw V|2 (t, )2 < Me™ 2t <u(0)2 +> i (0)% + ||zo||iz>
n=1

for all t Z 0.

(2) the origin is asymptotically stable in H*-norm, that is there exists M >
0 such that, for any w,(0) € R, any zo € H?(0,1) and any u(0) € R
such that z{(0) = 0 and z9(1) = u(0), the classical solution of the
closed- loop system satisfies

N
+Z Uy ()2 4] 2(t, ) |3 < Me™2% (u(0)2 +) i (0) + ||in,1>
n=1
for allt Z 0.

Moreover, the above constraints are always feasible for N large enough.

Remark 3. The feasibility problem of Theorem [6] is not linear due to the
presence of some terms such as ay and é involving the decision variables.
However the use of Schur complement allows to rewrite (50b)) as follows:

AN+1+qc+5+BHCHL2 Lo
* —a| T
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and similarly for . Therefore, as soon as « is fixed, checking the
conditions of Theorem [f|reduces to check linear matrix inequalities (LMISs).
Thus, given a desired exponential decay rate 6 > 0 and a number of modes
N > Ny + 1 for the observer, the sufficient conditions of the previous
theorem can be recasted as an efficient optimization problem to solve LMIs.

Proof of Theorem [6l Consider the Lyapunov function candidate
V(X,w)=X"PX+vy > (0,3,)
n>N+1
for X € R?N*1 and w € L?(0,1). The first term accounts for the dynamics
of the N first modes of the PDE and the dynamics of the observer, while the
series accounts for the dynamics of the modes corresponding to n > N + 1.
The computation of the time derivative of V along the system solutions

(32b)) and gives
V +25V =XT (FTP+ PF +20P) X +2X " PL
+ 2y Z (=An + qe + O)w? + 2y Z (anu + bpv)wy,.
n>N+1 n>N+1
The use of Young’s inequality gives

1
2 Z anwnuga Z w2 + aflal|?.u?,
n>N+1 n>N+1
1
2 ) bawn(tu(t) < = Y wp +afbffae”.
n>N+1 n>N+1

for any a > 0. From (48149)), we infer that

T et
7 osv < |[X] [FTP+PF+2P+anG PL] [X
¢ * 0]1[¢
1 2
+2y > (—)\n+qc+6+a>wn.
n>N+1

Recalling the definition ((t) = >_,5 y 1 cnwn(t), we obtain from Cauchy-
Schwarz inequality that ((¢)? < ||c/|%. D oSN wy,(t)2. Hence, for any
g >0,
Blelz= D> wi—B>0. (51)
n>N+1

Combining the two latter inequalities, we obtain that
T

V +20V < m e[X}jLzy > Tiawl <0
C C n>N+1
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Blellzz

where I'1 ,, = =\, +q. + 0 + é + =< I'y 1 forall n > N + 1. The
assumptions imply that V(t) < e~2%V(0) for all ¢t > 0, giving the
claimed stability estimate for PDE trajectories evaluated in L?-norm.

We now address the stability assessment of the system trajectories when
evaluated in H'-norm. To do so, in view of (25)), we introduce the Lyapunov
functional candidate:

VX,w)=X"PX+y Y Ay (w,®,)? (52)
n>N+1
with X € R2V+1 and w € D(A). The computation of the time derivative
of V' along the system solutions and gives

V42V =X"(FTP+PF+25P)X +2X"PL( (53)
+ 2y Z (= + e+ O)w? + 2y Z An(anu + byv)w, (t).
n>N+1 n>N+1

Using again Young’s inequality, we obtain

1
2 Z AnGpwnpu < > Z N w? + allal|?.u? (54a)
n>N+1 n>N+1
1
9 <t 2,2 J
Z Anbpw,v < " Z A ws + abl|72v (54b)
n>N+1 n>N+1
for any a > 0. Hence, owing to (48149 and , we deduce that
T
V+25V < [X} G [X] +2y > Aalznw) <0
C C n>N+1

Bllel? 2

with T'o , = A + .+ + % + 55 < Iy 41 for all n > N + 1 where
it has been used that a > 1. Thus implies that V() < e~2%*V(0) for
all t > 0. The claimed stability estimate in H'-norm is now obtained from
©5), @9)., and (52).

We conclude the proof by showing that one can always select the order
of the observer N > Ny + 1 large enough and find P > 0, « > 1, and
B,v > 0 such that © < 0, I'y y11 < 0, and I's y41 < 0. Owing to the
Schur complement, we have © =< 0 if and only if FTP + PF + 25P +
ayG + %PECTPT < 0. We now note that A; + B1K + 61 and Ay —
LCy + I are Hurwitz and [[e(42 0Dt < e=%0t with kg = Any41 — G —
d > 0. Moreover, ||LCy| < |[L|||lcllzz, ILCyl] < |L|||lc||2, and || B2pK +
[Bs, 0] || < [|bllr2|K|| + |lal|z2. The right-hand sides of all the previous
inequalities are independent of the order of the observer N > Ny + 1.
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Hence, Lemma [I| which is reported immediately after this proof, applied
to F + 01 shows for any N > Ny + 1 the existence of P > 0 such that
F'P+ PF +25P = —I with ||P|| = O(1) as N — +oc. Finally, we have
and ||£]| = v/2||L|| with g and L that are independent of N. Hence,
with « = N4 3= N, and v = N~/2, we infer from the existence of
a sufficiently large integer N > Ny+1, independent of the initial conditions,
such that © <0, I'y y+1 <0, and I'y; y4+1 < 0. O

A technical lemma

The following lemma generalizes the statement of a result presented in??
while the proof, reported below, remains essentially identical.

Lemma 1. Let n,m, N > 1, My; € R™"™ and My € R™*™ Hurwitz,
My € R™™, My € RN, Mgy € R™N MY e RV*" My, Mp) €

RVN*N and

M11M12 0 M{X
0 My 0 MY
MY o0 MY 0
0 0 0 MY

FN =

We assume that there exist constants Co, ko > 0 such that ||eMsst|| <
Coe "t and |[eMit|| < Coe=*t for all t > 0 and all N > 1. More-
over, we assume that there exists a constant Cy > 0 such that || M7}|| < C1,
|MY|| < C1, and |ME| < Cy for all N > 1. Then there exists a con-
stant Co > 0 such that, for any N > 1, there exists a symmetric matrix
PN ¢ RN ith PN = 0 such that (FN)TPN + PNFN = —T and
1PY]| < Ca.

Proof of Lemma [l It is sufficient to show the existence of constants
Co,n > 0 such that [|ef"!|| < Coe ™ for all t > 0 and all N > 1. In-
deed, in that case, PN = fooo PN PNt 4t is well defined and satisfies
the claimed properties. We introduce FY = FN + F with

My My 00 0 00 MY
FN_ | 0 M 00 PN _ | 0 00 M
! 0 0 MY o |’ 2 MY 00 0

0 0 0 MY 0 00 0

Then there exist constants ,Cy,Cs > 0 such that ||ef7 t|| < Cie™* and
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|FV|| < Cq for allt >0 and all N > 1. One can check that (Fi¥)? = 0 and
o0 (0
Nyn; _ |0e00
ED™ = 100e0
000e
for any n; > 0 and where “o” denotes a possibly non zero element, that is
not needed in this proof. Hence
000e
000e
000
0000

(Y

for any n; > 0. We deduce that
000e
3

Nyn; N __ 000. _
E(Fl) F = 000 =0

0000
for any nz > 0. Therefore,

ththths
HeF REEDIDIDY kl'kz'k3|H FYO)RF =0 (55)
k120 k2 >0 kg >0
for all tl,tQ,tg > 0. Now we note thatﬂ, for any square matrices A, B,
e(AtBIt — oAt 4 fg eA=7) Be(A+B)T 47, Hence we have, using the last
identity three times consecutively,

t
eFNt eFNt+/ eFlN(t—tl)FZNeFNtl dt,
0
t
_€F1Nt+/ eF{V(tftl)FQNeFthl dt,
0
t tl N N N
+ / / et (t=t) pN IV (ti—t2) pN o F 72 g, 4t

t

N Ny N

=l t+/ efr tl)PQNeFl b de,
0

t t
+ / / LN (=) N B (h—t2) pN Pt gy

where the last identity has been obtained by using . Recalling that
et < Cre=*t and ||[FN|| < Cy for all t > 0 and all N > 1, the claimed
conclusion holds. O

be(t) = e(AtB)tyy is such that (t) = Ax(t) 4+ u(t) with u(t) = Bz(t). The claimed
formula follows from z(t) = eAtzo + fg eAt=T)y(7) dr.
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3.3. Dirichlet boundary measurement

We extend the result of the previous section to the case of a reaction-
diffusion PDE with Dirichlet boundary observation described by

z(t @) = (p(:r)zz(t ), + (gc — q(2))z(t, ) (56a)
22(t,0) =0, 2(t,1) =u(t) (56b)
z(0, )720( ) (56¢)
y(t) = =(t,0) (56d)

for t > 0 and = € (0,1). We make throughout this subsection the assump-
tion that p € C?([0,1]) in order to use the asymptotic behavior

3.3.1. Spectral reduction

The only change compared to the previous subsection is the modifica-
tion of the nature of the observation operator. Hence, the spectral re-
duction is conducted identically but the observation is replaced by
g(t) = w(t,0) = y(t). Considering classical solutions for the PDE, we
have w(t,-) € D(A) for all ¢ > 0. Hence, is simply replaced by

g(t) = Zizl ®;(0)w;(1).

3.3.2. Control design

Let Ng > 1 and § > 0 be fixes so that —\,, +¢. < —d < 0 for alln > Ny+1.
Let N > Ny + 1 be arbitrary and to be determined later. We proceed as
in the previous subsection: we design an observer to estimate the N first
modes of the plant while the state-feedback is performed on the Ny first
modes of the plant. Hence, the controller dynamics is described by

(57a)
W (t) = (= 4 q0)in (t) + anu(t) + byv(t), No+1<n<N (57b)

N
= Z P;(0)w;(t) (57c)

Z ki (t) + kyu(t) (57d)

which is the same as the one described by but with measurement,
originally given by (33al), replaced by (57a)). In this context, is replaced
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by the following, defined for 1 < n < Np,
W (t) = (—An + qo)n(t) + anu(t) + buo(t)
No N
®;(0)
— Iy Z} ®;(0)e;(t) + L, 47; "
= i=No+1

Here ((t) is defined by ((t) = > ;5 g ®i(0)w;(t) while, following 4! we
introduced the scaled error of observation €, (t) = v/Ane,(t) with e, given
by . The definitions of Cy and C are replaced by

€i(t) + InC(?).

