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This chapter reviews some recent results on the boundary stabilization
of different classes of partial differential equations. In order to provide a
self-content chapter with consistent control objectives and notation, we
first review the finite-dimensional case. Controllability and observability
conditions for linear ordinary differential equations are recalled together
with some basic Lyapunov theory for the stability analysis and the design
of saturated controllers. Then we address the boundary control prob-
lem for the stabilization of a reaction-diffusion equation by means of
numerically tractable design methods while considering different norms
and possible constraints on the amplitude of the inputs. Finally simi-
lar control design problems will be studied for the stabilization of the
Korteweg–de-Vries equation and the wave equation.
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1. Introduction

The goal of this chapter is to review some recent results on boundary sta-

bilization of distributed parameter systems as those modeled by parabolic

partial differential equations or hyperbolic partial differential equations. No

prerequisite on control theory will be necessary, only basic knowledge on

control objectives. However, background in nonlinear dynamical systems

and essentials on partial differential equations (PDEs) would be helpful,

even if some references will be given throughout the text.

The topics covered in this chapter embrace different potential applica-

tions such as control and stability theory of reaction-diffusion phenomenon

as those modeled by parabolic PDEs. Some control techniques presented in

this chapter will be useful for stability theory of physical dynamics described

by balance laws and modeled by hyperbolic partial differential equation.

Different control objectives will be studied and solved such as the design

of stabilizing control laws ensuring that all the trajectories of the closed-

loop systems converge to a given equilibrium. Different control schemes are

considered, covering in-domain control (the control input appears directly

in the main part of the PDE) and boundary control (the control input ap-

plies at the boundary of the domain as it appears through the boundary

conditions). Moreover, when possible, the described control laws will be

designed based on the only knowledge of a prescribed and limited part of

the state, the so-called output.

For each of the different numerical illustrations reported in this chapter,

the Python code of the numerical simulations is provided, allowing the

readers to easily modify the control objectives and further experience the

control theory of the considered dynamical systems.

The outline of this chapter is as follows. First finite-dimensional control

systems will be considered and some basic definitions will be given on sta-

bility, attractivity, etc., providing a sharp introduction to basics of control

systems theory. Then in Section 3, parabolic PDEs are considered for the

design of finite-dimensional output-feedback controllers towards saturated

control schemes. Section 4 is devoted to the wave and Korteweg–de-Vries

equation, and the use of finite-dimensional controllers to solve the sta-

bilization problems. In these both sections, linear feedback laws and also

cone-bounded controllers are designed. Section 5 contains a concluding dis-

cussion on current research activities and presents some possible research

directions emanating from this chapter.

This chapter has been written following an online course given in
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LIASFMA school by the second author in April 2021. We would like to

thank the Organizing Committee of this school that was composed of Jean-

Michel Coron (Sorbonne Université), Tatsien Li (Fudan University), and

Zhiqiang Wang (Fudan University). The help of Xinyue Feng has been

very much appreciated.

Notation used in this chapter

Spaces Rn are endowed with the Euclidean norm denoted by ‖ · ‖. The

associated induced norms of matrices are also denoted by ‖ · ‖. Given two

vectors X and Y , col(X,Y ) denotes the vector [X>, Y >]>. L2(0, 1) stands

for the space of square integrable functions on (0, 1) and is endowed with

the inner product 〈f, g〉 =
∫ 1

0
f(x)g(x) dx with associated norm denoted by

‖ · ‖L2 . For an integer m ≥ 1, the m-order Sobolev space is denoted by

Hm(0, 1) and is endowed with its usual norm denoted by ‖ · ‖Hm . For a

symmetric matrix P ∈ Rn×n, P � 0 (resp. P � 0) means that P is positive

semi-definite (resp. positive definite) while λM (P ) (resp. λm(P )) denotes

its maximal (resp. minimal) eigenvalue. For a symmetric matrix, ? stands

for the symmetric term. For instance,

[
A B

? C

]
stands for

[
A B

B> C

]
.

For any Hilbert basis {φn, n ≥ 1} of L2(0, 1) and any integers

1 ≤ N < M , we define the operators of projection πN : L2(0, 1) → RN

and πN,M : L2(0, 1) → RM−N by setting πNf =
[
〈f, φ1〉 . . . 〈f, φN 〉

]>
and πN,Mf =

[
〈f, φN+1〉 . . . 〈f, φM 〉

]>
. We also define RN : L2(0, 1) →

L2(0, 1) by RNf = f −
∑N
n=1 〈f, φn〉φn =

∑
n≥N+1 〈f, φn〉φn.
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2. Finite-dimensional systems

2.1. Stability notions of nonlinear finite-dimensional sys-

tems

This section is devoted to the introduction of control theory for finite-

dimensional systems, as those described by nonlinear dynamics. To be

more specific, let us consider the following dynamical system:

ż(t) = f(z(t)) (1)

where the state z(t) is a vector from a finite-dimensional state-space Rn
and f is a nonlinear function from Rn to Rn. Under suitable regularity

assumptions, such as locally Lipchitz continuity of f with respect to z,

for any given initial condition z0 ∈ Rn there exists a unique solution x :

[0, T )→ Rn to the Cauchy problem:

ż(t) = f(z(t)), t > 0

z(0) = z0
(2)

defined on a maximal interval of existence [0, T ) for some T > 0 (which

depends on z0). See e.g. [30, Theorem 3.1] for such a existence and unique-

ness result. The value z0 is called the initial condition and, at any time

t ∈ [0, T ), the value z(t) is called the state at time t.

Assume further that f(0) = 0. This implies that the constant trajectory

z(t) = 0, for all t ≥ 0, is a particular solution to (1) associated with the

initial condition z0 = 0. The point 0 ∈ Rn, sometimes referred to as

the origin, is called an equilibrium for (1). In control theory, the nature

of an equilibrium is characterized by certain “stability” properties. Some

basic definitions related to the concept of “stability” are introduced in the

following definition.

Definition 1. Assume that f(0) = 0. Then the equilibrium 0 of (1) is said

to be

• stable if for any ε > 0, there exists δ > 0 such that

|z(0)| ≤ δ ⇒ |z(t)| ≤ ε , ∀t ≥ 0 .

• attractive if there exists δ > 0 such that

|z(0)| ≤ δ ⇒ z(t)→t→+∞ 0 .

• asymptotically stable if it is both stable and attractive.
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In the previous definition, it is implicitly required that the solutions exist,

are unique, and are well defined for all t ≥ 0. Even implicit, these require-

ments are of primary importance. Some of them can be difficult to check

in practice depending upon the nature of the studied system.

Assuming that 0 is an attractive equilibrium of (1), an important con-

cept is the notion of basin of attraction. This is defined as the set of all

initial conditions z0 ∈ Rn such that the solution to (2) tends to 0 as t→∞.

In addition, we say that the equilibrium is globally attractive if it is attrac-

tive and the basin of attraction coincides with the whole state-space Rn.

When 0 is not globally attractive, we often write that 0 is locally asymptoti-

cally stable (LAS) to emphasize the “local” nature of the property. Finally,

we say that 0 is globally asymptotically stable (GAS) if it is asymptotically

stable and globally attractive. It is worth being noted that the notions of

attractivity and stability are disconnected. More specifically, there exist

systems for which 0 is stable but not attractive (the most simple example

being ż = 0) while there are also systems such that 0 is attractive but not

stable (see for instance the example of [24, Paragraph 40]).

Instead of (1), let us now consider the case where the dynamics depends

on an external signal, called the control or the input. More specifically,

consider the dynamics described by

ż(t) = f(z(t), u(t)) (3)

where u(t) is a vector of Rm. The input u is seen as a way to influence

the dynamics of the system, which can significantly vary depending on the

choice of the control. As an example, consider the following control system

described by

ż(t) = u(t)z(t) (4)

with u(t) ∈ R. If u(t) = u ∈ R is constant control, the trajectories of the

system stating at time t = 0 from the initial condition z0 ∈ Rn can be

expressed as z(t) = eutz0 for all t ≥ 0. For u = −1 (more generally for

any constant control u < 0), the equilibrium 0 is globally asymptotically

stable. For u = 0, any point of Rn is an equilibrium (they are stable but

not attractive). For u = 1 (more generally for any constant control u > 0),

all solutions to (4) with non zero initial condition z0 6= 0 diverges to infinity

(the equilibrium 0 is neither stable nor attractive).

In the more general setting of a time-varying control, i.e., u = u(t) for a

suitable function u of the time, (3) is a time-varying system. This implies

that the solution starting from an initial condition z0 at time t0 differs, in
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general, from the trajectory starting from the same initial condition z0 but

at a different time t1 6= t0. The behavior of these different solutions can be

very different.

Assuming that f in (1) is linear, the system dynamics reduces to

ż(t) = Az(t) (5)

where A is a matrix in Rn×n. In this case, the stability of the origin is

intimately related to the position of the eigenvalues of the matrix A in the

complex plane (see [26, theorem 6.1]). More specifically, it can be proven

that the origin of (5) is stable if and only if (i) all eigenvalues of A have

a non-positive real part and (ii) for all eigenvalues with a zero real part,

their algebraic multiplicity (exponent associated with the eigenvalue when

computing the characteristic polynomial) coincides with their geometric

multiplicitya (dimension of the eigenspace associated with the eigenvalue).

Moreover, the origin of (5) is asymptotically stable if and only if all eigen-

values of A have a negative real part. In that case we say that the matrix

A is Hurwitz. Finally, for such linear systems, the attractivity of the origin

of (5) implies that the origin is stable and also asymptotically stable.

In this lecture notes, we will first study finite-dimensional control sys-

tems, and then dynamical control systems described by linear partial dif-

ferential equations (PDEs) for which some nonlinear control problems will

be solved.

2.2. Control systems: a basic tour

We focus in the the first part of this section on systems described by

ż = Az +Bu (6)

where z ∈ Rn is the state, u ∈ Rm is the control, A, B are two matrices of

appropriate dimensions. One natural question is the design of a so-called

stabilizing state feedback law. That is, can we compute state-feedback law

z 7→ u(z) so that the resulting closed-loop system

ż = Az +Bu(z) (7)

is asymptotically stable? In this context, due to the linearity of the system,

it is natural to try to determine a state-feedback law z 7→ u(z) that is also

linear, i.e., which tales the form u = Kz where K is a matrix that is referred

aCondition (ii) is crucial as it can be seen by considering the case A =

[
0 1

0 0

]
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to as the feedback gain. In this setting, the closed-loop system dynamics

reads

ż = (A+BK)z (8)

Consequently the stability properties of the closed-loop system are fully

characterized by the spectrum of the closed-loop matrix A + BK. The

question is: can we compute a matrix K in order to impose the spectrum

of A+BK to ensure stability properties for the closed-loop system?

For linear finite-dimensional systems, the control theory is complete and

the design of stabilizing state feeback laws is fully solved.1,26 More specifi-

cally, assuming the following Kalman rank condition (for controllability)

rank
[
B, AB, . . . , An−1B

]
= n ,

there exists a matrix K so that u(z) = Kz makes the system (7) asymp-

totically stable. Furthermore, the matrix gain K can be selected to impose

any arbitrary spectrum assignment for the closed-loop matrix A + BK.

This result is not only an existence result, but it is also a practical design

method. Indeed, it is the base of efficient numerical algorithms to compute

the control matrix K. This is the so-called pole-shifting theorem (see73 for

an existence result and71 for a constructive algorithm), which is stated in

the next result.

Theorem 1. Under the Kalman rank condition assumption, for any poly-

nomial Π of degree n and with unit dominant coefficient, there exists a

matrix K such that the characteristic polynomial of A+BK is Π.

With the previous result, computing a matrix K so that the linear state

feedback law z 7→ Kz renders the origin of the closed-loop system (8)

asymptotically stable is numerically tractable.

Example 1. Let us see how to solve this control problem in practice us-

ing the programming language Python. In the next lines, with dimension

n = 3, first a randomly chosen control system is selected (lines 7-8), the

controllability condition is checked and a pole-placement controller is com-

puted using the Python Control Systems Library (lines 10-18). Then the

differential equation is integrated numerically and the phase-portrait of the

solution is plotted (lines 27-33). This givea Figure 1 where it can be checked

that a solution converges to the equilibrium 0 in R3.

1 import numpy as np

2 import control

3 from scipy.integrate import odeint
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4 import matplotlib as mpl

5 import matplotlib.pyplot as plt

6

7 n= 3 # dimension of the state space

8 A= np.random.random ([n,n])

9 B= np.random.random ([n,1])

10 CtrbMatrix= control.ctrb(A,B) # compute the controlability

matrix

11

12 if np.linalg.matrix_rank(CtrbMatrix)== n:

13 print(’controllable system ’)

14 else:

15 print(’uncontrollable system ’)

16

17 p= np.linspace(-n,-1,n) # choice of the eigenvalues of the

closed -loop system

18 K=-control.place(A,B,p)

19

20 def ode(z,t):

21 return np.dot((A+np.dot(B,K)),z)

22

23 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

24 t=np.linspace (0 ,10 ,1000)

25 sol=odeint(ode ,z0,t)

26

27 if n==3: # plot3D

28 from mpl_toolkits.mplot3d import Axes3D

29 mpl.rcParams[’legend.fontsize ’] = 10

30 fig = plt.figure (); ax = fig.gca(projection=’3d’)

31 x, y, z =sol.T

32 ax.plot(x, y, z, label=’solution ’); ax.legend ()

33 plt.savefig(’solution.png’,bbox_inches=’tight ’)

We repeat the same procedure for 10 randomly chosen initial conditions.

See the lines 35-41 of the code and the corresponding Figure 1.

35 fig = plt.figure (); ax = fig.gca(projection=’3d’)

36 for i in range (10):

37 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

38 sol=odeint(ode ,z0,t)

39 x, y, z =sol.T

40 ax.plot(x, y, z, label=’solution ’+str(i));

41 ax.legend ()

42

43 plt.savefig(’solutions.png’,bbox_inches=’tight’)
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Fig. 1. Time-evolution of a particular solution to (7) with u = Kz

2.3. Lyapunov direct method

The first part of this section was devoted to linear systems for which the

situation is relatively simple as the stability of the origin is fully character-

ized by the spectrum of the matrix A. When considering general nonlinear

systems such as (1), the situations becomes much more complex. Here

we need tools that allow studying the stability properties of an equilibrium

condition without being able to write down the system trajectories in closed

form (in general, very few nonlinear systems can be analytically integrated

to obtain the closed form of the trajectories). In this context, an impor-

tant tool to prove the attractivity of the equilibrium is the so-called Direct

Lyapunov method which relies on the concept of Lyapunov functions. To

explain this method, let us come back to the nonlinear system described

by (1). The so-called Lyapunov stability theorem can be stated as follows

(see [30, Theorem 4.1] for a proof.)

Theorem 2. Assume that f(0) = 0 and let D be an open and connected

subset of Rn containing 0. Assume that V : D → R is a C1 function such

that

V (0) = 0 and V (z) > 0 , ∀z ∈ D \ {0}
∂V
∂z (z) · f(z) ≤ 0 , ∀z ∈ D .
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Fig. 2. Time-evolution of solutions to (7) with u = Kz for 10 randomly chosen initial
conditions

Then z = 0 is stable. Moreover, if we have

∂V

∂z
(z) · f(z) < 0 , ∀z ∈ D \ {0} ,

then z = 0 is locally asymptotically stable.

We often denote

V̇ =
∂V

∂z
(z) · f(z)

since ∂V
∂z (z(t)) · f(z(t)) is the time-derivative of V (z(t)) along the solutions

to (1).