Pn,+1(0) 2N (0)
Co = [®1(0) ... ®p,(0)], Cy = 58
o= [9200) -, 0] O = [T TR )
and defining
ENNo(t) = [enpra(t) ... en(®)]
we obtain in replacement of and that
W (¢) = AW (£) + Bo.ault) + Boyo(t) (59)
— LOyENo(t) — LCLEN=No(t) — LL(t)
and
WNo (1) = AWM (¢) + Byo(t) — LCoENo (1) — LOLEN=No(1) — L¢ (1),
(60)

respectively. In this framework, the command input is still given by .

Using now and , the error dynamics originally given by is now
replaced by

ENo(t) = (Ag 4+ LCo)ENo(t) + LOLEN~No(8) 4 L((2). (61)

Moreover, since é,(t) = (—An + gc)en(t), we have é,(t) = (=, + e)én(t)
for all Ng+ 1 <n < N. Then is replaced by

EN=No(p) = A, EN=No(p). (62)
Putting together , , and , the introduction of
X(t) = col(W2o (1), BN (1), WN=No (1), EN=No p)),
shows that holds with the different matrices defined by .

Remark 4. Based on the arguments of Claim [I]and Claim 2] we have that
(A1, By) is controllable and (Ag, Cy) is observable.
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3.3.3. Stability analysis

2
We introduce the constant My o =), <, q)")\(o) . Note that this constant

is well defined (i.e., finite) when p € C2([0,1]) due to (26/27).

Theorem 7. Let p € C3([0,1]) with p > 0, ¢ € C°([0,1]) with ¢ > 0,
and q. € R. Consider the reaction-diffusion system described by @ Let
Ny > 1 and § > 0 be given such that —\,, +q. < —0 < 0 for alln > Ny+1.
Let K € RY>Woth) gnd L € RN be such that A1 + B1K and Ay — LCy
are Hurwitz with eigenvalues that have a real part strictly less than —§ < 0.
Assume that there exist N > Ng+1, P >0, a > 1, and 8,7 > 0 such that
© <0, where © is defined by , and

<0. (63)

1 M
I3 vy = (1 - ) AN+l + g +06+ ——— b 27

Then the origin of the closed-loop system composed of the plant @ and the
controller is exponentially stable in H'-norm in the sense that there
exists M > 0 such that, for any 1, (0) € R, for any zo € H?(0,1) and any
u(0) € R such that z{(0) = 0 and zo(1) = u(0), the classical solution of the
closed-loop system satisfies

N
+an 24 )12 >||%psMe—Z‘”(u<0>2+2wn<o>2+nz@nzl>.
n=1

for all t > 0. Moreover, the above constraints are always feasible for N
large enough.

Remark 5. The previous result deals with the exponential stability of the
closed-loop system in H'-norm. This type of approach can be extended to
a number of control design problems such as:

e L2 stability using the same control strategy 40
Robin boundary conditions24#40
Neumann boundary observations;

input /output delayed boundary control;25:2
323940

41

nonlinearities
regulation problems:

37

Proof. Consider again the Lyapunov function candidate defined by .
The computation of its time derivative along the system solutions ([32b))
and (46) gives (53). Since ((t) = >, sni1 Pn(0)wn(t), we have by
Cauchy-Schwarz inequality that ((t)* < Mia Y. ,>ni1 Anwn(t)? hence
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BMye 3,5 N1 Anwn(t)? = BC(t)? > 0 for any B > 0. Using this latter
estimate into (53)) and invoking Young’s inequality as in along with
([4849), we deduce that

T

V426V < [X} S {X] +2y > Aalsnwa(t)* <0
C g n>N+1
where I's,, = —(1—§)An+qc+5+m§—;@ < Tyyyp foralln > N 41,

Hence the assumptions give V (t) < e=2*V(0) for all ¢ > 0. Proceeding as
in the previous proof, we obtain the claimed estimate.

To complete the proof, it remains to show that one can always select
N > Ny + 1 large enough, P = 0, a > 1, and 5,7 > 0, such that © <0
and I's y11 < 0. Owing to the Schur complement, © =< 0 is equivalent
to FTP + PF + 25P + ayG + %PACTPT < 0. Applying Lemma t
F + 41, we have for any N > Ny + 1 the existence of P > 0 such that
FT"P+PF+25P = —I with ||P|| = O(1) as N — +o0. Moreover, we have
and ||£|| = v2||L|| with g and L that are independent of N. Hence,
setting o = 8 = v/N and v = N~!, we obtain from 1} the existence of a
sufficiently large integer N > Ny + 1 such that © <0 and I's y41 <0. O

Example 6. Consider the Dirichlet boundary measurement setting de-
scribed by . Let p=1, ¢ =0, and g. = 3, giving an unstable open-loop
system. To obtain the closed-loop exponential decay rate 6 = 0.5, we set
Ny = 1. Then we run the following Python code. On lines 14-18, we com-
pute the eigenvalues and eigenvectors of the problem. On lines 26-29, we
check whether Ny is selected adequately.

import numpy as np
2 import control

import scipy.integrate as integrate

4 import cVvXpy as cp

5 import matplotlib as mpl

¢ import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Parameters of the PDE

o p =1

11 q = 3 # this is q_c (q is zero)
12 delta = 0.5

14 # Eigenstructures

©This is possible because, owing to the definition of the matrix C1, it ensures that
|C1]] = O(1) as N — +o0. This remark is key to allow the application of Lemma
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def lam(n):
return (n-1/2) **2*np.pi**2%p
def phi(n,x):

return np.sqrt (2)*np.cos((n-1/2)*np.pi*x)

# Equivalent bounded input operators
def input_a(x):

return 2*p + q*x**2 # case of p constant and q=0

def input_b(x):
return -x**2

; # Number of modes to be stabilized

NO = 0
while ( -lam(NO+1) + q) >= -delta:
NO = NO + 1;

main'vl page 42

On line 36, we set define the number N of modes for the observer. Then we
start building the matrices necessary to check the conditions of Theorem [7]

after line 49.

if NO == O0:
print (°
else:

A1l the modes of the open-loop system are < -delta’)

print (’The number of modes to be stabilized is N_0=’+str (NO

))

# Select the number of modes for the
N = NO+2

# Matrices of the truncated model
tmp=[]
for i in range(1,N+1):

#print (i)

tmp . append (-lam (i) +q)

A0
A2

np.diag(tmp [0:NO])
np.diag (tmp [NO:N+1])

BO0a = []; BOb = []1; B2a = []; B2b =

for k in range(1,NO+1):

def fun(x):

return input_a(x)x*phi(k,x)
y,err= integrate.quad(fun,0,1)
BOa.append (y)
def fun(x):

return input_b(x)x*phi(k,x)
y,err=integrate.quad(fun,0,1)
BOb . append (y)
CO.append (phi(k,0))

observer

[1; co = [1; c1

[]
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6o for k in range(1,N-NO+1):

61 def fun(x):

62 return input_a(x)*phi(NO+k,x)
63 y,err=integrate.quad (fun,0,1)

64 B2a.append (y)

65 def fun(x):

66 return input_b(x)*phi(NO+k,x)
67 y,err=integrate.quad(fun,0,1)

68 B2b . append (y)

70 for k in range (NO+1,N+1):
71 Cl.append (phi(k,0)/np.sqrt(lam(k)))

73 BOa = np.array(BOa).reshape ((NO,1))
72 BOb = np.array(BOb).reshape ((NO,1))
75 B2a = np.array(B2a).reshape ((N-NO,1))
76 B2b = np.array(B2b).reshape ((N-NO,1))
77 CO = np.array(CO).reshape ((1,N0))

78 C1 = np.array(Cl).reshape ((1,N-NO))

20 Al = np.vstack((np.zeros((1,NO+1)) ,np.hstack((BOa,A0))))
s1 Bl = np.vstack((np.ones((1,1)),B0Ob))

The control matrix K and the observation matrix L are chosen sepa-
rately on lines 84 and 88. The feedback gain is K = [—5.0058 —2.7748],
and the observer gain is L = 1.4373. The matrix inequalities in Theorem
|Z| are built after line 104. The Schur complement is used to rewrite (63)
into a linear matrix inequality in the unknown variables as described in
Remark Bl

s2 # Pole placement for the state feedback
s3 Pdes = np.linspace(-NO-1-delta,-1-delta,NO+1)
s4 K = -control.place(A1,B1,Pdes);

86 # Pole placement for the observer
s7 Qdes = np.linspace(-NO-delta,-1-delta,NO)
ss LO = -control.place(A0.T,CO0.T,Qdes).T;

o0 tLO = mnp.vstack((np.zeros((1,1)),L0))

92 def hcont(A,B,C,D): # help to build F by concatenate
horizontally
93 return np.hstack((np.hstack((np.hstack((A,B)),C)),D))

95 Fl=hcont (Al+np.dot (B1,K),np.dot (tL0O,CO) ,np.zeros ((NO+1,N-NO)),
np.dot (tL0,C1))

o6 F2=hcont (np.zeros ((NO,NO+1)) ,A0+np.dot (LO,CO) ,np.zeros ((NO,N-NO
)) ,np.dot (LO,C1))
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F3=hcont (np.dot (B2b,K) +np.hstack ((B2a,np.zeros ((N-NO,NO)))) ,np.
zeros ((N-NO,NO)) ,A2 ,np.zeros ((N-NO,N-NO)))

F4=hcont (np.zeros ((N-NO,NO+1)) ,np.zeros ((N-NO,NO)) ,np.zeros ((N-
NO,N-NO)) ,A2)

F = np.vstack((np.vstack((np.vstack((F1,F2)),F3)),F4))

cL = np.vstack((np.vstack((np.vstack((tLO,L0)) ,np.zeros ((N-NO
,1)))) ,np.zeros ((N-NO,1))))

# LMI conditions

gamma = 0.00155 #Fix the decision variable gamma > O
; M_phi = 12/(np.pi**2%*p)
E = np.hstack((np.ones((1,1)),np.zeros ((1,2*N))))

: tK = np.hstack ((K,np.zeros ((1,2*N-N0))))

def fun(x):
return input_a(x) **2
y,err=integrate.quad (fun,0,1)

3 norm_a = np.sqrt(y)

def fun(x):
return input_b(x)**2
y,err=integrate.quad(fun,0,1)

: norm_b = np.sqrt(y)

# check Matrix inequalities

alpha = cp.Variable ()

beta = cp.Variable()

P = cp.Variable ((2*N+1,2*N+1) ,PSD=True)

# build the constraints
constr = [alpha >= 1]
constr += [beta >= 0]
M11= (-lam(N+1)+ q +delta+beta*M_phi/(2*gamma))*np.ones ((1,1))
M12 =np.sqrt(np.abs(-lam(N+1)))*np.ones ((1,1))
Gamma=cp.bmat ([[ M11, Mi12],
[M12.T,-alpha*np.ones ((1,1))] 1)
constr += [Gamma <<O0]
# build the last constraint
G = norm_ax**2*(np.dot(E.T,E))+norm_b#**2x(np.dot (tK.T,tK))
M11=F.T @ P +P @ F+ 2% delta * P + alpha*gamma*G

; M12=PQ@ cL

matConstr = cp.bmat([[ M11 , M12],
[M12.T, -beta*np.ones((1,1))1])
constr += [matConstr << 0]

The feasability of the convex problem is checked on line 142 using the
solver in CVXOPT with cvxpy package. The conditions of Theorem [7] are
thus feasible for N = 3. Then the values of the unknown variables are

page 44
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stored, and matrix constraints are checked before line 166.

prob = cp.Problem(cp.Maximize (1), constr)
prob.solve(solver=’>CVXOPT’)
print (prob.status)

P=P.value; alpha=alpha.value; beta=beta.value
w,v=np.linalg.eig(P)
# w should be positive as all constraints

7 m=np.min([alpha-1,np.min([beta,np.min(w)1)1)
; # first matrix inequality
) M11= (-lam(N+1)+ g +delta+beta*M_phi/(2*gamma))

M12 =np.sqrt(np.abs(-lam(N+1)))

Mi=np.hstack ((M11,M12))

M2=np.hstack ((M12,-alpha))

M=np.vstack ((M1,M2))

wl,v=np.linalg.eig(M) #max wl should be negative

# second matrix inequality
Mi1=np.dot(F.T,P)+np.dot(P,F)+ 2*xdelta*P +alpha*gamma*G
M12=np.dot (P, cL)

: Mi=np.hstack ((M11,M12))

M2=np.hstack ((M12.T,-beta*np.ones ((1,1))))
M=np.vstack ((M1,M2))
w2,v=np.linalg.eig (M) #max w2 should be negative
mm=np.min([m,-np.max(w2) ,-np.max(w2)])
if mm<O0:

print (’Matrix inequalities not satisfied’)
else:

print (’Matrix inequalities satisfied’)

The code to numerically compute the behavior of the closed-loop system
associated with the initial condition zo(z) = 1 + 22, and with zero initial
condition for the observer, obtained based on the 50 dominant modes of
the plant is given after line 167.

7 # Simulation

# Number of modes for simulation
Nsim = 50;

if Nsim < 2%N:
print (’Number of modes for simulation strictly less than 2x
N?)

tmp=[]
for i in range(1,Nsim+1):
tmp . append (-lam (i) +q)

; # Matrices of the truncated model

Ass = np.diag(tmp[0:Nsim]) # System used for simulations
based on Nsim dominant modes
Aobs = np.diag(tmp[0:N])

page 45
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181
152 Bssa = []; Bssb = []; Bobsa = []; Bobsb = []; Css = []; Cobs
= [1
183 for k in range(1,Nsim+1):
184 Css.append (phi(k,0))
185 if k<N+1:
186 Cobs .append (phi(k,0))

188 Lobs = np.vstack((LO,np.zeros ((N-NO,1))))
120 Lobs=Lobs.reshape(N,)

1901 for k in range(1,Nsim+1):

192 def fun(x):

193 return input_a(x)x*phi(k,x)
194 y,err= integrate.quad(fun,0,1)
195 Bssa.append (y)

196 if k<N+1:

197 Bobsa.append (y)

198 def fun(x):

199 return input_b(x)x*phi(k,x)
200 y,err=integrate.quad (fun,0,1)

201 Bssb.append (y)

202 if k<N+1:

203 Bobsb.append (y)

204

205 Bssa = np.array(Bssa).reshape((Nsim,))
206 Bssb = np.array(Bssb).reshape ((Nsim,))
207 Bobsa = np.array(Bobsa).reshape ((N,))
208 Bobsb = np.array(Bobsb).reshape ((N,))

210 # Initial condition (IC)
211 def z0(x):
212 return 1+x**2 # IC of the PDE

214 u0 = z0(1) # IC of the control
216 def wO(x):
217 return z0(x) - x**2*xu0 #IC of the homogeneous Dirichlet

system

210 zsim0=[]
220 for k in range(1,Nsim+1):

221 def fun(x):

222 return wO(x)*phi (k,x)

223 y,err=integrate.quad (fun,0,1)

224 zsim0O.append(y) # Coefficients of projection of the IC wO
226 zsimO = np.array(zsim0O).reshape ((Nsim,1))

228 # Check the validity of the projection (graph)
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220 space = np.linspace(0,1,100)
230 check = np.zeros((len(space),1))

232 for kx in range(len(space)):
233 for k in range(Nsim):
234 check [kx,0] = check[kx,0] + zsimO[k,0]*phi(k,spacel[kx])

236 fig , ax= plt.subplots ()
237 ax.set_title(’To check?’)

230 ax.plot (space, wO(space),’g-’, label=’w0’)

240 ax.plot(space, check,’r.’, label=’approx’)

241 ax.legend ()

242 # plt.savefig(’to_check.png’,bbox_inches=’tight’)

244 # time discretization
245 Tsim = 6;

247 def ode(z,t):

248 u=float (z[0])

249 zsim=z[1:Nsim+1]

250 zhat=z [Nsim+1:]

251 whata=np.vstack ((u,zhat [0:N0]))

252 v=float (np.dot (K, whata))

253 udot=v

254 zsimdot=np.dot (Ass,zsim)+np.dot (Bssa,u)+np.dot (Bssb,v)

255 zhatdot=np.dot (Aobs ,zhat)+np.dot (Bobsa,u)+np.dot (Bobsb,v)

256 zhatdot+=-Lobs*float (np.dot(Css,zsim)-np.dot (Cobs,zhat))

257 zdot=np.hstack ((np.hstack ((udot*np.ones (1) ,zsimdot)),
zhatdot))

258 return zdot

260 t=np.linspace (0,Tsim,60)

262 # Initial condition of the full state

263 zhatO=np.zeros ((N,1))

264 z0tot=np.vstack ((np.vstack((u0,zsim0)),zhat0))
265 z0tot=2z0tot.reshape(len(z0tot),)

266 sol=integrate.odeint (ode,zOtot ,t)

268 Mstate_z = np.zeros((len(space),len(t))) # PDE in original
coordinates z
260 Mstate_w = np.zeros((len(space),len(t))) # PDE in homogeneous

coordinates w
270 MstateObs = np.zeros((len(space),len(t))) # State of the
observer

272 for k_time in range(len(t)):
273 for k_space in range(len(space)):
274 for k in range(Nsim):
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Mstate_w[k_space ,k_time] += sol[k_time,k+1]*phi(k,
space [k_spacel)
Mstate_z [k_space ,k_time] = Mstate_w[k_space,k_time] +
space [k_space]l**2xsol[k_time ,0]
for k in range (N):
MstateObs [k_space ,k_time] += MstateObs[k_space,
k_time] + sol[k_time,k+1+Nsim]*phi(k,spacel[k_space])

rcParams[’legend.fontsize’] = 10
= plt.figure(); ax = fig.add_subplot (111, projection=’3d’)
ST = np.meshgrid(space, t)

.plot_surface(SX, ST, Mstate_z.T, cmap=’jet’)

set_xlabel (’x’)

.set_ylabel(’t’)

set_zlabel (’z(t,x)’)

.view_init(elev=15, azim=20) # adjust view so it is easy to

see
.savefig(’pde-3d.png’)

= plt.figure(); ax = fig.add_subplot (111, projection=’3d’)

.plot_surface(SX, ST, Mstate_w.T-MstateObs.T, cmap=’jet’)

set_xlabel (’x’)
set_ylabel(’t’)

.set_zlabel (’$e(t,x)$’)

view_init (elev=15, azim=20) # adjust view so it is easy to
see
.savefig(’pde-error.png’)

Fig. [6] depicts the corresponding solution. The convergence of the state

towards 0 can be observed, confirming the predictions of Theorem [7] The
observation error is given on the same figure.

The time-evolutions of the control and output variables are given in

Figure [7]
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Solution with saturation
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Fig. 6. State z and observation error e in closed-loop with Dirichlet boundary measure-

ment feedback control for the reaction-diffusion system (56)
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Fig. 7. Control u(t) = z(t,1) and output y(¢t,z) = z(¢,0) for the closed-loop system
with Dirichlet boundary measurement feedback control for the reaction-diffusion system

(56)
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3.4. Saturated control with internal measurement

In this section we consider the stability analysis of parabolic PDEs when
controlled in the presence of input saturations. In this setting, the con-
trol inputs apply in the domain by means of a bounded operator while the
observation can take the form of either a bounded or an unbounded mea-
surement operator. As in the previous section, the adopted approach relies
on spectral-reduction methods. The presence of the input saturation is han-
dled in the stability analysis by invoking the generalized sector condition
reported in Section This type of control design problem was reported
in¥ in the case of a state-feedback. We consider here the case of an output
feedback by combining the Lyapunov-based analysis procedure discussed
in the previous sections and the previously generalized sector condition.
This allows the derivation of a set of sufficient conditions ensuring the local
exponential stability of the origin of the closed-loop system. A subset of
the domain of attraction is characterized by the decision variables of the
abovementionned sufficient constraints.

Problem description

Let the reaction-diffusion equation with Robin boundary conditions de-
scribed by

m

z2(t ) = (p(2)z,(t, 7)), — (a(x) = ge)2(t, ) + ) bi(@)usark(t)  (64a)
k=1

cos(f1)z(t,0) — sin(fy)z,(¢,0) =0 (64b)
cos(f2)z(t,1) + sin(f2)z,(¢,1) =0 (64c)
2(0,2) = zo(x) (64d)

with measurement equation

1
y(t) = / o(@)2(t, 7) da. (65)

0
Here we have 61,02 € [0,7/2], p € C}([0,1]) with p > 0, ¢ € C°([0,1]) with

q >0, q. € R, and by, € L?(0,1). The scalar control input usasx(t) € R act
on the system. Hence, can be written as

2ty ) = —Az(t,) + qez(t, ) + Y brtisar i (t) (66a)
k=1

2(0,) = 2o (66b)
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where A is the Sturm-Liouville operator defined at the beginning of this
section.