If the Lyapunov theorem applies with the domain D specified as

D = {z, V (z) < r}

for some given r > 0, then the level set {z, V (z) < r} is contained in the

basin of attraction. Hence V can be used in order to estimate the basin of

attraction while trying to maximize the value of r > 0 such that Theorem 2

applies with D = {z, V (z) < r}.
It is worth noting that, for finite-dimensional systems as the ones that

are considered in this section, all norms are equivalent and, somehow, V

is “equivalent” to any norm (say, e.g., the Euclidian norm). Thus estab-

lishing a stability by considering a particular norm is actually the same as
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establishing a stability by considering any other norm. Such an equivalence

fails in infinite-dimension, which will be the topic of the next sections.

As we saw, Lyapunov functions are very convenient to prove asymp-

totic stability since all we need is to consider a suitable Lyapunov function

candidate V : D → R, that is a C1 function such that

V (0) = 0 and V (z) > 0 , ∀z ∈ D \ {0}

and then compute the following vectors in Rn:

∂V

∂z
(z) · f(z) , ∀z ∈ D \ {0} .

and evaluate its sign. Obviously, finding such functions V highly depends

on the nature of the studied nonlinear system and can be very complex in

practice. Some basic techniques for finding such functions will be reviewed

in this notes, as well as associated numerically tractable methods.

In the context of linear systems as described by (5), the Lyapunov

theorem is rewritten as follows. Using the Lyapunov function candidate

V (z) = z>Pz for some symmetric positive definite matrix P , and comput-

ing its time derivative along the system trajectories, the origin of (5) is

asymptotically stable if and only if there exists such a symmetric positive

definite matrix P such that

A>P + PA> � −I

Let us emphasize the “if and only if” condition from the previous state-

ment, as well as the class of quadratic function V (z) = z>Pz as sufficient

Lyapunov function candidates. In other words, for linear systems, there

is not need to consider other class of Lyapunov function candidates. This

result is one of so-called converse Lyapunov theorems. Such converse re-

sults of the direct method also exist for nonlinear systems under certain

regularity conditions on the function f (see e.g. [2, Theorem 2.4]). Note

however that converse Lyapunov theorems can hardly be applied to ac-

tually find Lyapunov function candidates since these converse results are

generally not constructive (even if some design methods exist as reviewed

in particular in the references14,63).

Example 2. (Example 1 continued) In this extension of Example 1, we

compute the eigenvalues of the previous closed-loop system (see line 45)

and we compute a Lyapunov matrix P .

45 AA=A+np.dot(B,K); e, v= np.linalg.eig(AA) # eigen -values , -

vectors

46 m=max(e.real)
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47 print(’Largest real part for the closed -loop system:’,"{:.2f}".

format(m))

48

49 P=control.lyap(AA.T,np.eye(n))

2.4. Separation principle for linear systems

Up to now we only considered the control problem of dynamical systems

such as the ones described by (3). In this context, we made the implicit

assumption that the full state z(t) is known in real time at any time t ≥ 0 so

that we can use this information to implement the control law z 7→ u(z). We

say that this control strategy takes the form of a state-feedback. However

in many applications the full state is not available in real-time. Only partial

information are available under the form of sensor measurements y(t) ∈ Rp
which are somehow related to the state x(t) ∈ Rn of the system. For control

linear system described by (6), the relation between the output y and the

state x generally takes the form:

y = Cz (9)

where C is a matrix of appropriate dimensions. We say that y is the output

of the system. This output represents the measurements that are assumed

to be available at each time instant. In this context, a natural question is

whether the knowledge of the system (i.e., the matrices A, B, and C), of the

control u(t), and of the measurements y(t), is sufficient to asymptotically

estimate the state z(t). This problem is a so-called observation problem.

For linear systems, this problem is also fully solved and is strongly con-

nected to the so-called Kalman rank condition for observability, which is

written as

rank


C
...

CA

CAn−1

 = n.

Note that this assumption is equivalent to the controllability of the pair

(A>, C>). This is why observability and controllability properties are said

to be dual properties.

Consider now the dynamics described by

˙̂z = Aẑ +Bu+ L(Cẑ − y) (10)

where L is a matrix with suitable dimensions. We say that (10) is an ob-

server for (6). The observer mimics the dynamics of the system (6) while



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 13

Saturated boundary stabilization of partial differential equations 13

adding an extra term used to correct the dynamics of the observation in

function of the error between the actual measurement y(t) and its estima-

tion ŷ(t) = Cx̂(t) obtained from the observer. Introducing the error of

observation e = z − ẑ, this error satisfies the dynamics described by

ė = (A+ LC)e. (11)

Under the abovementionned observability assumption, there exists a matrix

L so that A + LC is Hurwitz. Selecting this way the observer gain L, the

origin of (11) is asymptotically stable, meaning that the observation error

e(t) = z(t)−ẑ(t) asymptotically converges to zero. In other words, the state

of the observer ẑ(t) “asymptotically observes” the actual (unmeasured)

stated of the system z(t). We say that (10) is an observer for (6).

So far, we detailed (i) how an state feedback u = Kz can be designed to

stabilize the linear system (6) and (ii) how an observer of the form (10) can

be designed in order to compute ẑ an estimate of the state z of the system

(6) from its outputs y given by (9). A natural question is whether we

can reunite these two approaches to obtain a stabilizing output feedback.

In other words, under the controllability assumption of (A,B) and the

observability assumption of (A,C), can we separately design a feedback gain

K and an observer gain L so that the origin of the system (6) in closed-loop

with u = Kẑ where the dynamics of ẑ is given by (10) is asymptotically

stable? The answer to this question is positive and is referred to as the

separatation principle for linear finite-dimensional systems.

Theorem 3. Let us consider the dynamics:

ż = Az +Bu

y = Cz
(12)

where z ∈ Rn, y ∈ Rp and A, B, C are matrices with suitable dimensions.

Assume that the pair (A,B) is controllable and the pair (A,C) is observable.

Then for any matrices K and L such that A+BK and A+LC are Hurwitz,

the equilibrium (0, 0) of

ż = Az +BKẑ
˙̂z = (A+BK)ẑ + L(Cẑ − y)

(13)

is asymptotically stable.

This theorem provides a design method for a stabilizing dynamic output

feedback controller whose architecture is described by

˙̂z = Aẑ +Bu+ L(Cẑ − y)

u = Kẑ
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Proof of Theorem 3. For proving Theorem 3, it is convenient not to

study the asymptotic stability of the origin of (13) in the coordinates (z, ẑ),

but rather in the coordinates (ẑ, e) which give
˙̂z = (A+BK)ẑ + L(y − Cẑ)

ė = (A+ LC)e
(14)

Since A+LC is Hurwitz, there exists a symmetric positive definite matrix

Q such that

(A+ LC)>Q+Q(A+ LC)> � −I (15)

and so W (e) = e>Qe satisfies

Ẇ ≤ −e>e
along the trajectories of ė = (A + LC)e. Hence the e-component of (14)

converges to 0 as time goes to +∞. Now pick a symmetric positive definite

matrix P such that

(A+BK)>P + P (A+BK)> � −I. (16)

Letting V (ẑ) = ẑ>P ẑ we have

Ẇ ≤ −ẑ>ẑ + 2ẑLCe

along the trajectories of ˙̂z = Aẑ +BKẑ +L(y −Cẑ). Invoking now Young

inequality and the fact that e(t) → 0 gives that ẑ(t) goes to 0 as well

when time goes to +∞. Therefore, the origin of the linear system (14) is

attractive and thus asymptotically stable.

Note that another proof of the asymptotic stability of the origin of (14)

is based on proving that V + 4‖PLC‖2W is actually a Lyapunov function.

To do that denote V(ẑ, e) = V (ẑ) + 4‖PLC‖2W (e) and compute the time

derivative of V along the solutions to (14):

V̇ = ẑ>((A+BK)>P + P (A+BK))ẑ + 2ẑ>PLCe

+4‖PLC‖2e>((A+ LC)>Q+ (A+ LC)Q)e

≤ −1

2
‖ẑ‖2 + 2‖PLCe‖2 − 4‖PLC‖2‖e‖2 ,

where Young inequality, (15) and (16) have been used for the previous

inequality. Therefore V̇ � − 1
2I, and V is a Lyapunov function for (14).

The computation done in the proof of Theorem 3 will be generalized for

PDEs in the next sections.

Example 3. (Example 1 continued) In this part of the example, we first

select a ramdomnly chosen matrix, and we check the Kalman rank condition

for observability (lines 54-57). Then we compute a matrix L by placing the

eigenvalues of the matrix A+LC (line 60), and finally we plot solutions of

(13) for 10 ramdomnly chosen initial conditions (lines 72-79).
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51 C= np.random.random ([1,n])

52 ObsvMatrix= control.obsv(A,C) # compute the observability

matrix

53

54 if np.linalg.matrix_rank(ObsvMatrix)== n:

55 print(’observable system ’)

56 else:

57 print(’unobservable system ’)

58

59 q= np.linspace(-n-1,-2,n) # choice of the eigenvalues of the

closed -loop system

60 L=-control.place(A.T,C.T,q).T

61

62 def ode2(ztot ,t):

63 z=ztot[:n]; zhat=ztot[n:]

64 u= np.dot(np.dot(B,K),zhat)

65 return np.concatenate ((np.dot(A,z)+u ,np.dot(A,zhat)+u-np.

dot(L,np.dot(C,z)-np.dot(C,zhat))))

66

67 # set up a figure twice as wide as it is tall

68 fig = plt.figure(figsize=plt.figaspect (0.5))

69 ax0 = fig.add_subplot (1, 2, 1, projection=’3d’)

70 ax1 = fig.add_subplot (1, 2, 2, projection=’3d’)

71

72 for i in range (10):

73 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

74 zhat0=np.random.random ([n,1]); zhat0=zhat0.reshape(n,)

75 ztot0=np.concatenate ((z0 ,zhat0))

76 sol=odeint(ode2 ,ztot0 ,t)

77 ztot =sol.T; z=ztot[:n]; zhat=ztot[n:];

78 ax0.plot(z[0], z[1], z[2]);

79 ax1.plot(zhat[0], zhat[1], zhat [2]);

80

81 ax0.set_title(’z’); ax1.set_title(’$\hat z$’)

82 plt.savefig(’solutions2.png’,bbox_inches=’tight’)

Figure 3 presents several solutions to (14) for ranmdonly chosen initial

conditions (z(0), ẑ(0)), and confirms the attractivity of the origin for this

system.

The Lyapunov function that is considered at the end of the proof of

Theorem 3 is computed on lines 49, 85 and 86. It is checked on Figure 3

that this function decreases and converge to 0 along the solutions to (14)

for the initial conditons used for Figure 3.

84 AE=A+np.dot(L,C);

85 Q=control.lyap(AE.T,np.eye(n))

86 M= 4*np.linalg.norm(np.dot(P,np.dot(L,C)))**2

87

88 fig , ax= plt.subplots ()
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Fig. 3. Time-evolution of solutions to (13) for 10 randomnly chosen initial conditions

89 ax.set_title(’Lyapunov function ’)

90

91 for i in range (10):

92 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

93 zhat0=np.random.random ([n,1]); zhat0=zhat0.reshape(n,)

94 ztot0=np.concatenate ((z0 ,zhat0))

95 sol=odeint(ode2 ,ztot0 ,t)

96 ztot=sol.T; z=ztot[:n]; zhat=ztot[n:]; e=z-zhat; lyapu =[]

97 for tt in range(len(t)):

98 lyapu.append(np.dot(np.dot(zhat[:,tt].T,P),zhat[:,tt])+

M*np.dot(np.dot(e[:,tt].T,Q),e[:,tt]))

99 ax.plot(t,lyapu)

100 plt.savefig(’lyapu2.png’,bbox_inches=’tight’)

2.5. Saturated control

For many applications of control problems, the input values are limited in

amplitude. Instead of applying u = Kz, only

u = sat(Kz)

can actually be applied, where sat: Rm → Rm is the saturation map

defined componentwise by, for all i = 1, . . . ,m,

sati(σi) =

{
σi if |σi| < si
sign(σi)si , else

, (17)
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Fig. 4. Time-evolution of the designed Lyapunov function along several solutions to

(14)

for a fixed vector s in Rm with positive components si > 0. Such function is

a decentralized nonlinear map that makes the closed-loop system as follows:

ż = Az +Bsat(Kz) (18)

In the presence of a saturation, system (18) can exhibit various be-

haviors. Even if the matrix A + BK is Hurwitz, there may exist several

equilibrium points, some limit cycle may appear, and there may exist di-

verging trajectories. See70,74 for introductory references on stability of such

dynamical systems.

Example 4. As an example, consider

ż = Az +Bsat(Kz) (19)

with A =

(
0 1

1 0

)
, B =

(
0

−1

)
, K =

(
13 7

)
, and s = 5 as saturation level.

The matrix A is unstable (eigenvalues located at −1 and +1), and the

matrix A+BK is Hurwitz (eigenvalues located at −1 and −13). As noted

in [70, Example 1.1], the nonlinear system (19) exhibits several equilibriums

and presents different behaviors depending on the initial condition. These

behaviors are illustrated on Figure 21 based on different initial conditions.

The first trajectory converges to 0 in R2, the second trajectory converges
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to the non zero equilibrium point

(
−5

0

)
, and the last trajectory diverges

as the time increases.

Fig. 5. Time-evolutions of three solutions to (19) for three different initial conditions

The simulation code is given below.

1 import numpy as np

2 import control

3 from scipy.integrate import odeint

4 import matplotlib as mpl

5 import matplotlib.pyplot as plt

6

7 n= 3 # dimension of the state space

8 A= np.random.random ([n,n])

9 B= np.random.random ([n,1])

10 CtrbMatrix= control.ctrb(A,B) # compute the controlability

matrix

11

12 if np.linalg.matrix_rank(CtrbMatrix)== n:

13 print(’controllable system ’)

14 else:

15 print(’uncontrollable system ’)

16

17 p= np.linspace(-n,-1,n) # choice of the eigenvalues of the

closed -loop system

18 K=-control.place(A,B,p)

19

20 def ode(z,t):

21 return np.dot((A+np.dot(B,K)),z)
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22

23 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

24 t=np.linspace (0 ,10 ,1000)

25 sol=odeint(ode ,z0,t)

26

27 if n==3: # plot3D

28 from mpl_toolkits.mplot3d import Axes3D

29 mpl.rcParams[’legend.fontsize ’] = 10

30 fig = plt.figure (); ax = fig.gca(projection=’3d’)

31 x, y, z =sol.T

32 ax.plot(x, y, z, label=’solution ’); ax.legend ()

33 plt.savefig(’solution.png’,bbox_inches=’tight ’)

34 # for 10 randomnly chose initial conditions

35 fig = plt.figure (); ax = fig.gca(projection=’3d’)

36 for i in range (10):

37 z0=np.random.random ([n,1]); z0=z0.reshape(n,)

38 sol=odeint(ode ,z0,t)

39 x, y, z =sol.T

40 ax.plot(x, y, z, label=’solution ’+str(i));

41 ax.legend ()

42

43 plt.savefig(’solutions.png’,bbox_inches=’tight’)

To analyze the stability of the equilibrium 0 of (18), let us consider the

following Lyapunov function candidate V : z 7→ z>Pz, where P ∈ Rn×n is a

symmetric definite positive matrix. The computation of its time derivative

along the solutions of (18) gives

V̇ = z>(A>P + PA)z + 2z>PBsat(Kz) .

To ease the comparison of the dynamics of (19) and of (18), we introduce

the deadzone function φ defined by

φ(σ) = sat(σ)− σ , ∀σ ∈ Rm . (20)

Using this notation we get

V̇ = z>((A+BK)>P + P (A+BK))z + 2z>PBφ(Kz)

=

(
z

φ(Kz)

)>(
(A+BK)>P + P (A+BK) PB

? 0

)(
z

φ(Kz)

)

Note that the matrix

(
(A+BK)>P + P (A+BK) PB

? 0

)
can not be in

general negative semidefinite (except, e.g., for the trivial case B = 0).