The control input is assumed to be subject to saturations; for a given
vector s = [51 So ... sm]—r € (R%)™, we define sat : R™ — R™ by .
Hence, the input ugas, x (¢) that is applied to the plant is expressed in function
of the actual control inputs u(t) as

Usat (t) = sat(u(t)).
with Usat (1) = [Usat,l(t) Usat,2(t) - .. usat,m(t)] T and
u(t) = [ur(t) ua(t) ... um(®)] "

In this context and similarly to%® in the case of a state-feedback, the
objective is to study the local stabilization of with measurement
for the controller architecture studied in the first part of this section but in
the presence of the saturating control inputs while estimating the associated
domain of attraction.

3.4.1. Spectral analysis

Consider again the coefficients of projection z,(t) = (z(¢,-), ®pn), bp i =
(b, ®,,), and ¢, = (¢, P,). As done for without saturation, the pro-
jection of the system solutions and the output equation into the
Hilbert basis {®,, : n > 1} gives the following representation:

Z’ﬂ(t) = (_)\n + qC)Zn(t) + Z bn,kusat,k(t) (67&)
k=1

y(t) =Y cnznlt) (67b)
n>1
Proceeding as in the previous subsection, we consider the feedback law
taking the form of a finite-dimensional state-feedback coupled with a finite-
dimensional observer. More precisely, let § > 0 and Ny > 1 be such that
—An + qe < =0 for all n > Ny + 1. For a given integer N > Ny + 1 to be
selected later, the controller architecture takes the form:

":'n(t) = (A +qc)2n(t) + Z by kUsat,k (1) (68a)
k=1

N
+L, {chék(t) —y(t)} , 1<n<N
k=1

u(t) = Kpaa(t), 1<k<m (68b)
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with Ly, K, € R where L, =0 for No+1<n < N.
We define the errors of estimation e, (t) = z,(t) — 2,(t). As in the pre-
vious subsection, we introduce the vectors and matrices defined by Z™o

o ~ T sn_ R . 1T T B
[zl ZNO] , ZN=No — [ZN0+1 ZN] , ENo = [61 ...eNO} , EN—No —
T . X
[eno41 --- en| , Ao = diag(—A1+¢e, ..., —An, +4c), A1 = diag(—Ang+1+
Ges s —AN+Gc), Bo = (bnk)1<n<No,1<k<ms B1 = (b k) No+1<n<N,1<k<ms

T
C() = [Cl CNO], Cl = [CN0+1 CN], L = [Ll LNO] s and K =
(Kk.1)1<k<m.1<i<nN,- This leads to

N0 = Ay ZN0 4 Byugay — LCoEN — LCIEN N0 — [ ¢
ENo = (Ag + LCo)ENo + LCLEN Mo 4 I¢
Z;N*N0 = A1 ZV N0 4 Biugy
EN-No _ AIENfNo
w=KZNo

where ((t) = >, < n41 Cn2n(t) is the residue of measurement. Owing to the
definition of the deadzone nonlinearity , we infer that

ZNo — (Ag + BoK)ZN — LCyENo — LCYEN=No — [¢ + Byd(K ZN0)
ENo = (Ag 4+ LCo)ENe + LC,EN—No 4 ¢
ZN=No = A, ZN=No 4 B K 7N 1 By g(K 2
EN-No — g, EN—No,
Introducing the state-vector
X = col(zNo, gNo zN=No pN—No)

and the matrices

Ay + BoK —LC, 0 —LC, L By

. 0 Ag+LCy 0 LC, . L . 0
F= B K 0 A 0 |’ L=1]yo | Fe= B,
0 0 0 A 0 0,

we deduce that
X = FX + L + Lyp(K ZN0). (69)
We finally define £ = [I 00 O] and K = [K 00 0], which are such that

ZNo = X, u=KX.



December 24, 2021 13:32  ws-rvOx6  Book Title main'vl page 54

54 H. Lhachemi and C. Prieur

3.4.2. Stability results

For z € L?(0,1) and 2 € RY, we define

Hl(zvé)
HQ(Zvé)
H =
(Z’Z) H3(272)
H4(Z,£’)
with
731 <Za ¢)1> - 21
Hl(Z,Z) = ) HQ(ZV%) - )
ZA'NO <Z’ (I)No> - éNo
and
ZNo+1 (2, ®Ng+1) — ENp+1
H3('Z773) = : ) H4(Za2) = :
Zn (2,®N) — 2N

Stabilization in L? norm Let us now state and prove a result providing
a stabilization for in L?-norm. This result is extracted from 34

Theorem 8. Let 61,05 € [0,7/2], p € C*([0,1]) with p > 0, ¢ € C°(]0,1])
with ¢ > 0, g € R, and s € (RY)™. Let ¢ € L*(0,1) and b, € L*(0,1)
for 1 < k < m. Consider the reaction-diffusion system described by
with measured output @ Let Ng > 1 and § > 0 be given such that
—An+Gqc <=6 <0 foralln > No+1. Assume that 1) for any 1 < n < Ny,
there exists 1 < k = k(n) < m such that b, # 0; 2) ¢, # 0 for all
1<n<Ny. Let K € R"m*No gnd I € RNo be such that Ay + B1 K and
Ao+ LCy are Hurwitz with eigenvalues that have a real part strictly less than
— < 0. Assume that there exist N > Ny +1, a symmetric positive definite
P cR2NX2N o B ~, u, k> 0, a diagonal positive definite T € R™*™, and
G € R™*No sych that

O1(k) 20, ©O2>=0, O3(k) <0 (70)
where
@171’1(5) PL —ETGTT+P£¢
@1 (K) = * —ﬁ 0

* * O"Yzznzl ”RkaH%zI - 2T
PET(K - G)T]

0. = L pdiag(s)?

1
O3(k) = 2v {—)\N-H +qc+r+ a} + B Rel7
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with ©11,1(k) = FTP+PF+2kP+ayY o, ||Rnbi||2. KT K. Define the
ellipsoid

1
&= {(z,é) € L*(0,1) x RN : TIx(z,2) " Plin(2, 2) + || Rnz|2 < u}'

Then, the origin of the closed-loop system composed of the plant with
measured output @ and the control law is locally exponentially stable
in L?-norm with exponential decay rate k and with a basin of attraction
including E1. More precisely, there exists M > 0 such that for any initial
condition (2o, 2(0)) € &1, the solution satisfies

N N
(8, )Fe + D 2a(t)® < Me> <||Z0||2L2 +) 2n(0)2> (71)
n=1 n=1

for all t > 0. Moreover, for any fized k € (0,4], the constraints (@) are
always feasible for N large enough.

Proof of Theorem [8l Let the Lyapunov function candidate be defined
by V(X,2) = XTPX +93 s niq (2 ®n)” for X € RV and z € L2(0, 1).
The computation of the time derivative of V along the system solutions to

@ and gives

V+2kV =XT (F'P+PF+2kP) X +2X"PLC
+2X T PLKZN) +27 Y (<A +qe+ )70

n>N+1
+2v Z 2 LP KX + 2y Z 20 L8 G(K Z7N0)
n>N+1 n>N+1

where Lfl = [bn,l bnﬁm]. From Young’s inequality, we obtain for any
1
a > 0 and any w € R™ that 2Zn>N+1anlew < =Y sni12e +
> - o =
ad i IRnbe|%z||w]|>. Hence, introducing X = col(X, ¢, (K ZN0)), we
deduce that
@171,1 PL P£¢
V4+2V<XT| « 0 0 X
x ok ar T IRl
1
+ 2y Z <—)\n+qc+/€+> 22,
o
n>N+1

Since, by definition, ¢ = 3 Sy, CnZn, we obtain that ¢? <
|Racl|?s D oSN 22, Moreover, if ZNo € RNo satisfies |(K — G)ZNo| < s,
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we deduce from (21 that ¢(K ZNo)TT(¢(K ZNo)+GZNo) < 0. Combining
the latter estimates, we obtain for all X € R2¥ satisfying |(K —G)EX| < s
that
V+2rV <XTO1(R)X + > Tyl
n>N+1

where I', = 2y (= Ay 4+ ¢c + £+ ) + 8| Rycl|22 < O3(k) foralln > N +1.
Hence the assumptions imply that V +2kV <0 for all X € R2N is such
that |[(K — G)EX| < s.

We now need to give a sufficient condition such that |(K — G)EX| <
s holds. To do so, consider X € R? and z € L?(0,1) such that
V(X,z) < 1/u. Applying the Schur complement to ©2 = 0, we ob-
tain that P > “ET(K — G)'diag(s) *(K — G)E. This implies that
|diag(s)~}(K — G)EX]|| < 1, giving in particular that |(K — G)EX| < s
hence V + 2kV <0.

From now it is easy to show that, for any initial condition selected such
that (zq,20) € & with zg € D(A), we have V(X (t),2(¢,-)) < 1/p and
V(X(t), 2(t,-)) + 26V (X (t), 2(t,-)) < 0 for all t > 0. The claimed stability
estimate follows from the definition of V. The extension of this result
to mild solutions associated with any (2o, 29) € & follows from a classical
density argument [53, Thm. 6.1.2].

The rest of the proof, which concerns the feasibility of the constraints,
is reported in 2% O

Stabilization in H! norm The following result deals with the exponen-
tial stability of the system trajectories evaluated in H'-norm.

Theorem 9. In the context of Theorem[8 we further assume that ¢ > 0.
Assume that there exist N > Ny + 1, a symmetric positive definite P €
R2NX2N o > 1, B, 7, p, k& > 0, a diagonal positive definite T € R™*™, and
G € R™*No sych that

@1 (KJ) j 0, @2 t 0, @3(/’4&) S 0 (72)
where O1(k) and Os are defined as in Theorem@ while

1 Rnvell2,
O3(k) :27{— (1—) )\N+1+qc+,{}+B|NCHL.
Q AN+1

Define the ellipsoid

E = {(z,é’) € D(A) x RN : 1I(z, 2) T PII(z, 2) + v|RnAY 222, < i}
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Then, the origin of the closed-loop system composed of the plant with
measured output @ and the control law is locally exponentially stable
in H'-norm with exponential decay rate x and with a basin of attraction
including &,. In other words, there exists M > 0 such that for any initial
condition (2o, 2(0)) € &1, the solution satisfies

N N
12t )7+ 2a()? < Me? (IIZ@II?p +> é’n(0)2>
n=1 n=1

for all t > 0. Moreover, for any fized k € (0,4], the constraints (@ are
always feasible for N large enough.