Consequently, in order to use the Lyapunov function candidate V to ana-

lyze the stability of the origin of (18), we need to find a relation between

z and sat(Kz). This can be done by using the geometric conditions of
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the saturation map, as described by the so-called local and global sector

conditions.

As introduced in,23 for any given G ∈ Rm×n and any given diagonal

positive definite matrix T ∈ Rm, the following local sector condition holds:

(sat(Kz)−Kz)T (sat(Kz)−(K−G)z) ≤ 0 , ∀z such that |((K−G)z)i| ≤ si,
(21)

where (K −G)(i) denotes the ith row of K −G.

Letting in particular G = K in (21), the following global sector condition

holds for any diagonal positive definite matrix T

(sat(Kz)−Kz)Tsat(Kz) ≤ 0 , ∀z ∈ Rm (22)

From the local sector condition, we obtain that for any G ∈ Rn×m and

any diagonal positive definite matrix T , as long as |((K −G)z)i| ≤ si,

V̇ ≤ z>((A+BK)>P + P (A+BK))z + 2z>PBφ(Kz)

−2φ(Kz)>T (φ(Kz) +Gz)

≤
(

z

φ(Kz)

)>(
(A+BK)>P + P (A+BK) PB−G>T

? −2T

)(
z

φ(Kz)

)
Considering the special case where G = K, we obtain the following

theorem.

Theorem 4. If there exist a symmetric definite matrix P in Rn×n and a

diagonal positive definite matrix T in Rm such that(
(A+BK)>P + P (A+BK) PB −K>T

? −2T

)
≺ 0

then the origin of (19) is globally asymptotically stable.

Remark 1. Some observations are in order.

Checking the existence of such matrices P and T is numerically

tractable. This is a convex problem that could be solved using different

solvers and method as interior-point method,22 or a primal/dual method.21

See also.6

As discussed in,67 the existence of a globally stabilizing saturating con-

trol is subject to a number of strong conditions such as: (i) A has no

eigenvalues with positive real part, and (ii) the pair (A,B) is stabilizable

in the ordinary sense, that there exists a matrix K such that A + BK is

asymptotically stable.
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Setting G = K is generally restrictive since global asymptotic stability is

generally a too strong property for saturated systems. To derive a sufficient

condition for the weaker property of local asymptotic stability, we use the

local sector condition (21). To ensure the condition |((K − G)z)i| ≤ si,

we note that {z, z>Pz ≤ 1} ⊂ {z, |((K − G)z)i| ≤ si} provided the LMI

condition (
P (K −G)>(i)
? s2

i

)
� 0

holds. This result is a direct consequence of the Schur complement (see [6,

Page 7]). Returning now to the LMI(
(A+BK)>P + P (A+BK) PB−G>T

? −2T

)
≺ 0

we note that there is a product G>T of unknown variables, making the

problem nonlinear. Nevertheless, the problem can be made linear by intro-

ducing a simple change of variable. Indeed, using the change of variables

S = T−1, W = P−1, and H = GP−1, we obtain the equivalent condition(
W (A+BK)> + (A+BK)W BS −H>

? −2S

)
≺ 0

We have thus proven the following sufficient condition for local asymptotic

stability of (19).

Theorem 5. If there exist W = W> > 0, S diagonal definite positive and

G such that (
W WK(i)

> −H(i)
>

? s2
i

)
� 0 (23)(

W (A+BK)> + (A+BK)W BS −H>
? −2S

)
≺ 0 (24)

then the origin of (19) locally asymptotically stable with a basin of attraction

containing {z, z>W−1z ≤ 1}.

Remark 2. Checking the condition of Theorem 5 reduces to solving a

convex problem. Different optimization criterion can be considered in order

to maximize the estimation of the basin of attraction, as e.g., maximizing

the trace of the matrix W . This idea is illustrated in Example 5 below.

Note that this sufficient condition for local asymptotic stability of the

closed-loop system can also be used in order to compute the matrix of

feedback gain K. See [70, Chapter 3] and in the next sections for infinite-

dimensional dynamics.
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Example 5. (Example 4 continued) Solving the matrix inequalities of The-

orem 5 is done with the code below, where the Python cvxpy Library has

been used to write the matrix conditions in lines 52-64 with the unknown

variables introduced in lines 46-48. The optimization problem

max
W,S,H

trace(W ) such that (23) and (24) hold

is solved in line 56, using the default solver.

44 n=len(A); m= 1

45

46 W=cp.Variable ((n,n),PSD=True)

47 S=cp.Variable ((m,m),diag=True)

48 H=cp.Variable ((m,n))

49 B=B.reshape (2,1)

50 K=K.reshape (1,2)

51

52 M11=W @ (np.transpose(A+np.dot(B,K)))

53 M11=M11+M11.T

54 M12=B @ S - H.T

55 matrixConstr1 = cp.bmat ([[ M11 , M12],

56 [M12.T, -2 *S]])

57 M22= W @ K.T - H.T

58 matrixConstr2 = cp.bmat ([[W, M22 ],

59 [M22.T ,s0 ** 2*np.array ([[1]]) ]])

60

61 constr = [S >> 0]

62 constr += [matrixConstr1 <<0] + [matrixConstr2 >>0]

63 prob = cp.Problem(cp.Maximize(cp.trace(W)),constr)

64 prob.solve()

65

66 P=np.linalg.inv(W.value)

67 z0=z0tot [0]

68 print("z0^T P z0 is "+str(np.dot(np.dot(z0.T,P),z0)))

It gives

P =

(
0.19727007 0.11506782

? 0.08307019

)
for which, due to Theorem 5, {z, z>Pz ≤ 1} is included in the basin of

attraction.

For the first initial condition of Figure 4, that is with z0 = [−1 − 3]>,

we have

z>0 Pz0 = 0.99 < 1.

Thus z0 is indeed in the basin of attraction, as confirmed by the time-

evolution of the first solution in Figure 4.
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2.6. Section conclusion

This section was devoted to finite-dimensional control systems by recalling

some basic definitions and techniques for the stability analysis of equilib-

rium of such dynamical systems. In particular we reviewed the direct Lya-

punov method for the asymptotic stability analysis. The control systems

with saturated inputs have been also considered, and some sufficient condi-

tions for the local (and global) asymptotic stability of the origin have been

recalled. The next section will develop these techniques for the boundary

stabilization of parabolic and hyperbolic systems.
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3. Parabolic equations

3.1. Introduction

This section considers parabolic partial differential equations modeling

reaction-diffusion phenomenon. This class of dynamical systems may be

unstable in open loop. We focus on 1D parabolic equations for which spec-

tral decomposition can be easily handled since the eigenvalues are simple

and the eigenfunctions form a Hilbert basis of the state-space. For further

studies on abstract parabolic PDEs in several dimensional spaces, see7 in

particular for controllability properties of such systems.

Based on the basic tools presented in the previous section, we present

design methods for the design of output-feedback laws rendering the equi-

librium asymptotically stable. The approach is based on modal approx-

imation methods that have been shown to be efficient for other control

problems related to parabolic PDEs; see61 as well as more recent references

including.15,16,37,43,50,57 The rationale behind the design method presented

in this section is split into several steps. First a finite-dimensional state-

feedback is computed only with a finite number of selected modes of the

model. Then a finite-dimensional observer is designed in a separate fashion

in order to estimate a finite number of modes that include in particular

the modes used for the state-feedback design. Such a control design ap-

proach roots back to the pioneer papers3,18,25,62 which essentially rely on

small gain arguments. Taking advantage of the controller architecture re-

ported in,62 the possibility to recast this control design problem into a

LMI framework was shown in29 for a particular set of input/output maps

and specific norms for the asymptotic stability estimates. This procedure

was enhanced and generalized in a systematic manner in40,41 for general

reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control

and Dirichlet/Neumann measurement while performing the control design

directly with the control input instead of it time derivative (see17 for an in-

troduction to boundary control systems). This generalized and systematic

approach has been shown to be key and very efficient for the predictor-

based compensation of arbitrarily long input and output delays,38,42 the

domination of state-delays,44 the local output feedback stabilization of lin-

ear reaction-diffusion PDEs in the presence of a saturation,34 the global

stabilization of linear-reaction-diffusion PDEs in the presence of a Lipchitz

continuous sector nonlinearity in the application of the boundary control,40

as well as the global stabilization of semilinear reaction-diffusion PDE with
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globally Lipchitz nonlinearity.39

In this framework, the proof of stability of the closed-loop system (com-

posed of the PDE, the finite-dimensional observer, and the state-feedback)

is assessed using the Lyapunov direct method presented in the previous

section, but adapted to the distributed nature of the state. This approach

can be seen as an alternative output feedback design method for reaction

parabolic PDEs to other very efficient tools, such as backstepping trans-

formations for PDEs (see the introductory textbook31) for which a form of

separation principle between controller and observer designs generally ex-

ists. Nevertheless, the infinite-dimensional nature of the observer obtained

using backstepping methods implies the necessity to resort to late lumping

approximations in order to obtain a finite-dimensional control strategy that

is suitable for practical implementation, inducing in general the loss of the

stability performance guarantees originally obtained during the synthesis

phase. The benefit of the approach reported in this section is that the

observer obtained during the synthesis phase is directly finite-dimensional.

The material presented in this Section of the lecture notes is widely in-

spired from41 in the linear case and from34 for the saturated input scenario.

The rest of this section is organized as follows. After introducing a

number of notations and properties, the case of Dirichlet boundary control

with a bounded observation operator is considered in Section 3.2. The con-

trol design procedure is then extended to the cases of a boundary Dirichlet

observation in Section 3.3. The case of in-domain control in the presence

of an input saturation in discussed in Section 3.4.

Reminders on Sturm Liouville theory

Let us conclude this introduction with some reminders on Sturm Liouville

theory for parabolic operators in one space dimension. See51 for a reference

on the mathematical properties that will be extensively used in this section.

Let θ1, θ2 ∈ [0, π/2], p ∈ C1([0, 1]), and q ∈ C0([0, 1]) with p > 0 and q ≥
0. Consider the Sturm-Liouville operator A : D(A) ⊂ L2(0, 1) → L2(0, 1)

defined by

Af = −(pf ′)′ + qf

on the domain

D(A) = {f ∈ H2(0, 1) : cos(θ1)f(0)− sin(θ1)f ′(0) = 0,

cos(θ2)f(1) + sin(θ2)f ′(1) = 0}.
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The eigenvalues (λn)n≥1 of A are simple, non negative, and form an increas-

ing sequence with λn → +∞ as n→ +∞. The associated unit eigenvectors

Φn ∈ L2(0, 1) form a Hilbert basis. The operator A and its domain can be

characterized by there eigenstructures in the sense that

Af =
∑
n≥1

λn 〈f,Φn〉 , ∀f ∈ D(A)

and

D(A) = {f ∈ L2(0, 1) :
∑
n≥1

|λn|2| 〈f,Φn〉 |2< +∞}

where 〈f, g〉 =
∫ 1

0
f(x)g(x),dx, for any f, g ∈ L2(0, 1), stands for the inner

product of L2(0, 1). Hence, using an integration by parts, it can be seen

that, for any f ∈ D(A),∑
n≥1

λn 〈f,Φn〉2 = 〈Af, f〉

= p(0)f(0)f ′(0)− p(1)f(1)f ′(1) +

∫ 1

0

p(x)f ′(x)
2

+ q(x)f(x)
2

dx.

Using the boundary conditions involved in the definition of D(A), we infer

the existence of a constant C2 > 0 such that∑
n≥1

λn 〈f,Φn〉2 = 〈Af, f〉 ≤ C2‖f‖H1 .

Moreover, if either (i) θ1, θ2 ∈ {0, π/2} with θi = 0 for at least one i ∈ {0, 1};
or (ii) q > 0, this implies the existence of a constant C1 > 0 such that

C1‖f‖H1 ≤
∑
n≥1

λn 〈f,Φn〉2 = 〈Af, f〉 ≤ C2‖f‖H1 . (25)

Hence, for any f ∈ D(A), the series expansion f =
∑
n≥1 〈f,Φn〉Φn holds

in H1(0, 1) norm. Then, using the definition of A and the fact that it is a

Riesz-spectral operator, we obtain that the latter series expansion holds in

H2(0, 1) norm. Due to the continuous embedding H1(0, 1) ⊂ L∞(0, 1), we

obtain that

f(0) =
∑
n≥1

〈f,Φn〉Φn(0), f ′(0) =
∑
n≥1

〈f,Φn〉Φ′n(0).

Let p∗, p
∗, q∗ ∈ R be such that 0 < p∗ ≤ p(x) ≤ p∗ and 0 ≤ q(x) ≤ q∗ for

all x ∈ [0, 1]. Then we have:51

0 ≤ π2(n− 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ (26)

for all n ≥ 1. If we further assume that p ∈ C2([0, 1]), we have (see again51)

that

Φn(0) = On→+∞(1), Φ′n(0) = On→+∞(
√
λn). (27)
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3.2. Bounded observation operator

We first consider the reaction-diffusion system described by

zt(t, x) = (p(x)zx(t, x))x + (qc − q(x))z(t, x) (28a)

zx(t, 0) = 0, z(t, 1) = u(t) (28b)

z(0, x) = z0(x) (28c)

y(t) =

∫ 1

0

c(x)z(t, x) dx (28d)

for t > 0 and x ∈ (0, 1). Here qc ∈ R is a constant, u(t) ∈ R is the command

input, y(t) ∈ R with c ∈ L2(0, 1) is the measurement, z0 ∈ L2(0, 1) is the

initial condition, and z(t, ·) ∈ L2(0, 1) is the state.

3.2.1. Spectral reduction

In (28), the control input u appears in the right boundary condition. Let

us transfer the control input from the boundary into the PDE by invoking

the change of variable:

w(t, x) = z(t, x)− x2u(t). (29)

It has been specifically selected in order to ensure that we still have the

left boundary condition wx(t, 0) = 0 while enforcing w(t, 0) = 0. Hence, we

have

wt(t, x) = (p(x)wx(t, x))x + (qc − q(x))w(t, x) + a(x)u(t) + b(x)u̇(t)

(30a)

wx(t, 0) = 0, w(t, 1) = 0 (30b)

w(0, x) = w0(x) (30c)

ỹ(t) =

∫ 1

0

c(x)w(t, x) dx (30d)

Here a, b ∈ L2(0, 1) are defined by a(x) = 2p(x) + 2xp′(x) + (qc − q(x))x2

and b(x) = −x2, respectively, while ỹ(t) = y(t) −
(∫ 1

0
x2c(x) dx

)
u(t) and

w0(x) = z0(x)− x2u(0).

The parabolic equation (30) presents homogeneous boundary conditions

(30b) that are much easier to deal with. However, the price of this transfer

is the occurrence of the time derivative u̇ of the control input u in the PDE

(30a). This is why we introduce the auxiliary command input v(t) = u̇(t),

that will be used as the control input for control design. In other words,
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v will be used as the control input for the design of the control strategy.

However, for final implementation of the control strategy, u remains the

actual control input of the plant. In this context, the dynamics of the

system reads

u̇(t) = v(t) (31a)

dw

dt
(t, ·) = −Aw(t, ·) + qcw(t, ·) + au(t) + bv(t) (31b)

with D(A) = {f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. Introducing the coeffi-

cients of projection wn(t) = 〈w(t, ·),Φn〉, an = 〈a,Φn〉, bn = 〈b,Φn〉, and

cn = 〈c,Φn〉, the projection of the PDE solutions into the Hilbert basis of

eigenfunctions (Φn)n≥1 gives

u̇(t) = v(t) (32a)

ẇn(t) = (−λn + qc)wn(t) + anu(t) + bnv(t), n ≥ 1 (32b)

ỹ(t) =
∑
i≥1

ciwi(t) (32c)

Note that (32) has been obtained from (31) by 1) multiplying (31) by Φn;

2) integrating on the space domain; and 3) performing two integration by

parts why using the boundary conditions coming from the definition of

D(A).