Proof of Theorem [l We introduce the Lyapunov functional candidate
V(X,2) = XTPX 479,541 An (2,0,)7 when X € R?Y and z € D(A).
The computation of the time derivative of V' along the system solutions to

@ and gives
V+2kV =X" (FTP+PF+2kP) X +2X ' PL(
+2X T PLoG(KZN) +2y D An(=An+ e+ K)70

n>N+1
+2y Y Az LhEX +2y > Az Lhg(KZ™N)
n>N+1 n>N+1
where L? = [bml . bn,m]. Invoking Young’s inequality, we obtain for any

1
a >0 and any w € R™ that 23 -y AznLlw < =35 n>NA1 A222 +
> o &>

aS i IRNbE|2:lw]?. Let X = col(X, ¢, p(K ZNo)). Proceeding as in
the proof of Theorem [8] we deduce that

V426V < XT@l(/{)X + Z AT 22
n>N+1

for all X € R2N satisfying |(K — G)EX| < s and where I, =

27{—(1—%))\71—1—%—&—/@}—1—% < O3(k) for all n > N + 1. The

proof now follows similar arguments that the ones employed in the proof of
Theorem O

Remark 6. The conditions in Theorem 8 and in Theorem [ are nonlinear
in the unknown variables, due to, in particular the product G'T. Some
nonlinearity could be transformed into linear conditions as for the variable
«, as discussed in Remark [3] To deal with the particular case m = 1, or to

deduce convex constraints from these theorems, see'3%
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3.5. Section conclusion

This section has discussed the topic of output feedback stabilization of
a reaction-diffusion equation by means of in-domain or boundary control
inputs. The controllers that are considered in this section are output feed-
back laws where the output is defined from a boundary measure or an
internal measurement of the state. The control strategy takes the form
of a finite-dimensional controller composed of an observer coupled with a
finite-dimensional partial state-feedback. The control can be either linear
or subject to a saturation map. In the latter scenario, only a local asymp-
totic stability can be obtained in general along with an estimation of the
basin of attraction. The reported stability analysis takes advantage of Lya-
punov functionals coupled with the generalized sector condition that has
been recalled in Section [2|in the context of finite-dimensional systems. The
obtained sets of constraints ensuring the stability of the closed-loop system
take an explicit form and have been shown to be feasible when the order of
the controller is selected large enough. An explicit subset of the domain of
attraction of the closed-loop system has also been derived.
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4. Stabilization of wave and KdV equations

Two classes of particular equations are considered in this section: first the
wave equation and then the Korteweg—de-Vries (KdV) equation. We par-
ticularly focus on the boundary stabilization problem. The interest of the
first equation is that it gives a transition towards the boundary control of
general hyperbolic systems, whereas the second one allows to show perspec-
tives in terms of stabilization of nonlinear partial differential equations, and
give a highlighting example of what could be done for boundary control of
other classes of hyperbolic PDEs (as considered e.g. in>>2).

For both equations, we solve the common objectives of well-posedness
assessment and asymptotic stabilization by means of of distributed or
boundary control that can be either linear or subject to a nonlinear map
(e.g., a saturation).

This section is organized as follows. First, in Section the stabiliza-
tion of the linear wave equation with linear and with nonlinear in-domain
control is presented. The topic of boundary control is then considered for
the same equation. Finally the nonlinear KdV equation is considered in
Section 2] with in-domain control. This result is illustrated with some
numerical simulations.

4.1. Wave equation with a bounded control operator

Motivated by the illustration depicted in Figure |8 where z stands for the
deflection of a membrane with respect to the rest and horizontal axis and
that is subject to a distributed force u, we start this section by considering
the following wave equation:

z=0 r=1

Fig. 8. Wave equation with bounded control operator

2t (t, @) = zgo (6, ) +u(t,x), VE >0, z € (0,1), (73)

We assume that the membrane is clamped at both extremities. This implies

the following boundary conditions, for all ¢ > 0,
2(t,0) =0,

H(t,1) = 0. (74)
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The initial condition are given, for all z € (0, 1), by
2(0,z) = 2°(x) ,
2(0,2) = z'(2) ,
where 2° and z' stand for the initial deflection and the initial deflection
speed, respectively.

Let us note that the function defined by z(t,z) = 0, for all (¢,z) in
(0,1) x [0,00) is a particular solution to and in the uncontrolled
scenario (u = 0). Hence the orgin is an equilibrium for the studied wave
equation. The objective is to render this equilibrium asymptotically stable
by designing an adequate feedback control wu.

(75)

4.1.1. Internal linear control

Let us define the linear control by
u(t,z) = —az(t,x), t >0, z € (0,1), (76)

and consider

1
Vi=g /(zz + 22)dz. (77)
A formal computation gives, along the solutions to and .,

V= fo ZpZat — Q22 —i—ztzm)dx
- —fo azt 2de + [202.)%58
= fo azid
Thus, if a > 0, V; is a (non strict) Lyapunov function.
Using standard technics, such as Lumer-Phillips thereom for the well-
posedness (see e.g., |14, Theorem A.4.]) and Huang-Priiss theorem for the
exponential stability (see?” and®¥), we may prove the following result:

Theorem 10. For a > 0 and (2°,2') € H}(0,1) x L?(0,1), there exists a
unique (weak) solution z: [0,00) — HO (0,1) x L?(0,1) to (m/ (@ More-
over, the origin of Hi(0,1) x L%(0,1) is an exponentzally stable equilibrium,

that is there exist two positive values C and p > 0 such that, for any initial
condition (2°,2%) € H}(0,1) x L2(0,1), it holds, for all t > 0,

2] 22 0,1) + 12t L2 (0,1) < Ce—“t(\|zo||H5(o,1) + 12" £20,1))-

Proof of Theorem [I0l. Let us first prove the well-posedness. Let A4; be
the linear unbounded operator

Al(ﬁ) - (fmg—ag)



December 24, 2021 13:32  ws-rvOx6  Book Title main’vl page 61

Saturated boundary stabilization of partial differential equations 61

with the domain D(4;) = (H?(0,1) N H}(0,1)) x H3(0,1). This domain is
dense is H{(0,1) x L%(0,1), and the operator A; is closed. Let us rewrite

@3- as
()= (5) Qoo (3) @

Our objective is to prove that A; generates a contraction semigroup 7;(¢),
0
that is the solution of is Tp(t) (;) and satisfies

fro (S <11

Informally, one can try to prove . by differentiating the right-hand-
2 0 0
side with respect to the time. Using H (zl) = <(z1) , (;)) , we
20 20 20 2°
= (AT(t AT (t
e (5). (5 +(5) amo ()

Ti(t) (i)
— Re(ATi(1) (i) , (i>>

where Re denotes the real part. This gives, at time ¢t = 0,

LVt > 0. (79)

get
d 2
dt

2
d 29 20 29
T(t t=0,-) =2Re(4 ,
Glmo (2] =0 =2t (2).(5)
This formal computation tends to show that in order to obtain (79), a
0 0
necessary condition is to have Re(A; (; , zl ) < 0. This condition is

one of the two key elements of the Lumer-Phillips theorem which provides
a characterization of the unbounded operators generating a contraction
semigroup. Specifically, in order to apply the Lumer-Phillips theorem, we
need to show that the two following points hold true:

(1) Re(4; (i) : (zf)> <0, for all (i) in D(A;)

(2) there exists A > 0 such that Ran(I — \A4;) = H}(0,1) x L?(0,1), where
Ran is the range set.

Under these two conditions, the unbounded operator A; generates a semi-
group of contraction and the Cauchy problem is well-posed for strong
and weak solutions as considered in Theorem [0l
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Even if we do not give here a complete proof of these both proper-
ties, note that the interest of the second item is that it replaces the time-
dependent Cauchy problem by

v (g) € H(0,1) x L*(0,1), find (g) € D(A;) such that

v ()~ (1)

which is a stationary Cauchy problem of a linear ODE with prescribed
boundary conditions.

Let us now sketch the proof of the exponential stability. According
to Huang-Priiss theorem (see?” and®®), it is sufficient to check the two
conditions

iR C p(A), (80)
sup ||(i8 — A) Y| < oo. (81)
BER

Inspired by 23 let us prove these both properties succesively. To prove 7
we argue by contradiction, assuming the existence of an eigenvalue of A; of

the form 3. Pick <§) in D(A;) \ {0} such that (i85 — 4;) <Jgt> = 0. Then

0= ((i8 — A1) (f) ; <£>>Hg(o,1)xL2(o,1)= (82)

g

1 1 1
_ B / FI2da + / l9%dz) + a / 9%da. (83)

Thus, inspecting the real part of the previous equation, with a # 0, we get
g = 0. Moreover, inspecting the imaginary part, we get f/ = 0 which gives
f = 0 using the definition of D(A;) and the boundary conditions of f. This

is a contradiction with (f> # 0. Therefore holds.
g
Let us now prove , by proceeding again with a contradiction. If
is false, then there exists a sequence (8, )nen and a sequence (f"> in
neN

gn

D(A;) such that

=1, (84)
H}(0,1)xL2(0,1)
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IG:)

where <‘f") = (iBn — A)) (f”> . We compute
Gn 9n) pen

<<£:) ’ (£:>> H(01)xL2(0,1) = (180 — A1) (g:) ) <§Z)>H(}(o,1)xL2(o,1)

1 1 1
=B, ([ |fal?dx+ / |gn|?dz) + a/ lgn |2dz.
0 0 0

Therefore, with and , inspecting the imaginary part in the last
equation,we get

and

oo 0 (86)
H}(0,1)xL2(0,1)

/ f’2dx +/ g2dx) —n 400 0

thus with , we get B, — 0 which is a contradiction with . Therefore
holds. This concludes the proof of the exponential stability and of the
proof of Theorem O

4.1.2. Internal saturating control

We now study the nonlinear control
u(t,z) = —sat(az(t, ), = € (0,1), Vt >0, (87)

where sat is the nonlinear function defined in with m = 1 and level
sp. Following the terminology of 4> we call this nonlinearity the localized
saturated map. The wave equation in closed loop with the control

gives the dynamics
Ztt = Zzo — sat(azy) (88)

A formal computation of the time derivative of V; defined by (77) along
the solutions to the wave PDE (88) with boundary conditions gives

1
Vi = —/ zisat(az)de.
0

Hence, in order to conclude on the possible stability of the closed-loop
system, one needs to handle the nonlinearity z;sat(az).

Note that other choices of saturation mechanisms can also be considered
instead of the localized saturation studied in . For instance, papers®®
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and®? deal with the L? saturation denoted by satro and defined for any
o€ L%*0,1) by

satyo(o)(x) = (89)

O'(.’,E) lf HUHL2(0,1) < 1
o@)  lse

H<7HL2(0,1)

Even if all the different saturation mechanisms are of interest, we focus here
on the localized saturation used in , which is generally more relevant
from a physical point of view and in practical applications.

The well-posedness of the nonlinear PDE , which is borrowed
from 29 is assessed by the following theorem.
Theorem 11. For alla > 0 and (2°,2') in (H?(0,1)NHE(0
there exists a unique solution z: [0,00) — H?(0,1) N H(0,
the boundary conditions and the initial condition (@

))x H (0, 1),
t

0 with

1
1)

Proof of Theorem [I1Il We only provide a sketch of the proof reported
in’*8 Consider the nonlinear operator

4 <£> N <fm = gat(ag)>

with the domain D(A;) = (H?(0,1) N H}(0,1)) x H}(0,1). We are want
to invoke here a generalization of the Lumer-Phillips theorem, which is the
so-called Crandall-Liggett theorem. A precise statement of this theorem

can be found;# see also® and %2 To apply this theorem, two conditions need
to be checked:

(1) A, is dissipative, that is for any two elements of D(A;),
() -(2)-()- () =
g g g g
(2) For all A > 0, D(A;) C Ran( — A\A4;)

Let us prove the first item. To do that, given <J;> and (g) in
H}(0,1) x L?(0,1),in H}(0,1) x L*(0,1), we denote

sene () w () ()
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. Let us check that A < 0. Using the definition of A; and of the hermitian
product in Hg(0,1) x L?(0,1), we compute

A=Re ( / (0:(2) () (@) — Fola))dla + / (fonla) = fm<x>><g<x>—g<x>>dm)
“Re ( / (sat(ag(z)) - sat(a@(x)))(g(m)—@(oc»dx) ,

e ([ (sat(ag(o)) - saca () GG g -
Note that, for all @ > 0 and for all (s, ) in C x C,
Re ((sat(as) — sat(a3))(s — 5)) > 0.

Thus A; is dissipative.
The second item requires to deal with a nonlinear ODE. To be more

specific, let A > 0 and (g) € H(0,1) x L?(0,1) be arbitrarily given. Our

objective is to find (g) € D(A;) such that

-w(l)-()
that is
Lo ol =y

Using the first identity to express § in function of f and f, we only have to
find f such that

fxm - %f?_ sat(%(f— f)) = _§g_ %f
flo)=7f1y=o0

holds. The existence of a solution to this nonhomogeneous nonlinear ODE
with two boundary conditions is provided by the following lemma.

Lemma 2. For any a > 0 and \ > 0, there exists f solution to

x9S (90)
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To prove this lemma, let us introduce the mapping:

T :L*0,1) — L?(0,1) ,
Y=z,

where z = T (y) is the unique solution to

Zow — 322 = — 3V — s2u+ sat(L(y — u)) ,

2(0)=2(1)=0.
It can be proven that 7 is a well defined mapping. Then, it is possible to
invoke the Schauder fixed-point theorem (see e.g.1#) to deduce the existence
of y such that T(y) = y. After doing so, we obtain that f = y solves

(90 O

After having assessed the well-poseness of the closed-loop system dy-
namics, we can focus on the study of its stability. The global asymptotic
stability of this nonlinear PDE is stated in the following result.

Theorem 12. For all a > 0, the origin of the PDE with the boundary
conditions is globally asymptotically stable. More specifically, for all
(29, 21) in (H?(0,1) N HE(0,1)) x HE(0,1), the solution to with the
boundary conditions and the initial condition (@ satisfies, Vt > 0,

l2(t, Mz 0,1y + l2e(ts Mlez,1) < N2 mg0,0) + 12H 220,y
together with the attractivity property

[12(t, M azo,0) + 126t )l z20,) = 0, ast— o0

Proof of Theorem [I2l Due to Theorem [II] the formal computation of
the time derivative of V; previously computed is rigorously justified. Hence
we have

1
Vi = —/ zsat(az)de.
0

This is a weak Lyapunov function because Vi < 0 which guarantees the
stability of the origin. In order to prove the attractivity of the origin,
we are going to invoke LaSalle’s Invariance Principle |17, Chapter 11] for
infinite-dimensional systems. To apply LaSalle’s Invariance Principle, we
have to check that the set of solutions is precompact. This result can be

9120

obtained here by following the approach reported in and relies on the

following lemma (see below for a sketch of proof).

Lemma 3. The canonical embedding from D(A1), equipped with the graph
norm, into H}(0,1) x L?(0,1) is compact.
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t,.
Using the dissipativity of A; and Lemma (3| the trajectory (j((t’ )))
ACE

is precompact in H}(0,1) x L2(0,1). Moreover the w-limit set

w K Z((%’ )) ﬂ C D(A;) is not empty and is invariant with respect to the
zZt(U, .

nonlinear semigroup 7'(t) (see

apply LaSalle’s Invariance Principle to show that w [(j((%’ )>>} = {0}.
t\Yy -
This shows that the origin of the equation with the boundary condi-

tions is attractive. This concludes the proof of Theorem O

06) . We these elements in hand, we can indeed

Let us now give the main steps of the proof of Lemma

Proof of Lemma [3l Consider a sequence (f”> in D(A;), which is
neN

In

bounded in graph norm, that is there exists M > 0 such that, for all n € N,

2 2 2
[GoL, =G+l Gl <
which means that

1
2 2 2
/ S22 + lgal? + |60l + 177 — asat(ga)P)de < M.
0

From that, we deduce that fol(|gn|2 +|¢,|*)dz and f01(|f,’L|2 +1£713)dz are
bounded. Hence, with compact injection of H}(0,1) in L?(0,1), and of

H?(0,1) in H}(0,1) we infer the existence of a subsequence of (f")
neN

In
which converges in H{(0,1) x L?(0, 1), giving the precompactness of the set
of solutions to equation with the boundary conditions . O

4.1.3. A boundary linear control

We now consider the wave equation with a boundary control, as depicted
in Figure 0] The system dynamics reads

z1t(t, @) = 22 (t, ), Vz e (0,1), t>0, (91)

with the boundary conditions

(92)
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Fig. 9. Wave equation with unbounded control operator

for all ¢ > 0 and with the initial condition
2(0,z) = 2%(z) ,

2(0,2) = 2} () . (93)
for all z in (0,1).
We define the linear control
u(t) = —bz(t,1), z € (0,1), ¥Vt >0 (94)
and we consider
Vo = %/(e‘“(zt + 2,)3dx + /(e‘“’”(zt — 2z)%du.

A formal computation of the time derivative along the solutions to ,
and gives

Vo = —uVa + 2 (e"(1—b)? —e "(14b)?) 22(t,1)
Assuming that b > 0 and letting pz > 0 such thatE| et(1—-b)? < e H(1+b)?,
it holds that V5 < —uVs. Hence V5 is a strict Lyapunov function and

thus the origin of with boundary conditions and command
is exponentially stable.

4.1.4. A boundary saturating control

Let us consider now the nonlinear control u(t) = —sat(bz(¢,1)), for all
t > 0. The boundary conditions become:
2(t,0) =0, 2z(t, 1) = —sat(bz(t,1)) . (95)

Inspired by |14} Sec. 2.4], we introduce H(lo) (0,1) = {u € H(0,1), u(0) =

0} and ||u||H(10)(0_’1) = \/fol [w/|?(z)dz for all u € Hg). We are now in

dThis constraint is always satisfied for u > 0 small enough by a continuity argument at
pn=0.
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position to state the following well-posedness and asymptotic stability result
(see®® for a complete proof).

Theorem 13. For all b > 0, the origin of the PDE with the boundary
conditions (@) is globally asymptotically stable. More specifically, for all

(2%, 21) € {(f.9) € H*(0,1) x H(,(0,1) = fo(1) + sat(bg(1)) =0, £(0) =
0}, there exists a unique solution to with the boundary conditions @
and the initial condition . Moreover it satisfies the following stability
property, for allt >0,

|2 (2, ~)||H(10)(0,1) + [l2¢(t; )llz20,1) < ||ZOHH(10)(0,1) + 1zM 20,1

together with the attractivity property

12(E )l

1) (0.1) + |z¢(t, 200y = 0, ast — oo .

Proof of Theorem [I3l To prove the well-posedness of the Cauchy prob-
lem we can show that A, defined by

(3)=(7)

with the domain D(A43) = {(f,9) € H*(0,1) x H(lo)(O,l) (D) +
sat(bg(1)) = 0, f(0) = 0} is a semigroup of contraction by applying
Lumer-Phillips thereom. The global stability property is immediately in-
ferred from contraction property (consequence of the dissipativity of As).
Finally, the global attractivity property comes from the following lemma
establishing that the origin of the PDE with the boundary conditions
is semi-globally exponentially stable. This completes the proof of the
theorem. O

Lemma 4. For all » > 0, there exists p > 0 such that, for all initial
condition satisfying

1)1 20,1 + ||Zl\|12r{(10)(o,1) <r’, (96)
it holds
Vy < —uVa
along the solutions to with the boundary conditions @

Proof of Lemma [4l First note that by dissipativity of As, it holds that

G e
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is a non-increasing function. Moreover by continuity of the trace function

on H(0,1), it holds

2(t,.) 2(0,.)
t, )| < ||z (t, . <||A <A
et <[ () < ()
where the decreasing property of the function in @ has been used for the
last inequality. Thus, for all ¢ > 0,
2(0,.)
A )

? <Zt (07 ) )

|2e(t,1)] <
Now, given r > 0, for an initial conditions satisfying , we have
|2¢(t,1)] < and thus there exists ¢ # b such that, for all ¢ > 0,

(b= o)zl 1) <1
and thus, recalling the definition of the deadzone function ¢ in , the
local sector condition holds ¢(¢ + cz(t,1)) < 0, see (2I). Let us now
go back to the Lyapunov function candidate V5. Given b > 0, using the
previous inequality, we infer that
Vo = —uVa + et(o — sat(bo))? — e #(o + sat(bo))?

—puV2 + 6“((1; bo — ¢)? —e (1 +b)o + ¢)* — 2¢(¢ + co)

e (5) ()

where ) )
et (1 =b)* —e (1 +Db)* —e*(1—b)—e H(14+b)+c
M) = | . kg

In particular we have at p = 0 that

(98)

IA I

IN

—4b -2 +c¢

M(O,c):[* 9 }

We have to select ¢ close to b such that M(0, ¢) is symmetric semi-definite
negative. Of course, ¢ = b is not convenient since M(0,c) is not semi-
definite negative (moreover the choice ¢ = b would yield the global section
condition which does not hold, confirming that the choice ¢ = b is not
suitable for ¢). But ¢ < b and close to b exists such that det(M) > 0. Thus
M <.