3.2.2. Control design

We start by fixing an integer N0 ≥ 1 and positive real number δ > 0 such

that −λn + qc < −δ < 0 for all n ≥ N0 + 1. Let N ≥ N0 + 1 be arbitrary.

The general idea, borrowed to,62 is to compute a stabilizing output-feedback

controller in three steps. First an observer to estimate the N first modes of

the plant is designed. Secondly the state-feedback is only performed on the

N0 first estimated modes of the plant. Finally a dedicated stability analysis

is performed to prove that the origin of the closed-loop is asymptotically

stable. In this context, inspired by the controller architecture first reported
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in,62 the adopted control strategy takes the form:

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t) + ln (ŷ(t)− ỹ(t)) , 1 ≤ n ≤ N0

(33a)

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t), N0 + 1 ≤ n ≤ N (33b)

ŷ(t) =

∫ 1

0

c(x)

N∑
i=1

ŵi(t)Φi(x) dx =

N∑
i=1

ciŵi(t) (33c)

v(t) = u̇(t) =

N0∑
i=1

kiŵi(t) + kuu(t) (33d)

where ki, ku ∈ R are the feedback gains while ln ∈ R are the observer gains.

Signals ŵn stand for the estimations of the modes wn for 1 ≤ n ≤ N .

These estimations are used for the computation of ŷ that represents the

estimation of the actual system measurement ỹ. Note that the feedback

law (33d) is computed only based on the observations ŵn for 1 ≤ n ≤ N0.

The remaining observations, namely ŵn for N0 + 1 ≤ n ≤ N , are only

used in (33c) to improve the estimation ŷ of the actual system output ỹ.

This estimation ŷ is used to introduce a correction term in the observation

dynamics (33a) related to the mismatch between the estimation ŷ and the

measurement ỹ. Note that no such correction is applied in (33b) for the

observed modes associated with N0 + 1 ≤ n ≤ N .

In order to study the validity of the control strategy (33), we need to

introduce a number of definitions. Introducing

WN0(t) =

 w1(t)
...

wN0(t)

 , B0,a =

 a1

...

aN0

 , B0,b =

 b1...
bN0

 ,
A0 = diag(−λ1 + qc, . . . ,−λN0 + qc),

we have from (32b) that

ẆN0(t) = A0W
N0(t) +B0,au(t) +B0,bv(t). (34)

Hence, defining

WN0
a (t) =

[
u(t)

WN0(t)

]
, A1 =

[
0 0

B0,a A0

]
, B1 =

[
1

B0,b

]
,

we obtain that

ẆN0
a (t) = A1W

N0
a (t) +B1v(t).
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We now define for 1 ≤ n ≤ N the observation error as

en(t) = wn(t)− ŵn(t). (35)

With ζ(t) =
∑
i≥N+1 ciwi(t), we infer from (33a) that

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t)− ln
N∑
i=1

ciei(t)− lnζ(t) (36)

for 1 ≤ n ≤ N0. Inspired by Section 2, we write the dynamics in coordinates

of the observer state and of the error variable. To do so we introduce

ŴN0(t) =

 ŵ1(t)
...

ŵN0
(t)

 , EN0(t) =

 e1(t)
...

eN0
(t)

 , EN−N0(t) =

eN0+1(t)
...

eN (t)

 ,

C0 =
[
c1 c2 . . . cN0

]
, C1 =

[
cN0+1 . . . cN

]
, L =

 l1...
lN0

 .
Hence we have

˙̂
WN0(t) = A0Ŵ

N0(t) +B0,au(t) +B0,bv(t) (37)

− LC0E
N0(t)− LC1E

N−N0(t)− Lζ(t).

With

ŴN0
a (t) =

[
u(t)

ŴN0(t)

]
, L̃ =

[
0

L

]
(38)

we deduce that

˙̂
WN0
a (t) = A1Ŵ

N0
a (t) +B1v(t)− L̃C0E

N0(t)− L̃C1E
N−N0(t)− L̃ζ(t) (39)

In view of (33d) we deduce that

v(t) = KŴN0
a (t), (40)

where K ∈ R1×(N0+1). Hence we obtain that

˙̂
WN0
a (t) = (A1 +B1K)ŴN0

a (t)− L̃C0E
N0(t)− L̃C1E

N−N0(t)− L̃ζ(t)

(41)

and, using (34) and (37),

ĖN0(t) = (A0 + LC0)EN0(t) + LC1E
N−N0(t) + Lζ(t). (42)

Claim 1. The pair (A1, B1) is controllable.
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Proof of Claim 1. Let us compute the Kalman matrix C for controllabil-

ity of (A1, B1) as introduced in Section 1. Denoting by µn = −λn + qc, we

get

C =


1 0 . . . 0

b1 a1 + µ1b1 . . . (a1 + µ1b1)µN0−1
1

b2 a2 + µ2b2 . . . (a2 + µ2b2)µN0−1
2

...
...

bN0
aN0

+ µN0
bN0

. . . (a1 + µN0
bN0

)µN0−1
N0


whose determinant is

det(C) = ΠN0
n=1(an + µnbn)

∣∣∣∣∣∣∣∣∣
1 µ1 . . . µN0−1

1

1 µ2 . . . µN0−1
2

...
...

1 µN0
. . . µN0−1

N0

∣∣∣∣∣∣∣∣∣ .
The second determinant appearing in the latter equations is known as the

Vandermonde determinant. Since the µn are distinct, the Vandermonde

determinant is non zero hence the pair (A1, B1) is controllable if and only

if ΠN0
n=1(an + µnbn) 6= 0. To check this latter condition, let us compute, for

each n = 1, . . . , N0, the quantity an + µnbn. Recalling µn = −λn + qc and

from the definitions of the function a and b, we obtain that

an + µnbn =

∫ 1

0

[2p(x) + 2xp′(x) + (qc − q(x))x2]Φn(x)dx

+(−λn + qc)

∫ 1

0

−x2Φn(x)dx

=

∫ 1

0

[(2p(x) + 2xp′(x))Φn(x)− x2q(x)Φn(x)]dx

+

∫ 1

0

[−x2(p(x)Φ′n(x))′ + x2q(x)Φn(x)]dx

=

∫ 1

0

(2p(x) + 2xp′(x))Φn(x)dx−
∫ 1

0

x2(p(x)Φ′n(x))′dx

= −p(1)Φ′n(1).

Recalling that Φn is a non-trivial solution to a second order ODE with

Φn(1) = 0, we must have Φ′n(1) 6= 0. Therefore an + µnbn 6= 0 hence the

pair (A1, B1) is controllable.

Claim 2. Assuming cn 6= 0 for all 1 ≤ n ≤ N0, the pair (A0, C0) is

observable.
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Proof of Claim 2. Let us compute the Kalman matrix for observation of

the pair (A0, C0): 
c1 . . . cN0

µ1c1 . . . µN0cN0

. . .

µN0−1
1 c1 . . . µ

N0−1
N0

cN0

 .
Since n 6= m implies µn 6= µm, this matrix is full rank if an only if cn 6= 0

for all n = 1, . . . , N0.

We now define the vectors and matrices:

ŴN−N0(t) =

ŵN0+1(t)
...

ŵN (t)

 , B2,a =

aN0+1

...

aN

 , B2,b =

bN0+1

...

bN

 ,
A2 = diag(−λN0+1 + qc, . . . ,−λN + qc).

From (33b) and (40) we obtain that

˙̂
WN−N0(t) = A2Ŵ

N−N0(t) +B2,au(t) +B2,bv(t)

= A2Ŵ
N−N0(t) +

(
B2,bK +

[
B2,a 0

])
ŴN0
a (t) (43)

and, using in addition (32b) and (35),

ĖN−N0(t) = A2E
N−N0(t). (44)

Putting together (41-44), we obtain with

X(t) = col(ŴN0
a (t), EN0(t), ŴN−N0(t), EN−N0(t)) (45)

that

Ẋ(t) = FX(t) + Lζ(t) (46)

where

F =


A1 +B1K −L̃C0 0 −L̃C1

0 A0 + LC0 0 LC1

B2,bK +
[
B2,a 0

]
0 A2 0

0 0 0 A2

 , L =


−L̃
L

0

0

 . (47)

Defining E =
[
1 0 . . . 0

]
and K̃ =

[
K 0 0 0

]
, we obtain from (38), (40),

and (45) that

u(t) = EX(t), v(t) = K̃X(t). (48)

Finally, defining g = ‖a‖2L2 + ‖b‖2L2‖K‖2, we can introduce

G = ‖a‖2L2E>E + ‖b‖2L2K̃>K̃ � gI. (49)
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3.2.3. Stability analysis

Theorem 6. Let p ∈ C1([0, 1]) with p > 0, q ∈ C0([0, 1]) with q ≥ 0,

qc ∈ R, and c ∈ L2(0, 1). Consider the reaction-diffusion system described

by (28). Let N0 ≥ 1 and δ > 0 be given such that −λn+qc < −δ < 0 for all

n ≥ N0 + 1. Assume that cn 6= 0 for all 1 ≤ n ≤ N0. Let K ∈ R1×(N0+1)

and L ∈ RN0 be such that A1 + B1K and A0 + LC0 are Hurwitz with

eigenvalues that have a real part strictly less than −δ < 0. Assume that

there exist N ≥ N0 + 1, P � 0, α > 1, and β, γ > 0 such that

Θ =

[
F>P + PF + 2δP + αγG PL

? −β

]
� 0, (50a)

Γ1,N+1 = −λN+1 + qc + δ +
1

α
+
β‖c‖2L2

2γ
≤ 0, (50b)

Γ2,N+1 = −
(

1− 1

α

)
λN+1 + qc + δ +

β‖c‖2L2

2γλN+1
≤ 0, (50c)

for all n ≥ N + 1. Then, for the closed-loop system composed of the plant

(28) and the controller (33)

(1) the origin is asymptotically stable in L2-norm, that is there exists M >

0 such that, for any ŵn(0) ∈ R, any z0 ∈ L2(0, 1) and any u(0) ∈ R,

the mild solution of the closed-loop system satisfies

u(t)2+

N∑
n=1

ŵn(t)2+‖z(t, ·)‖2L2 ≤Me−2δt

(
u(0)2 +

N∑
n=1

ŵn(0)2 + ‖z0‖2L2

)
for all t ≥ 0.

(2) the origin is asymptotically stable in H1-norm, that is there exists M >

0 such that, for any ŵn(0) ∈ R, any z0 ∈ H2(0, 1) and any u(0) ∈ R
such that z′0(0) = 0 and z0(1) = u(0), the classical solution of the

closed-loop system satisfies

u(t)2+

N∑
n=1

ŵn(t)2+‖z(t, ·)‖2H1 ≤Me−2δt

(
u(0)2 +

N∑
n=1

ŵn(0)2 + ‖z0‖2H1

)
for all t ≥ 0.

Moreover, the above constraints are always feasible for N large enough.

Remark 3. The feasibility problem of Theorem 6 is not linear due to the

presence of some terms such as αγ and 1
α involving the decision variables.

However the use of Schur complement allows to rewrite (50b) as follows:[
−λN+1 + qc + δ +

β‖c‖2
L2

2γ 1

? −α

]
≤ 0,
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and similarly for (50c). Therefore, as soon as γ is fixed, checking the

conditions of Theorem 6 reduces to check linear matrix inequalities (LMIs).

Thus, given a desired exponential decay rate δ > 0 and a number of modes

N ≥ N0 + 1 for the observer, the sufficient conditions of the previous

theorem can be recasted as an efficient optimization problem to solve LMIs.

Proof of Theorem 6. Consider the Lyapunov function candidate

V (X,w) = X>PX + γ
∑

n≥N+1

〈w,Φn〉2

for X ∈ R2N+1 and w ∈ L2(0, 1). The first term accounts for the dynamics

of the N first modes of the PDE and the dynamics of the observer, while the

series accounts for the dynamics of the modes corresponding to n ≥ N + 1.

The computation of the time derivative of V along the system solutions

(32b) and (46) gives

V̇ + 2δV =X>
(
F>P + PF + 2δP

)
X + 2X>PLζ

+ 2γ
∑

n≥N+1

(−λn + qc + δ)w2
n + 2γ

∑
n≥N+1

(anu+ bnv)wn.

The use of Young’s inequality gives

2
∑

n≥N+1

anwnu ≤
1

α

∑
n≥N+1

w2
n + α‖a‖2L2u2,

2
∑

n≥N+1

bnwn(t)v(t) ≤ 1

α

∑
n≥N+1

w2
n + α‖b‖2L2v2.

for any α > 0. From (48-49), we infer that

V̇ + 2δV ≤
[
X

ζ

]> [
F>P + PF + 2δP + αγG PL

? 0

] [
X

ζ

]
+ 2γ

∑
n≥N+1

(
−λn + qc + δ +

1

α

)
w2
n.

Recalling the definition ζ(t) =
∑
n≥N+1 cnwn(t), we obtain from Cauchy-

Schwarz inequality that ζ(t)2 ≤ ‖c‖2L2

∑
n≥N+1 wn(t)2. Hence, for any

β > 0,

β‖c‖2L2

∑
n≥N+1

w2
n − βζ2 ≥ 0. (51)

Combining the two latter inequalities, we obtain that

V̇ + 2δV ≤
[
X

ζ

]>
Θ

[
X

ζ

]
+ 2γ

∑
n≥N+1

Γ1,nw
2
n ≤ 0
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where Γ1,n = −λn + qc + δ + 1
α +

β‖c‖2
L2

2γ ≤ Γ1,N+1 for all n ≥ N + 1. The

assumptions (50) imply that V (t) ≤ e−2δtV (0) for all t ≥ 0, giving the

claimed stability estimate for PDE trajectories evaluated in L2-norm.

We now address the stability assessment of the system trajectories when

evaluated in H1-norm. To do so, in view of (25), we introduce the Lyapunov

functional candidate:

V (X,w) = X>PX + γ
∑

n≥N+1

λn 〈w,Φn〉2 (52)

with X ∈ R2N+1 and w ∈ D(A). The computation of the time derivative

of V along the system solutions (32b) and (46) gives

V̇ + 2δV = X>
(
F>P + PF + 2δP

)
X + 2X>PLζ (53)

+ 2γ
∑

n≥N+1

λn(−λn + qc + δ)w2
n + 2γ

∑
n≥N+1

λn(anu+ bnv)wn(t).

Using again Young’s inequality, we obtain

2
∑

n≥N+1

λnanwnu ≤
1

α

∑
n≥N+1

λ2
nw

2
n + α‖a‖2L2u2 (54a)

2
∑

n≥N+1

λnbnwnv ≤
1

α

∑
n≥N+1

λ2
nw

2
n + α‖b‖2L2v2 (54b)

for any α > 0. Hence, owing to (48-49) and (51), we deduce that

V̇ + 2δV ≤
[
X

ζ

]>
Θ

[
X

ζ

]
+ 2γ

∑
n≥N+1

λnΓ2,nw
2
n ≤ 0

with Γ2,n = −λn + qc + δ + λn
α +

β‖c‖2
L2

2γλn
≤ Γ2,N+1 for all n ≥ N + 1 where

it has been used that α > 1. Thus (50) implies that V (t) ≤ e−2δtV (0) for

all t ≥ 0. The claimed stability estimate in H1-norm is now obtained from

(25), (29), and (52).