Given r > 0, we consider initial condition such that || As <ZZ((’ %))> | <
t\-

r. This implies, for a suitable ¢ ensuring that (b — ¢)|z:(¢,1)] < 1 for all
t > 0, that V5 < —uV5. The semi-global exponential stability follows. [

Note here that the exponential stability is only achieved on bounded
sets of initial conditions. An open question is whether we have (or not) the
global exponential stability of the origin of the PDE with the boundary

conditions .
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4.2. KdV equation with a bounded control operator

In the previous section we reviewed two classes of controllers for the lin-
ear wave equation with linear and nonlinear feedback. Different methods
for proving asymptotic stability have been reported, one using LaSalle’s
Invariance Principle and another one establishing semi-global exponential
stability based on a local sector condition. In this section, we move to
a control problems for a nonlinear PDE. Specifically, let us consider the
following nonlinear Korteweg-de-Vries (KdV) PDE:

2t + 2o + Zogr + 22 +u =0, z € [0,L], t >0,
2(t,0) = z(¢t,L) = z,(¢t, L) =0, t > 0, (99)
2(0,z) = 2%x), = € [0, L],

where z stands for the state and w for the control.
Y in the uncontrolled scenario (u = 0) and for a length L
of the spatial domain such that

2 2
Le{m/]H?H/k,zGN*}, (100)

there exist solutions of the linearized version of for which the L?(0, L)
norm of the state does not decay to zero. This can be observed, for instance,
in the particular case for the first critical length L; = 27 (obtained by
letting & = { = 1 in (100)) by considering the initial condition 2%(z) =
1 — cos(x) for all x € [0,L]. Let us denote the second critial by Lo =
27r\/§ (obtained by letting k = I = 1 in (T00))We refer the reader to the
paperstUBI for controllability results of and the role of the so-called

critical lengths .

In these notes we are interested in the stabilization problem of the origin
of the KdV. We refer the reader to%? for the stabilization of the origin of
the linearized KdV equation with anti-diffusion. In? and in;** localized
damping are considered for the linearized KdV equation. Specifically, when
setting linear control u = a(x)z, for a non-negative continuous function
a:[0,1] = R, we obtain

As shown in,

2t + 2y + Zgae +a(x)z2 =0, z € [0,L], t >0,
2(t,0) = z(¢t, L) = z,(¢t, L) =0, t > 0, (101)
2(0,z) = 2%x), = € [0, L]

The following theorem is proven in.24

Theorem 14. The following results hold true for .
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e When L is not a critical length (i.e., does not hold) and a = 0,
the origin of is asymptotically stable. To be more specific, there
exist M and p such that

12(t)l| 2 < Me™""|[2(0)]| 2

o When a > 0 on an non-empty subset of [0, L], then the same conclusion
holds.

Let us now shortly review the stabilization results of the origin of the
nonlinear KdV PDE when using a control given by u = a(x)z. The
papergt 3468 consider the following closed-loop dynamics:

2t + 2o + Zoge + 22: +a(x)z =0, 2 € [0, L], t >0,
z(t,0) = 2(t,L) = z,(t, L) =0, t > 0, (102)
2(0,2) = 2°(x), = € [0, L],
The following theorem summarizes some of the contributions contained in

these papers (seet® and®® for the proof of the first item, respectively for
L =L; and L = Lo, and sec®® for the proof of the second item).

Theorem 15. The following results hold true for .

o When L = Ly or L = Ly and a = 0, the origin of (@/ is locally
asymptotically stable. More preciseliff], there exist r > 0, M > 0, and
w1 > 0 such that the solutions to issuing from z(0) with ||z(0)]| 2 <
r satisfy

2(®)]lz2 < Me ][ 2(0)]|

e For all L > 0, when a > 0 on an non-empty subset of [0, L], then the
origin of 1s globally asymptotically stable. More precz'selgﬂ for all
r >0, there exist M > 0, and p > 0 such that

I2(®)llz2 < Me™[|2(0)] 2

4.2.1. Saturating control for KdV

Let us now consider the case of a saturating control. To symplify the
presentation, we will consider the case where the function a(z) in (102)) is
a constant denoted by a. The localized control is subject to a saturation

©This property is the definition of the global exponential stability of the origin.
fThis property is the definition of the semi-global asymptotic stability of the origin.
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map. To be more specific, let the KdV equation controlled by a saturated
distributed control be described by

2t + 2z + Zgze + 222 + sat(az) =0,

z(t,0) = z(t,L) = 0,
R (ta L) =0,
2(0,z) = 2°(x).

where sat is the saturation map defined in with m = 1, and with level
s. The corresponding nonlinear equation is studied in#® The case of
L? saturation, defined in , is also considered. In these notes we focus
on the nonlinear equation , but some numerical simulations will also
be performed with the L? saturation in the next numerical example.

The well-posedness result is proven in?® by proving first existence of
solution for small time following the approach of 12% and then removing
the smallness property of the time existence using a priori estimates. It
yields the following theorem.

(103)

Theorem 16. For any initial condition 2° € L*(0, L), there exists a unique
solution z € C([0,T); L*(0,L)) N L?(0, T; H'(0, L)) to (109).

The global asymptotic stability of the origin, which is also proven in the
same paper, can be stated as follows.

Theorem 17. The origin of 1s globally asymptotically stable. More
precisely there exist p > 0 and a class K functiorff] o : [0, 00) — [0, 00) such
that for any 2° € L2(0,1), any solution z to satisfies, for allt > 0,

20|20,y < (2%l L2(0,1) ).

This result is proved by following the approaches of?%Y by showing that
the origin of (103)) is semi-globally exponentially stable.

Proposition 1. For any given r > 0, there exist positive values C' and p
such that for all initial condition z° satisfying ||zo||L2(07L) <r, the solution

to satisfies, for all t > 0,
12820,y < CllZ°l L2 0,76~
Proof of Proposition [1 To prove this proposition, a key result is the

following claim.

Claim 3. For all T > 0 and r > 0, there exists C > 0 such that for any
solution z to (L03)) starting from z° € L?(0,L) with ||z°| 20,0y < 7, it

&A class K function is a continuous and increasing function that is zero at zero.
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holds
T T L
||20§2(0,L)g0</ |zx(t,0)\2dt+2/ / sat(az)zdtdx). (104)
0 0 0

Assume Claim [3| holds for the time being. Then with (104) it holds
T
120t ) a0.ny = 120 12a00.0) — S 1208, 0) Pt
-2 fOT fOL sat(az)zdzdt
we get
(KT 20,) < 7*12°M32 0,y VE 20

where v € (0,1). From the dissipativity property, we have ||2(¢,.)||z2(0,) <
|2(., KT)|| z2(0,) for KT <t < (k+1)T. Thus we obtain, for all £ > 0,

1 log
128, MZ2 0.y < ;Ilzol\m(o,me b

We conclude the proof of the semi-global exponential stability, as stated in
Proposition [I] O

Let us now prove Claim [3| that has been used in the proof of Proposi-
tion [

Proof of the Claim [Bl We prove (104) by contradiction Assume that
there exists a sequence of solution z™ to (103)) with

12" (- 0) L2 0,0) <7 (105)
and such that

[|2" H%2(0,T;L2(O,L))

lim — T = +00.
noteo [Uzn(t,0)2dt + 2 [, [, sat(az"(t, x))2" (¢, x)dtdzx
(106)
By dissipativity property, there exists 5 > 0 such that
T
swp [t Moy <7, sup / )P < B (107)
te[0,7] z€[0,L] JO

Now let us define Q; = {t € 10,77, sup,epo, 1) 12(t, @) > 2} C [0,7]. We
have

T
8> / sup |2"(t,z)|*dt > / sup [2"(t,x)|*dt > i*v (),
0 xz€[0,L] Q,; z€[0,L]



December 24, 2021 13:32  ws-rvOx6  Book Title main'vl page 75

Saturated boundary stabilization of partial differential equations 75

Therefore, denoting the Lebesgue mesure by v, and the complementary set
of Qf) by v(Qf), we obtain, with (I07), v(Q;) < %, and thus v(Qf) >
max (T - Z.%, 0) .

Let us note that denoting, k(i) = min(Z, 1), for each ¢ in N, it holds
for all z in Q, |z| < i, and thusﬂ

(sat(az) — k(i)az)z > 0 (108)

Moreover, using again the local sector condition, we have

T oL L L
/ / sat(az") 2 dtdx :/ / sat(az")z"dtdx—i—/ / sat(az™)z"
o Jo Q2 Jo ¢Jo

> o+/ /L ak(i)(z")?dtdz. (109)
¢Jo

where ([108) has been used in the last inequality. Thus, with (105)), for all
iin N\ {0},

n n T "
2 (t")H%?(o,L) <= ('7O)||%2(0,L) - fo |22 (t,0)|2dt
—2 fm foL ak(i)(z")%dtdx.

Let A" = || 2" z2(0,ri22(0.2)) and v" (t,z) = 2552 Due to ([05), up to
extracting a subsequence, we may assume that A — A > 0. Due to ((106)
and (109), we have, for all : € N

T L
v 2 ak(i)(v™)2dtdx
/0 |2 (t,0)| dt+2/g/0 k(2)(v™)*dtde — 0 (110)

Using Aubin-Lions lemma in,%® we get {v"},en converges strongly in

L?(0,T; L?(0,L)). Thus, with (110), we have, for all i € N

v (t,0) =0, Vt € (¢,0) and v(t,x) =0, Vz € [0, L], Vt € Qf.
We know that v (U;en€5) = T. We get a contradiction with
vl 220,752 (0,)) = 1. This concludes the proof of Claim O

Example 7. Let us discretize (103]) and illustrate Theorem Moreover
we will discretize this equation using the saturation map saty. instead of
sat and without any saturation map (the equation becomes ((102))).

b To prove (108), assume first that ai < s, then k(i) = 1, and sat(az) = az, which gives
(108). Second, if ai > s and sat(az) = az, then 1 — k(i) > 0 and (sat(az) — k(i)az) =
(1 — k())az, which gives (108). Third, if ai > s and az > s, then (sat(az) — k(i)az) =
s — Zaz = s(1 — 7) > 0, which gives (108). The fourth case ai > s and az < —s is
studied in a simular way as the third one.
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Discretizing KdV equation with saturating control.
Use of central difference in space and forward
Euler in time schemes.