We conclude the proof by showing that one can always select the order

of the observer N ≥ N0 + 1 large enough and find P � 0, α > 1, and

β, γ > 0 such that Θ � 0, Γ1,N+1 ≤ 0, and Γ2,N+1 ≤ 0. Owing to the

Schur complement, we have Θ � 0 if and only if F>P + PF + 2δP +

αγG + 1
βPLL

>P> � 0. We now note that A1 + B1K + δI and A0 −
LC0 + δI are Hurwitz and ‖e(A2+δI)t‖ ≤ e−κ0t with κ0 = λN0+1 − qc −
δ > 0. Moreover, ‖L̃C1‖ ≤ ‖L‖‖c‖L2 , ‖LC1‖ ≤ ‖L‖‖c‖L2 , and ‖B2,bK +[
B2,a 0

]
‖ ≤ ‖b‖L2‖K‖ + ‖a‖L2 . The right-hand sides of all the previous

inequalities are independent of the order of the observer N ≥ N0 + 1.
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Hence, Lemma 1, which is reported immediately after this proof, applied

to F + δI shows for any N ≥ N0 + 1 the existence of P � 0 such that

F>P + PF + 2δP = −I with ‖P‖ = O(1) as N → +∞. Finally, we have

(49) and ‖L‖ =
√

2‖L‖ with g and L that are independent of N . Hence,

with α = N1/4, β = N , and γ = N−1/2, we infer from (26) the existence of

a sufficiently large integer N ≥ N0+1, independent of the initial conditions,

such that Θ � 0, Γ1,N+1 ≤ 0, and Γ2,N+1 ≤ 0.

A technical lemma

The following lemma generalizes the statement of a result presented in29

while the proof, reported below, remains essentially identical.

Lemma 1. Let n,m,N ≥ 1, M11 ∈ Rn×n and M22 ∈ Rm×m Hurwitz,

M12 ∈ Rn×m, MN
14 ∈ Rn×N , MN

24 ∈ Rm×N , MN
31 ∈ RN×n, MN

33,M
N
44 ∈

RN×N , and

FN =


M11 M12 0 MN

14

0 M22 0 MN
24

MN
31 0 MN

33 0

0 0 0 MN
44

 .
We assume that there exist constants C0, κ0 > 0 such that ‖eMN

33t‖ ≤
C0e

−κ0t and ‖eMN
44t‖ ≤ C0e

−κ0t for all t ≥ 0 and all N ≥ 1. More-

over, we assume that there exists a constant C1 > 0 such that ‖MN
14‖ ≤ C1,

‖MN
24‖ ≤ C1, and ‖MN

31‖ ≤ C1 for all N ≥ 1. Then there exists a con-

stant C2 > 0 such that, for any N ≥ 1, there exists a symmetric matrix

PN ∈ Rn+m+2N with PN � 0 such that (FN )>PN + PNFN = −I and

‖PN‖ ≤ C2.

Proof of Lemma 1. It is sufficient to show the existence of constants

C̃0, η > 0 such that ‖eFN t‖ ≤ C̃0e
−ηt for all t ≥ 0 and all N ≥ 1. In-

deed, in that case, PN =
∫∞

0
e(FN )>teF

N t dt is well defined and satisfies

the claimed properties. We introduce FN = FN1 + FN2 with

FN1 =


M11 M12 0 0

0 M22 0 0

0 0 MN
33 0

0 0 0 MN
44

 , FN2 =


0 0 0 MN

14

0 0 0 MN
24

MN
31 0 0 0

0 0 0 0

 .
Then there exist constants κ, C̃1, C̃2 > 0 such that ‖eFN1 t‖ ≤ C̃1e

−κt and



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 37

Saturated boundary stabilization of partial differential equations 37

‖FN2 ‖ ≤ C̃2 for all t ≥ 0 and all N ≥ 1. One can check that (FN2 )3 = 0 and

(FN1 )ni =


• • 0 0

0 • 0 0

0 0 • 0

0 0 0 •


for any ni ≥ 0 and where “•” denotes a possibly non zero element, that is

not needed in this proof. Hence

(FN1 )niFN2 =


0 0 0 •
0 0 0 •
• 0 0 0

0 0 0 0


for any ni ≥ 0. We deduce that

3∏
i=1

(FN1 )niFN2 =


0 0 0 •
0 0 0 •
• 0 0 0

0 0 0 0


3

= 0

for any ni ≥ 0. Therefore,
3∏
i=1

eF
N
1 tiFN2 =

∑
k1≥0

∑
k2≥0

∑
k3≥0

tk1
1 t

k2
2 t

k3
3

k1!k2!k3!

3∏
i=1

(FN1 )kiFN2 = 0 (55)

for all t1, t2, t3 ≥ 0. Now we note thatb, for any square matrices A,B,

e(A+B)t = eAt +
∫ t

0
eA(t−τ)Be(A+B)τ dτ . Hence we have, using the last

identity three times consecutively,

eF
N t = eF

N
1 t +

∫ t

0

eF
N
1 (t−t1)FN2 eF

N t1 dt1

= eF
N
1 t +

∫ t

0

eF
N
1 (t−t1)FN2 eF

N
1 t1 dt1

+

∫ t

0

∫ t1

0

eF
N
1 (t−t1)FN2 eF

N
1 (t1−t2)FN2 eF

N t2 dt2dt1

= eF
N
1 t +

∫ t

0

eF
N
1 (t−t1)FN2 eF

N
1 t1 dt1

+

∫ t

0

∫ t1

0

eF
N
1 (t−t1)FN2 eF

N
1 (t1−t2)FN2 eF

N
1 t2 dt2dt1

where the last identity has been obtained by using (55). Recalling that

‖eFN1 t‖ ≤ C̃1e
−κt and ‖FN2 ‖ ≤ C̃2 for all t ≥ 0 and all N ≥ 1, the claimed

conclusion holds.

bx(t) = e(A+B)tx0 is such that ẋ(t) = Ax(t) + u(t) with u(t) = Bx(t). The claimed
formula follows from x(t) = eAtx0 +

∫ t
0 e

A(t−τ)u(τ) dτ .
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3.3. Dirichlet boundary measurement

We extend the result of the previous section to the case of a reaction-

diffusion PDE with Dirichlet boundary observation described by

zt(t, x) = (p(x)zx(t, x))x + (qc − q(x))z(t, x) (56a)

zx(t, 0) = 0, z(t, 1) = u(t) (56b)

z(0, x) = z0(x) (56c)

y(t) = z(t, 0) (56d)

for t > 0 and x ∈ (0, 1). We make throughout this subsection the assump-

tion that p ∈ C2([0, 1]) in order to use the asymptotic behavior (27).

3.3.1. Spectral reduction

The only change compared to the previous subsection is the modifica-

tion of the nature of the observation operator. Hence, the spectral re-

duction is conducted identically but the observation (30d) is replaced by

ỹ(t) = w(t, 0) = y(t). Considering classical solutions for the PDE, we

have w(t, ·) ∈ D(A) for all t ≥ 0. Hence, (32c) is simply replaced by

ỹ(t) =
∑
i≥1 Φi(0)wi(t).

3.3.2. Control design

Let N0 ≥ 1 and δ > 0 be fixes so that −λn+qc < −δ < 0 for all n ≥ N0 +1.

Let N ≥ N0 + 1 be arbitrary and to be determined later. We proceed as

in the previous subsection: we design an observer to estimate the N first

modes of the plant while the state-feedback is performed on the N0 first

modes of the plant. Hence, the controller dynamics is described by

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t) + ln (ŷ(t)− ỹ(t)) , 1 ≤ n ≤ N0

(57a)

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t), N0 + 1 ≤ n ≤ N (57b)

ŷ(t) =

N∑
i=1

Φi(0)ŵi(t) (57c)

v(t) = u̇(t) =

N0∑
i=1

kiŵi(t) + kuu(t) (57d)

which is the same as the one described by (33) but with measurement,

originally given by (33a), replaced by (57a). In this context, (36) is replaced
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by the following, defined for 1 ≤ n ≤ N0,

˙̂wn(t) = (−λn + qc)ŵn(t) + anu(t) + bnv(t)

− ln
N0∑
i=1

Φi(0)ei(t) + ln

N∑
i=N0+1

Φi(0)√
λi

ẽi(t) + lnζ(t).

Here ζ(t) is defined by ζ(t) =
∑
i≥N+1 Φi(0)wi(t) while, following,41 we

introduced the scaled error of observation ẽn(t) =
√
λnen(t) with en given

by (35). The definitions of C0 and C1 are replaced by

C0 =
[
Φ1(0) . . . ΦN0(0)

]
, C1 =

[
ΦN0+1(0)√
λN0+1

. . .
ΦN (0)√
λN

]
(58)

and defining

ẼN−N0(t) =
[
ẽN0+1(t) . . . ẽN (t)

]>
,

we obtain in replacement of (37) and (39) that

˙̂
WN0(t) = A0Ŵ

N0(t) +B0,au(t) +B0,bv(t) (59)

− LC0E
N0(t)− LC1Ẽ

N−N0(t)− Lζ(t)

and

˙̂
WN0
a (t) = A1Ŵ

N0
a (t) +B1v(t)− L̃C0E

N0(t)− L̃C1Ẽ
N−N0(t)− L̃ζ(t),

(60)

respectively. In this framework, the command input is still given by (40).

Using now (34) and (59), the error dynamics originally given by (42) is now

replaced by

ĖN0(t) = (A0 + LC0)EN0(t) + LC1Ẽ
N−N0(t) + Lζ(t). (61)

Moreover, since ėn(t) = (−λn + qc)en(t), we have ˙̃en(t) = (−λn + qc)ẽn(t)

for all N0 + 1 ≤ n ≤ N . Then (44) is replaced by

˙̃EN−N0(t) = A2Ẽ
N−N0(t). (62)

Putting together (40), (43), and (60-62), the introduction of

X(t) = col(ŴN0
a (t), EN0(t), ŴN−N0(t), ẼN−N0(t)),

shows that (46) holds with the different matrices defined by (47).

Remark 4. Based on the arguments of Claim 1 and Claim 2, we have that

(A1, B1) is controllable and (A0, C0) is observable.
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3.3.3. Stability analysis

We introduce the constant M1,Φ =
∑
n≥2

Φn(0)2

λn
. Note that this constant

is well defined (i.e., finite) when p ∈ C2([0, 1]) due to (26-27).

Theorem 7. Let p ∈ C2([0, 1]) with p > 0, q ∈ C0([0, 1]) with q ≥ 0,

and qc ∈ R. Consider the reaction-diffusion system described by (56). Let

N0 ≥ 1 and δ > 0 be given such that −λn+ qc < −δ < 0 for all n ≥ N0 + 1.

Let K ∈ R1×(N0+1) and L ∈ RN0 be such that A1 + B1K and A0 − LC0

are Hurwitz with eigenvalues that have a real part strictly less than −δ < 0.

Assume that there exist N ≥ N0 + 1, P � 0, α > 1, and β, γ > 0 such that

Θ � 0, where Θ is defined by (50a), and

Γ3,N+1 = −
(

1− 1

α

)
λN+1 + qc + δ +

βM1,Φ

2γ
≤ 0. (63)

Then the origin of the closed-loop system composed of the plant (56) and the

controller (57) is exponentially stable in H1-norm in the sense that there

exists M > 0 such that, for any ŵn(0) ∈ R, for any z0 ∈ H2(0, 1) and any

u(0) ∈ R such that z′0(0) = 0 and z0(1) = u(0), the classical solution of the

closed-loop system satisfies

u(t)2 +

N∑
n=1

ŵn(t)2 +‖z(t, ·)‖2H1 ≤Me−2δt

(
u(0)2 +

N∑
n=1

ŵn(0)2 + ‖z0‖2H1

)
.

for all t ≥ 0. Moreover, the above constraints are always feasible for N

large enough.

Remark 5. The previous result deals with the exponential stability of the

closed-loop system in H1-norm. This type of approach can be extended to

a number of control design problems such as:

• L2 stability using the same control strategy;40

• Robin boundary conditions;34,40

• Neumann boundary observations;41

• input/output delayed boundary control;38,42

• nonlinearities34,39,40

• regulation problems.37

Proof. Consider again the Lyapunov function candidate defined by (52).

The computation of its time derivative along the system solutions (32b)

and (46) gives (53). Since ζ(t) =
∑
n≥N+1 Φn(0)wn(t), we have by

Cauchy-Schwarz inequality that ζ(t)2 ≤ M1,Φ

∑
n≥N+1 λnwn(t)2 hence
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βM1,Φ

∑
n≥N+1 λnwn(t)2 − βζ(t)2 ≥ 0 for any β > 0. Using this latter

estimate into (53) and invoking Young’s inequality as in (54) along with

(48-49), we deduce that

V̇ + 2δV ≤
[
X

ζ

]>
Θ

[
X

ζ

]
+ 2γ

∑
n≥N+1

λnΓ3,nwn(t)2 ≤ 0

where Γ3,n = −
(
1− 1

α

)
λn + qc + δ +

βM1,Φ

2γ ≤ Γ3,N+1 for all n ≥ N + 1.

Hence the assumptions give V (t) ≤ e−2δtV (0) for all t ≥ 0. Proceeding as

in the previous proof, we obtain the claimed estimate.

To complete the proof, it remains to show that one can always select

N ≥ N0 + 1 large enough, P � 0, α > 1, and β, γ > 0, such that Θ � 0

and Γ3,N+1 ≤ 0. Owing to the Schur complement, Θ � 0 is equivalent

to F>P + PF + 2δP + αγG + 1
βPLL

>P> � 0. Applying Lemma 1 toc

F + δI, we have for any N ≥ N0 + 1 the existence of P � 0 such that

F>P +PF + 2δP = −I with ‖P‖ = O(1) as N → +∞. Moreover, we have

(49) and ‖L‖ =
√

2‖L‖ with g and L that are independent of N . Hence,

setting α = β =
√
N and γ = N−1, we obtain from (26) the existence of a

sufficiently large integer N ≥ N0 + 1 such that Θ � 0 and Γ3,N+1 ≤ 0.

Example 6. Consider the Dirichlet boundary measurement setting de-

scribed by (56). Let p = 1, q = 0, and qc = 3, giving an unstable open-loop

system. To obtain the closed-loop exponential decay rate δ = 0.5, we set

N0 = 1. Then we run the following Python code. On lines 14-18, we com-

pute the eigenvalues and eigenvectors of the problem. On lines 26-29, we

check whether N0 is selected adequately.

1 import numpy as np

2 import control

3 import scipy.integrate as integrate

4 import cvxpy as cp

5 import matplotlib as mpl

6 import matplotlib.pyplot as plt

7 from mpl_toolkits.mplot3d import Axes3D

8

9 # Parameters of the PDE

10 p = 1

11 q = 3 # this is q_c (q is zero)

12 delta = 0.5

13

14 # Eigenstructures

cThis is possible because, owing to the definition (58) of the matrix C1, it ensures that
‖C1‖ = O(1) as N → +∞. This remark is key to allow the application of Lemma 1.
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15 def lam(n):

16 return (n -1/2) **2*np.pi**2*p

17 def phi(n,x):

18 return np.sqrt (2)*np.cos((n -1/2)*np.pi*x)

19

20 # Equivalent bounded input operators

21 def input_a(x):

22 return 2*p + q*x**2 # case of p constant and q=0

23 def input_b(x):

24 return -x**2

25

26 # Number of modes to be stabilized

27 N0 = 0

28 while ( -lam(N0+1) + q) >= -delta:

29 N0 = N0 + 1;

On line 36, we set define the number N of modes for the observer. Then we

start building the matrices necessary to check the conditions of Theorem 7

after line 49.

30 if N0 == 0:

31 print(’All the modes of the open -loop system are < -delta’)

32 else:

33 print(’The number of modes to be stabilized is N_0=’+str(N0

))

34

35 # Select the number of modes for the observer

36 N = N0+2

37

38 # Matrices of the truncated model

39 tmp =[]

40 for i in range(1,N+1):

41 #print(i)

42 tmp.append(-lam(i)+q)

43

44 A0 = np.diag(tmp[0:N0])

45 A2 = np.diag(tmp[N0:N+1])

46

47 B0a = []; B0b = []; B2a = []; B2b = []; C0 = []; C1 = []

48

49 for k in range(1,N0+1):

50 def fun(x):

51 return input_a(x)*phi(k,x)

52 y,err= integrate.quad(fun ,0,1)

53 B0a.append(y)

54 def fun(x):

55 return input_b(x)*phi(k,x)

56 y,err=integrate.quad(fun ,0,1)

57 B0b.append(y)

58 C0.append(phi(k,0))
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59

60 for k in range(1,N-N0+1):

61 def fun(x):

62 return input_a(x)*phi(N0+k,x)

63 y,err=integrate.quad(fun ,0,1)

64 B2a.append(y)

65 def fun(x):

66 return input_b(x)*phi(N0+k,x)

67 y,err=integrate.quad(fun ,0,1)

68 B2b.append(y)

69

70 for k in range(N0+1,N+1):

71 C1.append(phi(k,0)/np.sqrt(lam(k)))

72

73 B0a = np.array(B0a).reshape ((N0 ,1))

74 B0b = np.array(B0b).reshape ((N0 ,1))

75 B2a = np.array(B2a).reshape ((N-N0 ,1))

76 B2b = np.array(B2b).reshape ((N-N0 ,1))

77 C0 = np.array(C0).reshape ((1,N0))

78 C1 = np.array(C1).reshape ((1,N-N0))

79

80 A1 = np.vstack ((np.zeros ((1,N0+1)),np.hstack ((B0a ,A0))))

81 B1 = np.vstack ((np.ones ((1,1)),B0b))

The control matrix K and the observation matrix L are chosen sepa-

rately on lines 84 and 88. The feedback gain is K =
[
−5.0058 −2.7748

]
,

and the observer gain is L = 1.4373. The matrix inequalities in Theorem

7 are built after line 104. The Schur complement is used to rewrite (63)

into a linear matrix inequality in the unknown variables as described in

Remark 3.

82 # Pole placement for the state feedback

83 Pdes = np.linspace(-N0 -1-delta ,-1-delta ,N0+1)

84 K = -control.place(A1 ,B1,Pdes);

85

86 # Pole placement for the observer

87 Qdes = np.linspace(-N0-delta ,-1-delta ,N0)

88 L0 = -control.place(A0.T,C0.T,Qdes).T;

89

90 tL0 = np.vstack ((np.zeros ((1,1)),L0))

91

92 def hcont(A,B,C,D): # help to build F by concatenate

horizontally

93 return np.hstack ((np.hstack ((np.hstack ((A,B)),C)),D))

94

95 F1=hcont(A1+np.dot(B1 ,K),np.dot(tL0 ,C0),np.zeros((N0+1,N-N0)),

np.dot(tL0 ,C1))

96 F2=hcont(np.zeros ((N0,N0+1)),A0+np.dot(L0,C0),np.zeros ((N0 ,N-N0

)),np.dot(L0 ,C1))



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 44

44 H. Lhachemi and C. Prieur

97 F3=hcont(np.dot(B2b ,K)+np.hstack ((B2a ,np.zeros((N-N0 ,N0)))),np.

zeros((N-N0,N0)),A2 ,np.zeros((N-N0,N-N0)))

98 F4=hcont(np.zeros ((N-N0,N0+1)),np.zeros((N-N0,N0)),np.zeros ((N-

N0,N-N0)),A2)

99

100 F = np.vstack ((np.vstack ((np.vstack ((F1,F2)),F3)),F4))

101

102 cL = np.vstack ((np.vstack ((np.vstack ((tL0 ,L0)),np.zeros((N-N0

,1)))),np.zeros((N-N0 ,1))))

103

104 # LMI conditions

105 gamma = 0.00155 #Fix the decision variable gamma > 0

106 M_phi = 12/(np.pi**2*p)

107 E = np.hstack ((np.ones ((1,1)),np.zeros ((1 ,2*N))))

108 tK = np.hstack ((K,np.zeros ((1 ,2*N-N0))))

109

110 def fun(x):

111 return input_a(x)**2

112 y,err=integrate.quad(fun ,0,1)

113 norm_a = np.sqrt(y)

114

115 def fun(x):

116 return input_b(x)**2

117 y,err=integrate.quad(fun ,0,1)

118 norm_b = np.sqrt(y)

119

120 # check Matrix inequalities

121 alpha = cp.Variable ()

122 beta = cp.Variable ()

123 P = cp.Variable ((2*N+1,2*N+1),PSD=True)

124

125 # build the constraints

126 constr = [alpha >= 1]

127 constr += [beta >= 0]

128 M11= (-lam(N+1)+ q +delta+beta*M_phi /(2* gamma))*np.ones ((1,1))

129 M12 =np.sqrt(np.abs(-lam(N+1)))*np.ones ((1,1))

130 Gamma=cp.bmat ([[ M11 , M12],

131 [M12.T,-alpha*np.ones ((1 ,1))] ])

132 constr += [Gamma <<0]

133 # build the last constraint

134 G = norm_a **2*( np.dot(E.T,E))+norm_b **2*(np.dot(tK.T,tK))

135 M11=F.T @ P +P @ F+ 2* delta * P + alpha*gamma*G

136 M12=P@ cL

137 matConstr = cp.bmat ([[ M11 , M12],

138 [M12.T, -beta*np.ones ((1,1))]])

139 constr += [matConstr << 0]

The feasability of the convex problem is checked on line 142 using the

solver in CVXOPT with cvxpy package. The conditions of Theorem 7 are

thus feasible for N = 3. Then the values of the unknown variables are
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stored, and matrix constraints are checked before line 166.

140 prob = cp.Problem(cp.Maximize (1),constr)

141 prob.solve(solver=’CVXOPT ’)

142 print(prob.status)

143

144 P=P.value; alpha=alpha.value; beta=beta.value

145 w,v=np.linalg.eig(P)

146 # w should be positive as all constraints

147 m=np.min([alpha -1,np.min([beta ,np.min(w)])])

148 # first matrix inequality

149 M11= (-lam(N+1)+ q +delta+beta*M_phi /(2* gamma))

150 M12 =np.sqrt(np.abs(-lam(N+1)))

151 M1=np.hstack ((M11 ,M12))

152 M2=np.hstack ((M12 ,-alpha))

153 M=np.vstack ((M1,M2))

154 w1,v=np.linalg.eig(M) #max w1 should be negative

155 # second matrix inequality

156 M11=np.dot(F.T,P)+np.dot(P,F)+ 2*delta*P +alpha*gamma*G

157 M12=np.dot(P,cL)

158 M1=np.hstack ((M11 ,M12))

159 M2=np.hstack ((M12.T,-beta*np.ones ((1 ,1))))

160 M=np.vstack ((M1,M2))

161 w2,v=np.linalg.eig(M) #max w2 should be negative

162 mm=np.min([m,-np.max(w2),-np.max(w2)])

163 if mm <0:

164 print(’Matrix inequalities not satisfied ’)

165 else:

166 print(’Matrix inequalities satisfied ’)

The code to numerically compute the behavior of the closed-loop system

associated with the initial condition z0(x) = 1 + x2, and with zero initial

condition for the observer, obtained based on the 50 dominant modes of

the plant is given after line 167.

167 # Simulation

168 # Number of modes for simulation

169 Nsim = 50;

170

171 if Nsim < 2*N:

172 print(’Number of modes for simulation strictly less than 2*

N’)

173

174 tmp =[]

175 for i in range(1,Nsim +1):

176 tmp.append(-lam(i)+q)

177

178 # Matrices of the truncated model

179 Ass = np.diag(tmp[0: Nsim]) # System used for simulations

based on Nsim dominant modes

180 Aobs = np.diag(tmp [0:N])
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181

182 Bssa = []; Bssb = []; Bobsa = []; Bobsb = []; Css = []; Cobs

= []

183 for k in range(1,Nsim +1):

184 Css.append(phi(k,0))

185 if k<N+1:

186 Cobs.append(phi(k,0))

187

188 Lobs = np.vstack ((L0,np.zeros ((N-N0 ,1))))

189 Lobs=Lobs.reshape(N,)

190

191 for k in range(1,Nsim +1):

192 def fun(x):

193 return input_a(x)*phi(k,x)

194 y,err= integrate.quad(fun ,0,1)

195 Bssa.append(y)

196 if k<N+1:

197 Bobsa.append(y)

198 def fun(x):

199 return input_b(x)*phi(k,x)

200 y,err=integrate.quad(fun ,0,1)

201 Bssb.append(y)

202 if k<N+1:

203 Bobsb.append(y)

204

205 Bssa = np.array(Bssa).reshape ((Nsim ,))

206 Bssb = np.array(Bssb).reshape ((Nsim ,))

207 Bobsa = np.array(Bobsa).reshape ((N,))

208 Bobsb = np.array(Bobsb).reshape ((N,))

209

210 # Initial condition (IC)

211 def z0(x):

212 return 1+x**2 # IC of the PDE

213

214 u0 = z0(1) # IC of the control

215

216 def w0(x):

217 return z0(x) - x**2*u0 #IC of the homogeneous Dirichlet

system

218

219 zsim0 =[]

220 for k in range(1,Nsim +1):

221 def fun(x):

222 return w0(x)*phi(k,x)

223 y,err=integrate.quad(fun ,0,1)

224 zsim0.append(y) # Coefficients of projection of the IC w0

225

226 zsim0 = np.array(zsim0).reshape ((Nsim ,1))

227

228 # Check the validity of the projection (graph)
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229 space = np.linspace (0,1,100)

230 check = np.zeros ((len(space) ,1))

231

232 for kx in range(len(space)):

233 for k in range(Nsim):

234 check[kx ,0] = check[kx ,0] + zsim0[k,0]* phi(k,space[kx])

235

236 fig , ax= plt.subplots ()

237 ax.set_title(’To check’)

238

239 ax.plot(space , w0(space),’g-’, label=’w0’)

240 ax.plot(space , check ,’r.’, label=’approx ’)

241 ax.legend ()

242 # plt.savefig(’to_check.png ’,bbox_inches=’tight ’)

243

244 # time discretization

245 Tsim = 6;

246

247 def ode(z,t):

248 u=float(z[0])

249 zsim=z[1: Nsim +1]

250 zhat=z[Nsim +1:]

251 whata=np.vstack ((u,zhat [0:N0]))

252 v=float(np.dot(K,whata))

253 udot=v

254 zsimdot=np.dot(Ass ,zsim)+np.dot(Bssa ,u)+np.dot(Bssb ,v)

255 zhatdot=np.dot(Aobs ,zhat)+np.dot(Bobsa ,u)+np.dot(Bobsb ,v)

256 zhatdot+=-Lobs*float(np.dot(Css ,zsim)-np.dot(Cobs ,zhat))

257 zdot=np.hstack ((np.hstack ((udot*np.ones (1),zsimdot)),

zhatdot))

258 return zdot

259

260 t=np.linspace(0,Tsim ,60)

261

262 # Initial condition of the full state

263 zhat0=np.zeros((N,1))

264 z0tot=np.vstack ((np.vstack ((u0,zsim0)),zhat0))

265 z0tot=z0tot.reshape(len(z0tot),)

266 sol=integrate.odeint(ode ,z0tot ,t)

267

268 Mstate_z = np.zeros ((len(space),len(t))) # PDE in original

coordinates z

269 Mstate_w = np.zeros ((len(space),len(t))) # PDE in homogeneous

coordinates w

270 MstateObs = np.zeros((len(space),len(t))) # State of the

observer

271

272 for k_time in range(len(t)):

273 for k_space in range(len(space)):

274 for k in range(Nsim):
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275 Mstate_w[k_space ,k_time] += sol[k_time ,k+1]* phi(k,

space[k_space ])

276 Mstate_z[k_space ,k_time] = Mstate_w[k_space ,k_time] +

space[k_space ]**2* sol[k_time ,0]

277 for k in range(N):

278 MstateObs[k_space ,k_time] += MstateObs[k_space ,

k_time] + sol[k_time ,k+1+ Nsim]*phi(k,space[k_space ])

279

280 mpl.rcParams[’legend.fontsize ’] = 10

281 fig = plt.figure (); ax = fig.add_subplot (111, projection=’3d’)

282 SX, ST = np.meshgrid(space , t)

283 ax.plot_surface(SX, ST, Mstate_z.T, cmap=’jet’)

284 ax.set_xlabel(’x’)

285 ax.set_ylabel(’t’)

286 ax.set_zlabel(’z(t,x)’)

287 ax.view_init(elev=15, azim =20) # adjust view so it is easy to

see

288 plt.savefig(’pde -3d.png’)

289

290 fig = plt.figure (); ax = fig.add_subplot (111, projection=’3d’)

291 ax.plot_surface(SX, ST, Mstate_w.T-MstateObs.T, cmap=’jet’)

292 ax.set_xlabel(’x’)

293 ax.set_ylabel(’t’)

294 ax.set_zlabel(’$e(t,x)$’)

295 ax.view_init(elev=15, azim =20) # adjust view so it is easy to

see

296 plt.savefig(’pde -error.png’)

Fig. 6 depicts the corresponding solution. The convergence of the state

towards 0 can be observed, confirming the predictions of Theorem 7. The

observation error is given on the same figure.

The time-evolutions of the control and output variables are given in

Figure 7.
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(a) State z(t, x)

(b) Observation error e(t, x) = w(t, x)−
∑N
n=1 ŵn(t)Φn(x)

Fig. 6. State z and observation error e in closed-loop with Dirichlet boundary measure-
ment feedback control for the reaction-diffusion system (56)
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(a) Control u(t)

(b) Output y(t)

Fig. 7. Control u(t) = z(t, 1) and output y(t, x) = z(t, 0) for the closed-loop system
with Dirichlet boundary measurement feedback control for the reaction-diffusion system

(56)
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3.4. Saturated control with internal measurement

In this section we consider the stability analysis of parabolic PDEs when

controlled in the presence of input saturations. In this setting, the con-

trol inputs apply in the domain by means of a bounded operator while the

observation can take the form of either a bounded or an unbounded mea-

surement operator. As in the previous section, the adopted approach relies

on spectral-reduction methods. The presence of the input saturation is han-

dled in the stability analysis by invoking the generalized sector condition

reported in Section 2. This type of control design problem was reported

in48 in the case of a state-feedback. We consider here the case of an output

feedback by combining the Lyapunov-based analysis procedure discussed

in the previous sections and the previously generalized sector condition.

This allows the derivation of a set of sufficient conditions ensuring the local

exponential stability of the origin of the closed-loop system. A subset of

the domain of attraction is characterized by the decision variables of the

abovementionned sufficient constraints.

Problem description

Let the reaction-diffusion equation with Robin boundary conditions de-

scribed by

zt(t, x) = (p(x)zx(t, x))x − (q(x)− qc)z(t, x) +

m∑
k=1

bk(x)usat,k(t) (64a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0 (64b)

cos(θ2)z(t, 1) + sin(θ2)zx(t, 1) = 0 (64c)

z(0, x) = z0(x) (64d)

with measurement equation

y(t) =

∫ 1

0

c(x)z(t, x) dx. (65)

Here we have θ1, θ2 ∈ [0, π/2], p ∈ C1([0, 1]) with p > 0, q ∈ C0([0, 1]) with

q ≥ 0, qc ∈ R, and bk ∈ L2(0, 1). The scalar control input usat,k(t) ∈ R act

on the system. Hence, (64) can be written as

zt(t, ·) = −Az(t, ·) + qcz(t, ·) +

m∑
k=1

bkusat,k(t) (66a)

z(0, ·) = z0 (66b)
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where A is the Sturm-Liouville operator defined at the beginning of this

section.