Code originally written by S. Marx for

[S. Marx et al, SIAM J. Control Opt., 2017]

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Parameters of the PDE
L=2%np.pi;
a=1.0

# Space discretization

Nx = 30
x= np.linspace(0,L,Nx+1)
dx = L/Nx;

# Time discretization
dt = 0.06; tfinal=6
Nt= np.floor(tfinal/dt).astype(int)

; # Saturation level

s0=0.5

# Set initial condition

z0=[]

for ii in range(Nx+1):
z0.append (1-np.cos(x[ii]))

On line 14, we set the first critical length L = 27 and the initial condition
2%(z) = 1 — cos(x) is chosen on line 32 so that its energy is constant along
the linearized KdV equation, without any control. The function «a is chosen
as the constant value 1 on line 15, and the level of the saturation map is
set at 0.5 on line 27. The space and time discretization steps are selected
respectively at lines 20 and 23.

t = 0 # current time
j = 0 # current time index

# pointwise saturation function
def sat(u):

m=np.size (u)

sigma=u

for i in range(m):

page 76
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42 if np.absolute(ul[i])>s0:
13 sigma[i]=sO*np.sign(ulil)
14 return sigma

16 # L2 saturation function

17 def sat2(u):

18 L2=np.linalg.norm(u)*np.sqrt (dx)
19 sigma=u

50 if not L2<sO:

51 for ii in range(Nx):

52 sigma[iil=sO*ul[iil/L2

53 return sigma

55 L2norm=[] # L2norm of the sol with sat

56 L2normNoSat=[] # L2norm of the sol without sat

57 ztot=np.zeros ((Nx+1,Nt+1)) # to save the solution

58 ztotNoSat=np.zeros ((Nx+1,Nt+1)) # to save the solution without
sat

0 ztot[:,0]=20

61 ztotNoSat[:,0]=z0

62 L2norm.append(np.linalg.norm(ztot[:,0])*np.sqrt(dx))

63 L2normNoSat .append(np.linalg.norm(ztotNoSat[:,0])*np.sqrt(dx))

The localized saturation sat and the L? saturation satje are defined
after line 37 and line 46 respectively. Between lines 55 and 63 the initial-
ization of the state and of its norm for both the linear control (thus with
(102))) and the saturated control (thus with with either the saturation
map sat or with satys.

65 def discretNoSat(z,dx,dt,a):

67 discretization of the nonlinear KdV using
68 [Pazoto, et al, Numer. Math., 2010]
69 method without saturation

71 n=len(z)

72 nl=n-1

73 Dm=1/dx*np.identity (nl)

74 Dp=-Dm

75 for i in range(mnl-1):

76 Dpl[i,i+1]=-Dpl[i,il]

77 Dm[i+1,i]=-Dm[i,i]

78 D=1/2%(Dm+Dp)

79 I=np.identity(nl)

80 A=np.dot (np.dot (Dp,Dp) ,Dm)+D
81 C=I+dt*A

82 NS=np.zeros ((nl,n1))

83 NS[ni1i-1,n1-1]1=C[n1-1,n1-1]
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#Fixed-point method

NIter = 100 # number of iterations
J =[1

J.append(z[:-11)

tmp=J[-1]

for k in range(NIter):
tmp=np.linalg.solve(C-NS,z[:-1]-dt/2*np.dot(D,np.
multiply (tmp,tmp))-np.dot (dt*a,tmp))
J.append (tmp)
return tmp

discret(z,dx,dt,a):
discretization of the nonlinear KdV using
[Pazoto, et al, Numer. Math., 2010]
method with saturation (select sat or sat2 function)
n=len(z)
nl=n-1
Dm=1/dx*np.identity(nl)
Dp=-Dm
for i in range(nil-1):

Dpli,i+1]=-Dpl[i,il]

Dm[i+1,i]=-Dm[i,i]
D=1/2%(Dm+Dp)
I=np.identity(nl)
A=np.dot (np.dot (Dp,Dp) ,Dm)+D
C=I+dt*A
NS=np.zeros ((nl,nl1))
NS[ni-1,n1-1]1=C[ni1-1,n1-1]

#Fixed-point method

NIter = 100 # number of iterations
J =[]

J.append(z[:-1])

tmp=J[-1]

for k in range(NIter):
tmp=np.linalg.solve(C-NS,z[:-1]-dt/2*np.dot(D,np.
multiply (tmp,tmp))-dt*sat(np.dot(a,tmp)))
J.append (tmp)
return tmp

To discretize (103) and (102)), we follow the approach of52 and solve,

at each time-step, a fixed point problem. No proof of convergence of the

numerical scheme is garanteed in the context of (103]), since another non-
linearity is considered in52 1 particular the term z,., is discretized as

follows

D.D,.D_%

page 78
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where 2% is the discretized version of z, and where Dp and Dm are the
matrices defined by

-1 1 0...0 1-10 ...0

110 -11...0 1101 =1...0
P S e .
0 0 0 ...-1 00 O0...1

It yields two discretizations, for respectively the equations and ,
between lines 66-93 and lines 95-123 respectively. It asks to solved a fixed
point problem that is solved using a iteration scheme wit 100 steps (see after
lines 85 and 115). The choice of the saturation map (either sat or satys
is made on line 121). In the python code given here, sat is considered.

125 # making a loop until t > tfinal
126 while t<tfinal-dt:

127 #Forward Euler step

128 ztotNoSat[:-1,j+1]=discretNoSat (ztotNoSat[:,j],dx,dt,a)

129 ztot[:-1,j+1]=discret(ztot[:,j],dx,dt,a)

130 t+=dt

131 j+=1

132 L2normNoSat .append(np.linalg.norm(ztotNoSat[:,j])*np.sqrt(
dx))

133 L2norm.append(np.linalg.norm(ztot[:,j]l)*np.sqrt(dx))

135 # plotting the figures
136 space= np.linspace(0,np.pi,Nx+1)
137 t=np.linspace(0,tfinal ,Nt+1)

130 fig , ax= plt.subplots()

140 ax.plot (t,L2normNoSat, label=’without saturation?’)
141 ax.plot(t,L2norm, label=’with saturation’)

142 ax.set_xlabel(’t?)

143 ax.set_ylabel (’L2 norm?)

144 ax.legend ()

145 plt.savefig(’pde-12norm.png’,bbox_inches=’tight’)

147 mpl.rcParams [’legend.fontsize’] = 10

118 fig = plt.figure(); ax = fig.add_subplot (111, projection=’3d’)

110 8X, ST = np.meshgrid(space, t)

150 ax.plot_surface(SX, ST, ztotNoSat.T, cmap=’jet’)

151 ax.set_xlabel(’x’)

152 ax.set_ylabel (’t’)

1535 ax.set_zlabel (’z(t,x)’)

154 ax.set_title(’Solution without saturation’)

155 ax.view_init (elev=15, azim=20) # adjust view so it is easy to
see

156 plt.savefig(’pde-3dNoSat.png’)
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mpl.rcParams[’legend.fontsize’] = 10

fig = plt.figure(); ax = fig.add_subplot (111, projection=’3d’)
ax.plot_surface(SX, ST, ztot.T, cmap=’jet’)
ax.set_xlabel(’x’)

ax.set_ylabel(’t’)

ax.set_zlabel (’z(t,x)’)

ax.set_title(’Solution with saturation?’)

ax

see

plt.savefig(’pde-3d.png’)

.view_init (elev=15, azim=20) # adjust view so it is easy to

The discretization in time is done after line 125, where an Euler scheme
is used. The figures are drawn after line 135. It yields Figures[7]and [7] where
the time-evolutions of the solutions to and to are respectively
given. It is observed that the solutions converge to the origin, as predicted
in Theorem [[7 and the second item of Theorem

Solution with saturation

200 {
175
150

125
100

(X

0.50

b1 3 gh
3 3k
R

Fig. 10. Solution to (103 with the saturation map sat

0.25
i |

%

On Figure EI the corresponding L? norms are compared where it is
checked that, as expected, the L? norm decreases faster along the solution
to (102)) than along the solution to (103) with the chosen initial condition.

Selecting the saturaton map satro give the Figures [7] and [7] with ana-
loguous conclusions on the time-evolution of the solution to (103) and on
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Solution without saturation

200
175
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b 125
= 100
= 075
0.50
025
0.00
Fig. 11. Solution to (102)
304 \ —— without saturation
™, with saturation
251
201
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£ 15
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o 1 2 3 4 5 &
t

Fig. 12. Comparison of the time-evolutions of the L? of the solutions to (103), with the
saturation map sat, and to (102)

the L? norm.
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Solution with saturation

i N

15
10

- b

(X
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o n\A%G

01 3y
3 36
ST

Fig. 13. Solution to (103 with the saturation map satyo

30 4 —— without saturation
with saturation

25 1

210 1

15

L2 norm

101

05+

0.0 4

Fig. 14. Comparison of the time-evolutions of the L? of the solutions to (103), with the
saturation map satro, and to (102)

4.3. Conclusion so far

In this section we have reviewed the well-posedness and the asymptotic
stability of the origin of the wave equation and of the Korteweg—de-Vries
equation in presence of (possibly saturating) control. Different proofs have
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been provided for the attractivity, using either direct Lyapunov method or
a LaSalle invariance principle or a contradiction argument.

Let us emphasize that the approaches presented in this section are also
useful for certain other classes of equations such as hyperbolic systems.
See? for the stabilization of linear and quasilinear hyperbolic systems. See
also® for the stabilization of hyperbolic systems using saturated control.

In?Y an output feedback control has been computed for the linearized
KdV equation. It would be relevant to evaluate the impact of the saturation
map on the obtained result.

Finally, in addition to the stabilization control problem, the impact
of disturbances could be studied. It would be relevant to obtain Input-to-
State Stability results in the context of this section (see?**’ for introductory
presentations on this subject for infinite-dimensional systems.)
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5. Conclusion

This chapter has reviewed some recent results on stability analysis of dis-
tributed parameter systems as those modeled by parabolic partial differ-
ential equations, or the wave equation or the Korteweg-de-Vries equation.
The suggested approach succeeds to design boundary stabilizing controllers,
possibly subject to amplitude constraint, ensuring an asymptotic stability
of the closed-loop equation. The constructive approach is based on Lya-
punov function, and numerically tractable conditions. Some simulations
have illustrated our results and design methods. More recent works follow
the present chapter as the control of reaction-diffusion equation coupled
with ordinary differential equations (see3?), or control of such partial dif-
ferential equation by means of delayed control (see*?) to cite just a few. As
far as hyperbolic system are considered, nonlinear controllers could be also
designed as done in2%72 Finally, let us cite the papers®®37 dealing with
regulation problems, that could be seen as generalizations of stabilization
problems for both the parabolic equations and the wave equation.
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