The control input is assumed to be subject to saturations; for a given

vector s =
[
s1 s2 . . . sm

]> ∈ (R∗+)m, we define sat : Rm → Rm by (17).

Hence, the input usat,k(t) that is applied to the plant is expressed in function

of the actual control inputs uk(t) as

usat(t) = sat(u(t)).

with usat(t) =
[
usat,1(t) usat,2(t) . . . usat,m(t)

]>
and

u(t) =
[
u1(t) u2(t) . . . um(t)

]>
.

In this context and similarly to48 in the case of a state-feedback, the

objective is to study the local stabilization of (64) with measurement (65)

for the controller architecture studied in the first part of this section but in

the presence of the saturating control inputs while estimating the associated

domain of attraction.

3.4.1. Spectral analysis

Consider again the coefficients of projection zn(t) = 〈z(t, ·),Φn〉, bn,k =

〈bk,Φn〉, and cn = 〈c,Φn〉. As done for (31) without saturation, the pro-

jection of the system solutions (66) and the output equation (65) into the

Hilbert basis {Φn : n ≥ 1} gives the following representation:

żn(t) = (−λn + qc)zn(t) +

m∑
k=1

bn,kusat,k(t) (67a)

y(t) =
∑
n≥1

cnzn(t) (67b)

Proceeding as in the previous subsection, we consider the feedback law

taking the form of a finite-dimensional state-feedback coupled with a finite-

dimensional observer. More precisely, let δ > 0 and N0 ≥ 1 be such that

−λn + qc < −δ for all n ≥ N0 + 1. For a given integer N ≥ N0 + 1 to be

selected later, the controller architecture takes the form:

˙̂zn(t) = (−λn + qc)ẑn(t) +

m∑
k=1

bn,kusat,k(t) (68a)

+ Ln

{
N∑
k=1

ckẑk(t)− y(t)

}
, 1 ≤ n ≤ N

uk(t) =

N0∑
l=1

Kk,lẑl(t), 1 ≤ k ≤ m (68b)
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with Ln,Kk,l ∈ R where Ln = 0 for N0 + 1 ≤ n ≤ N .

We define the errors of estimation en(t) = zn(t)− ẑn(t). As in the pre-

vious subsection, we introduce the vectors and matrices defined by ẐN0 =[
ẑ1 . . . ẑN0

]>
, ẐN−N0 =

[
ẑN0+1 . . . ẑN

]>
, EN0 =

[
e1 . . . eN0

]>
, EN−N0 =[

eN0+1 . . . eN
]>

, A0 = diag(−λ1 +qc, . . . ,−λN0 +qc), A1 = diag(−λN0+1 +

qc, . . . ,−λN +qc), B0 = (bn,k)1≤n≤N0,1≤k≤m, B1 = (bn,k)N0+1≤n≤N,1≤k≤m,

C0 =
[
c1 . . . cN0

]
, C1 =

[
cN0+1 . . . cN

]
, L =

[
L1 . . . LN0

]>
, and K =

(Kk,l)1≤k≤m,1≤l≤N0 . This leads to

˙̂
ZN0 = A0Ẑ

N0 +B0usat − LC0E
N0 − LC1E

N−N0 − Lζ

ĖN0 = (A0 + LC0)EN0 + LC1E
N−N0 + Lζ

˙̂
ZN−N0 = A1Ẑ

N−N0 +B1usat

ĖN−N0 = A1E
N−N0

u = KẐN0

where ζ(t) =
∑
n≥N+1 cnzn(t) is the residue of measurement. Owing to the

definition of the deadzone nonlinearity (20), we infer that

˙̂
ZN0 = (A0 +B0K)ẐN0 − LC0E

N0 − LC1E
N−N0 − Lζ +B0φ(KẐN0)

ĖN0 = (A0 + LC0)EN0 + LC1E
N−N0 + Lζ

˙̂
ZN−N0 = A1Ẑ

N−N0 +B1KẐ
N0 +B1φ(KẐN0)

ĖN−N0 = A1E
N−N0 .

Introducing the state-vector

X = col(ẐN0 , EN0 , ẐN−N0 , EN−N0)

and the matrices

F =


A0 +B0K −LC0 0 −LC1

0 A0 + LC0 0 LC1

B1K 0 A1 0

0 0 0 A1

 , L =


−L
L

0

0

 , Lφ =


B0

0

B1

0,


we deduce that

Ẋ = FX + Lζ + Lφφ(KẐN0). (69)

We finally define E =
[
I 0 0 0

]
and K̃ =

[
K 0 0 0

]
, which are such that

ẐN0 = EX, u = K̃X.
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3.4.2. Stability results

For z ∈ L2(0, 1) and ẑ ∈ RN , we define

Π(z, ẑ) =


Π1(z, ẑ)

Π2(z, ẑ)

Π3(z, ẑ)

Π4(z, ẑ)


with

Π1(z, ẑ) =

 ẑ1

...

ẑN0

 , Π2(z, ẑ) =

 〈z,Φ1〉 − ẑ1

...

〈z,ΦN0〉 − ẑN0

 ,
and

Π3(z, ẑ) =

ẑN0+1

...

ẑN

 , Π4(z, ẑ) =

〈z,ΦN0+1〉 − ẑN0+1

...

〈z,ΦN 〉 − ẑN

 .
Stabilization in L2 norm Let us now state and prove a result providing

a stabilization for (64) in L2-norm. This result is extracted from.34

Theorem 8. Let θ1, θ2 ∈ [0, π/2], p ∈ C1([0, 1]) with p > 0, q ∈ C0([0, 1])

with q ≥ 0, qc ∈ R, and s ∈ (R∗+)m. Let c ∈ L2(0, 1) and bk ∈ L2(0, 1)

for 1 ≤ k ≤ m. Consider the reaction-diffusion system described by (64)

with measured output (65). Let N0 ≥ 1 and δ > 0 be given such that

−λn+qc < −δ < 0 for all n ≥ N0 +1. Assume that 1) for any 1 ≤ n ≤ N0,

there exists 1 ≤ k = k(n) ≤ m such that bn,k 6= 0; 2) cn 6= 0 for all

1 ≤ n ≤ N0. Let K ∈ Rm×N0 and L ∈ RN0 be such that A1 + B1K and

A0+LC0 are Hurwitz with eigenvalues that have a real part strictly less than

−δ < 0. Assume that there exist N ≥ N0 + 1, a symmetric positive definite

P ∈ R2N×2N , α, β, γ, µ, κ > 0, a diagonal positive definite T ∈ Rm×m, and

G ∈ Rm×N0 such that

Θ1(κ) � 0, Θ2 � 0, Θ3(κ) ≤ 0 (70)

where

Θ1(κ) =

Θ1,1,1(κ) PL −E>G>T + PLφ
? −β 0

? ? αγ
∑m
k=1 ‖RNbk‖2L2I − 2T


Θ2 =

[
P E>(K −G)>

? µ diag(s)2

]
,

Θ3(κ) = 2γ

{
−λN+1 + qc + κ+

1

α

}
+ β‖RNc‖2L2



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 55

Saturated boundary stabilization of partial differential equations 55

with Θ1,1,1(κ) = F>P +PF + 2κP +αγ
∑m
k=1 ‖RNbk‖2L2K̃>K̃. Define the

ellipsoid

E1 =

{
(z, ẑ) ∈ L2(0, 1)× RN : ΠN (z, ẑ)>PΠN (z, ẑ) + γ‖RNz‖2L2 ≤

1

µ

}
.

Then, the origin of the closed-loop system composed of the plant (64) with

measured output (65) and the control law (68) is locally exponentially stable

in L2-norm with exponential decay rate κ and with a basin of attraction

including E1. More precisely, there exists M > 0 such that for any initial

condition (z0, ẑ(0)) ∈ E1, the solution satisfies

‖z(t, ·)‖2L2 +

N∑
n=1

ẑn(t)2 ≤Me−2κt

(
‖z0‖2L2 +

N∑
n=1

ẑn(0)2

)
(71)

for all t ≥ 0. Moreover, for any fixed κ ∈ (0, δ], the constraints (70) are

always feasible for N large enough.

Proof of Theorem 8. Let the Lyapunov function candidate be defined

by V (X, z) = X>PX + γ
∑
n≥N+1 〈z,Φn〉

2
for X ∈ R2N and z ∈ L2(0, 1).

The computation of the time derivative of V along the system solutions to

(67) and (69) gives

V̇ + 2κV = X>
(
F>P + PF + 2κP

)
X + 2X>PLζ

+ 2X>PLφ(KẐN0) + 2γ
∑

n≥N+1

(−λn + qc + κ)z2
n

+ 2γ
∑

n≥N+1

znL
b
nK̃X + 2γ

∑
n≥N+1

znL
b
nφ(KẐN0)

where Lbn =
[
bn,1 . . . bn,m

]
. From Young’s inequality, we obtain for any

α > 0 and any w ∈ Rm that 2
∑
n≥N+1 znL

b
nw ≤

1

α

∑
n≥N+1 z

2
n +

α
∑m
k=1 ‖RNbk‖2L2‖w‖2. Hence, introducing X̃ = col(X, ζ, φ(KẐN0)), we

deduce that

V̇ + 2κV ≤ X̃>
Θ1,1,1 PL PLφ

? 0 0

? ? αγ
∑m
k=1 ‖RNbk‖2L2I

 X̃
+ 2γ

∑
n≥N+1

(
−λn + qc + κ+

1

α

)
z2
n.

Since, by definition, ζ =
∑
n≥N+1 cnzn, we obtain that ζ2 ≤

‖RNc‖2L2

∑
n≥N+1 z

2
n. Moreover, if ẐN0 ∈ RN0 satisfies |(K −G)ẐN0 | ≤ s,
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we deduce from (21) that φ(KẐN0)>T (φ(KẐN0)+GẐN0) ≤ 0. Combining

the latter estimates, we obtain for all X ∈ R2N satisfying |(K−G)EX| ≤ s
that

V̇ + 2κV ≤ X̃>Θ1(κ)X̃ +
∑

n≥N+1

Γnz
2
n

where Γn = 2γ
(
−λn + qc + κ+ 1

α

)
+β‖RNc‖2L2 ≤ Θ3(κ) for all n ≥ N+1.

Hence the assumptions imply that V̇ + 2κV ≤ 0 for all X ∈ R2N is such

that |(K −G)EX| ≤ s.
We now need to give a sufficient condition such that |(K − G)EX| ≤

s holds. To do so, consider X ∈ R2N and z ∈ L2(0, 1) such that

V (X, z) ≤ 1/µ. Applying the Schur complement to Θ2 � 0, we ob-

tain that P � 1
µE
>(K − G)>diag(s)−2(K − G)E. This implies that

‖diag(s)−1(K − G)EX‖ ≤ 1, giving in particular that |(K − G)EX| ≤ s

hence V̇ + 2κV ≤ 0.

From now it is easy to show that, for any initial condition selected such

that (z0, ẑ0) ∈ E1 with z0 ∈ D(A), we have V (X(t), z(t, ·)) ≤ 1/µ and

V̇ (X(t), z(t, ·)) + 2κV (X(t), z(t, ·)) ≤ 0 for all t ≥ 0. The claimed stability

estimate (71) follows from the definition of V . The extension of this result

to mild solutions associated with any (z0, ẑ0) ∈ E1 follows from a classical

density argument [53, Thm. 6.1.2].

The rest of the proof, which concerns the feasibility of the constraints,

is reported in.34

Stabilization in H1 norm The following result deals with the exponen-

tial stability of the system trajectories evaluated in H1-norm.

Theorem 9. In the context of Theorem 8, we further assume that q > 0.

Assume that there exist N ≥ N0 + 1, a symmetric positive definite P ∈
R2N×2N , α > 1, β, γ, µ, κ > 0, a diagonal positive definite T ∈ Rm×m, and

G ∈ Rm×N0 such that

Θ1(κ) � 0, Θ2 � 0, Θ3(κ) ≤ 0 (72)

where Θ1(κ) and Θ2 are defined as in Theorem 8 while

Θ3(κ) = 2γ

{
−
(

1− 1

α

)
λN+1 + qc + κ

}
+
β‖RNc‖2L2

λN+1
.

Define the ellipsoid

E2 =

{
(z, ẑ) ∈ D(A)× RN : Π(z, ẑ)>PΠ(z, ẑ) + γ‖RNA1/2z‖2L2 ≤

1

µ

}
.
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Then, the origin of the closed-loop system composed of the plant (64) with

measured output (65) and the control law (68) is locally exponentially stable

in H1-norm with exponential decay rate κ and with a basin of attraction

including E1. In other words, there exists M > 0 such that for any initial

condition (z0, ẑ(0)) ∈ E1, the solution satisfies

‖z(t, ·)‖2H1 +

N∑
n=1

ẑn(t)2 ≤Me−2κt

(
‖z0‖2H1 +

N∑
n=1

ẑn(0)2

)
for all t ≥ 0. Moreover, for any fixed κ ∈ (0, δ], the constraints (72) are

always feasible for N large enough.

Proof of Theorem 9. We introduce the Lyapunov functional candidate

V (X, z) = X>PX + γ
∑
n≥N+1 λn 〈z,Φn〉

2
when X ∈ R2N and z ∈ D(A).

The computation of the time derivative of V along the system solutions to

(67) and (69) gives

V̇ + 2κV = X>
(
F>P + PF + 2κP

)
X + 2X>PLζ

+ 2X>PLφφ(KẐN0) + 2γ
∑

n≥N+1

λn(−λn + qc + κ)z2
n

+ 2γ
∑

n≥N+1

λnznL
b
nK̃X + 2γ

∑
n≥N+1

λnznL
b
nφ(KẐN0)

where Lbn =
[
bn,1 . . . bn,m

]
. Invoking Young’s inequality, we obtain for any

α > 0 and any w ∈ Rm that 2
∑
n≥N+1 λnznL

b
nw ≤

1

α

∑
n≥N+1 λ

2
nz

2
n +

α
∑m
k=1 ‖RNbk‖2L2‖w‖2. Let X̃ = col(X, ζ, φ(KẐN0)). Proceeding as in

the proof of Theorem 8, we deduce that

V̇ + 2κV ≤ X̃>Θ1(κ)X̃ +
∑

n≥N+1

λnΓnz
2
n

for all X ∈ R2N satisfying |(K − G)EX| ≤ s and where Γn =

2γ
{
−
(
1− 1

α

)
λn + qc + κ

}
+

β‖RNc‖2L2

λn
≤ Θ3(κ) for all n ≥ N + 1. The

proof now follows similar arguments that the ones employed in the proof of

Theorem 8.

Remark 6. The conditions in Theorem 8 and in Theorem 9 are nonlinear

in the unknown variables, due to, in particular the product G>T . Some

nonlinearity could be transformed into linear conditions as for the variable

α, as discussed in Remark 3. To deal with the particular case m = 1, or to

deduce convex constraints from these theorems, see.34
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3.5. Section conclusion

This section has discussed the topic of output feedback stabilization of

a reaction-diffusion equation by means of in-domain or boundary control

inputs. The controllers that are considered in this section are output feed-

back laws where the output is defined from a boundary measure or an

internal measurement of the state. The control strategy takes the form

of a finite-dimensional controller composed of an observer coupled with a

finite-dimensional partial state-feedback. The control can be either linear

or subject to a saturation map. In the latter scenario, only a local asymp-

totic stability can be obtained in general along with an estimation of the

basin of attraction. The reported stability analysis takes advantage of Lya-

punov functionals coupled with the generalized sector condition that has

been recalled in Section 2 in the context of finite-dimensional systems. The

obtained sets of constraints ensuring the stability of the closed-loop system

take an explicit form and have been shown to be feasible when the order of

the controller is selected large enough. An explicit subset of the domain of

attraction of the closed-loop system has also been derived.
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4. Stabilization of wave and KdV equations

Two classes of particular equations are considered in this section: first the

wave equation and then the Korteweg–de-Vries (KdV) equation. We par-

ticularly focus on the boundary stabilization problem. The interest of the

first equation is that it gives a transition towards the boundary control of

general hyperbolic systems, whereas the second one allows to show perspec-

tives in terms of stabilization of nonlinear partial differential equations, and

give a highlighting example of what could be done for boundary control of

other classes of hyperbolic PDEs (as considered e.g. in55,75).

For both equations, we solve the common objectives of well-posedness

assessment and asymptotic stabilization by means of of distributed or

boundary control that can be either linear or subject to a nonlinear map

(e.g., a saturation).

This section is organized as follows. First, in Section 4.1, the stabiliza-

tion of the linear wave equation with linear and with nonlinear in-domain

control is presented. The topic of boundary control is then considered for

the same equation. Finally the nonlinear KdV equation is considered in

Section 4.2 with in-domain control. This result is illustrated with some

numerical simulations.

4.1. Wave equation with a bounded control operator

Motivated by the illustration depicted in Figure 8, where z stands for the

deflection of a membrane with respect to the rest and horizontal axis and

that is subject to a distributed force u, we start this section by considering

the following wave equation:

u(x, t)

z(x, t)

x = 0 x = 1

Fig. 8. Wave equation with bounded control operator

ztt(t, x) = zxx(t, x) + u(t, x), ∀t ≥ 0 , x ∈ (0, 1), (73)

We assume that the membrane is clamped at both extremities. This implies

the following boundary conditions, for all t ≥ 0,

z(t, 0) = 0 ,

z(t, 1) = 0 .
(74)
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The initial condition are given, for all x ∈ (0, 1), by

z(0, x) = z0(x) ,

zt(0, x) = z1(x) ,
(75)

where z0 and z1 stand for the initial deflection and the initial deflection

speed, respectively.

Let us note that the function defined by z(t, x) = 0, for all (t, x) in

(0, 1)× [0,∞) is a particular solution to (73) and (74) in the uncontrolled

scenario (u = 0). Hence the orgin is an equilibrium for the studied wave

equation. The objective is to render this equilibrium asymptotically stable

by designing an adequate feedback control u.

4.1.1. Internal linear control

Let us define the linear control by

u(t, x) = −azt(t, x), t ≥ 0 , x ∈ (0, 1), (76)

and consider

V1 =
1

2

∫
(z2
x + z2

t )dx. (77)

A formal computation gives, along the solutions to (73), (74) and (76),

V̇1 =
∫ 1

0
(zxzxt − az2

t + ztzxx)dx

= −
∫ 1

0
az2
t dx+ [ztzx]x=1

x=0

= −
∫ 1

0
az2
t dx

Thus, if a > 0, V1 is a (non strict) Lyapunov function.

Using standard technics, such as Lumer-Phillips thereom for the well-

posedness (see e.g., [14, Theorem A.4.]) and Huang-Prüss theorem for the

exponential stability (see27 and58), we may prove the following result:

Theorem 10. For a > 0 and (z0, z1) ∈ H1
0 (0, 1) × L2(0, 1), there exists a

unique (weak) solution z: [0,∞)→ H1
0 (0, 1)×L2(0, 1) to (73)-(76). More-

over, the origin of H1
0 (0, 1)×L2(0, 1) is an exponentially stable equilibrium,

that is there exist two positive values C and µ > 0 such that, for any initial

condition (z0, z1) ∈ H1
0 (0, 1)× L2(0, 1), it holds, for all t ≥ 0,

‖z‖H1
0 (0,1) + ‖zt‖L2(0,1) ≤ Ce−µt(‖z0‖H1

0 (0,1) + ‖z1‖L2(0,1)).

Proof of Theorem 10. Let us first prove the well-posedness. Let Al be

the linear unbounded operator

Al

(
f

g

)
=

(
g

fxx − ag

)
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with the domain D(Al) = (H2(0, 1)∩H1
0 (0, 1))×H1

0 (0, 1). This domain is

dense is H1
0 (0, 1) × L2(0, 1), and the operator Al is closed. Let us rewrite

(73)-(76) as

∂

∂t

(
z

zt

)
= Al

(
z

zt

)
,

(
z

zt

)
(t = 0, ·) =

(
z0

z1

)
(78)

Our objective is to prove that Al generates a contraction semigroup Tl(t),

that is the solution of (78) is Tl(t)

(
z0

z1

)
and satisfies

∥∥∥∥Tl(t)( z0

z1

)∥∥∥∥2

≤
∥∥∥∥( z0

z1

)∥∥∥∥2

, ∀t ≥ 0. (79)

Informally, one can try to prove (79) by differentiating the right-hand-

side with respect to the time. Using

∥∥∥∥( z0

z1

)∥∥∥∥2

= 〈
(
z0

z1

)
,

(
z0

z1

)
〉 , we

get

d

dt

∥∥∥∥Tl(t)( z0

z1

)∥∥∥∥2

= 〈AlTl(t)
(
z0

z1

)
,

(
z0

z1

)
〉+ 〈

(
z0

z1

)
, AlTl(t)

(
z0

z1

)
〉

= 2Re〈AlTl(t)
(
z0

z1

)
,

(
z0

z1

)
〉

where Re denotes the real part. This gives, at time t = 0,

d

dt

∥∥∥∥Tl(t)( z0

z1

)∥∥∥∥2

(t = 0, ·) = 2Re〈Al
(
z0

z1

)
,

(
z0

z1

)
〉

This formal computation tends to show that in order to obtain (79), a

necessary condition is to have Re〈Al
(
z0

z1

)
,

(
z0

z1

)
〉 ≤ 0. This condition is

one of the two key elements of the Lumer-Phillips theorem which provides

a characterization of the unbounded operators generating a contraction

semigroup. Specifically, in order to apply the Lumer-Phillips theorem, we

need to show that the two following points hold true:

(1) Re〈Al
(
z0

z1

)
,

(
z0

z1

)
〉 ≤ 0, for all

(
z0

z1

)
in D(Al)

(2) there exists λ > 0 such that Ran(I − λAl) = H1
0 (0, 1)×L2(0, 1), where

Ran is the range set.

Under these two conditions, the unbounded operator Al generates a semi-

group of contraction and the Cauchy problem (78) is well-posed for strong

and weak solutions as considered in Theorem 10.
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Even if we do not give here a complete proof of these both proper-

ties, note that the interest of the second item is that it replaces the time-

dependent Cauchy problem (78) by

∀
(
f

g

)
∈ H1

0 (0, 1)× L2(0, 1), find

(
f̃

g̃

)
∈ D(Al) such that

(I − λAl)
(
f̃

g̃

)
=

(
f

g

)
which is a stationary Cauchy problem of a linear ODE with prescribed

boundary conditions.

Let us now sketch the proof of the exponential stability. According

to Huang-Prüss theorem (see27 and58), it is sufficient to check the two

conditions

iR ⊂ ρ(A), (80)

sup
β∈R
‖(iβ −Al)−1‖ <∞. (81)

Inspired by,33 let us prove these both properties succesively. To prove (80),

we argue by contradiction, assuming the existence of an eigenvalue of Al of

the form iβ. Pick

(
f

g

)
in D(Al) \ {0} such that (iβ −Al)

(
f

g

)
= 0. Then

0 = 〈(iβ −Al)
(
f

g

)
,

(
f

g

)
〉H1

0 (0,1)×L2(0,1), (82)

= iβ(

∫ 1

0

|f |′2dx+

∫ 1

0

|g|2dx) + a

∫ 1

0

|g|2dx. (83)

Thus, inspecting the real part of the previous equation, with a 6= 0, we get

g = 0. Moreover, inspecting the imaginary part, we get f ′ = 0 which gives

f = 0 using the definition of D(Al) and the boundary conditions of f . This

is a contradiction with

(
f

g

)
6= 0. Therefore (80) holds.

Let us now prove (81), by proceeding again with a contradiction. If 81

is false, then there exists a sequence (βn)n∈N and a sequence

(
fn
gn

)
n∈N

in

D(Al) such that ∥∥∥∥∥
(
fn
gn

)
n∈N

∥∥∥∥∥
H1

0 (0,1)×L2(0,1)

= 1 , (84)

βn →n→∞ +∞ (85)
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and ∥∥∥∥(f̃ng̃n
)∥∥∥∥

H1
0 (0,1)×L2(0,1)

→n→∞ 0 (86)

where

(
f̃n
g̃n

)
= (iβn −Al)

(
fn
gn

)
n∈N

. We compute

〈
(
f̃n
g̃n

)
,

(
fn
gn

)
〉H1

0 (0,1)×L2(0,1) = 〈(iβn −Al)
(
fn
gn

)
,

(
fn
gn

)
〉H1

0 (0,1)×L2(0,1)

= iβn(

∫ 1

0

|fn|′2dx+

∫ 1

0

|gn|2dx) + a

∫ 1

0

|gn|2dx.

Therefore, with (84) and (86), inspecting the imaginary part in the last

equation,we get

βn(

∫ 1

0

f ′2n dx+

∫ 1

0

g2
ndx)→n→∞ 0 ,

thus with (84), we get βn → 0 which is a contradiction with (85). Therefore

(81) holds. This concludes the proof of the exponential stability and of the

proof of Theorem 10.

4.1.2. Internal saturating control

We now study the nonlinear control

u(t, x) = −sat(azt(t, x)), x ∈ (0, 1), ∀t ≥ 0, (87)

where sat is the nonlinear function defined in (17) with m = 1 and level

s0. Following the terminology of,45 we call this nonlinearity the localized

saturated map. The wave equation (73) in closed loop with the control (87)

gives the dynamics

ztt = zxx − sat(azt) (88)

A formal computation of the time derivative of V1 defined by (77) along

the solutions to the wave PDE (88) with boundary conditions (74) gives

V̇1 = −
∫ 1

0

ztsat(azt)dx.

Hence, in order to conclude on the possible stability of the closed-loop

system, one needs to handle the nonlinearity ztsat(azt).

Note that other choices of saturation mechanisms can also be considered

instead of the localized saturation studied in (87). For instance, papers66
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and32 deal with the L2 saturation denoted by satL2 and defined for any

σ ∈ L2(0, 1) by

satL2(σ)(x) =

{
σ(x) if ‖σ‖L2(0,1) < 1

σ(x)
‖σ‖L2(0,1)

, else
(89)

Even if all the different saturation mechanisms are of interest, we focus here

on the localized saturation used in (87), which is generally more relevant

from a physical point of view and in practical applications.

The well-posedness of the nonlinear PDE (88), which is borrowed

from,56 is assessed by the following theorem.

Theorem 11. For all a ≥ 0 and (z0, z1) in (H2(0, 1)∩H1
0 (0, 1))×H1

0 (0, 1),

there exists a unique solution z: [0,∞)→ H2(0, 1) ∩H1
0 (0, 1) to (88) with

the boundary conditions (74) and the initial condition (75).

Proof of Theorem 11. We only provide a sketch of the proof reported

in.56 Consider the nonlinear operator

A1

(
f

g

)
=

(
g

fxx − sat(ag)

)
with the domain D(A1) = (H2(0, 1) ∩ H1

0 (0, 1)) × H1
0 (0, 1). We are want

to invoke here a generalization of the Lumer-Phillips theorem, which is the

so-called Crandall-Liggett theorem. A precise statement of this theorem

can be found;4 see also8 and.49 To apply this theorem, two conditions need

to be checked:

(1) A1 is dissipative, that is for any two elements of D(A1),

Re
(
〈A1

(
f

g

)
−A1

(
f̃

g̃

)
,

(
f

g

)
−
(
f̃

g̃

)
〉
)
≤ 0

(2) For all λ > 0, D(A1) ⊂ Ran(I − λA1)

Let us prove the first item. To do that, given

(
f

g

)
and

(
f̃

g̃

)
in

H1
0 (0, 1)× L2(0, 1),in H1

0 (0, 1)× L2(0, 1), we denote

∆ = Re
(
〈A1

(
f

g

)
−A1

(
f̃

g̃

)
,

(
f

g

)
−
(
f̃

g̃

)
〉
)
≤ 0
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. Let us check that ∆ ≤ 0. Using the definition of A1 and of the hermitian

product in H1
0 (0, 1)× L2(0, 1), we compute

∆ = Re
(∫ 1

0

(gx(x)− g̃x(x))(fx(x)− f̃x(x))dx+

∫ 1

0

(fxx(x)− f̃xx(x))(g(x)− g̃(x))dx

)
−Re

(∫ 1

0

(sat(a g(x))− sat(a g̃(x)))(g(x)− g̃(x))dx

)
,

= −Re
(∫ 1

0

(sat(a g(x))− sat(a g̃(x)))(g(x)− g̃(x))dx

)
.

Note that, for all a ≥ 0 and for all (s, s̃) in C× C,

Re
(
(sat(a s)− sat(a s̃))(s− s̃)

)
≥ 0.

Thus A1 is dissipative.

The second item requires to deal with a nonlinear ODE. To be more

specific, let λ > 0 and

(
f

g

)
∈ H1

0 (0, 1)×L2(0, 1) be arbitrarily given. Our

objective is to find

(
f̃

g̃

)
∈ D(A1) such that

(I − λA1)

(
f̃

g̃

)
=

(
f

g

)
,

that is {
f̃ − λg̃ = f ,

g̃ − λ(f̃xx − sat(a g̃)) = g ,

Using the first identity to express g̃ in function of f and f̃ , we only have to

find f̃ such that

f̃xx −
1

λ2
f̃ − sat(

a

λ
(f̃ − f)) = − 1

λ
g − 1

λ2
f

f̃(0) = f̃(1) = 0

holds. The existence of a solution to this nonhomogeneous nonlinear ODE

with two boundary conditions is provided by the following lemma.

Lemma 2. For any a ≥ 0 and λ > 0, there exists f̃ solution to

f̃xx − 1
λ2 f̃ − sat( aλ (f̃ − f)) = − 1

λg −
1
λ2 f

f̃(0) = f̃(1) = 0
(90)



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 66

66 H. Lhachemi and C. Prieur

To prove this lemma, let us introduce the mapping:

T : L2(0, 1)→ L2(0, 1) ,

y 7→ z ,

where z = T (y) is the unique solution to

zxx − 1
λ2 z = − 1

λv −
1
λ2u+ sat( aλ (y − u)) ,

z(0) = z(1) = 0 .

It can be proven that T is a well defined mapping. Then, it is possible to

invoke the Schauder fixed-point theorem (see e.g.,14) to deduce the existence

of y such that T (y) = y. After doing so, we obtain that f̃ = y solves

(90)

After having assessed the well-poseness of the closed-loop system dy-

namics, we can focus on the study of its stability. The global asymptotic

stability of this nonlinear PDE is stated in the following result.

Theorem 12. For all a > 0, the origin of the PDE (88) with the boundary

conditions (74) is globally asymptotically stable. More specifically, for all

(z0, z1) in (H2(0, 1) ∩ H1
0 (0, 1)) × H1

0 (0, 1), the solution to (88) with the

boundary conditions (74) and the initial condition (75) satisfies, ∀t ≥ 0,

‖z(t, .)‖H1
0 (0,1) + ‖zt(t, .)‖L2(0,1) ≤ ‖z0‖H1

0 (0,1) + ‖z1‖L2(0,1)

together with the attractivity property

‖z(t, .)‖H1
0 (0,1) + ‖zt(t, .)‖L2(0,1) → 0, as t→∞ .

Proof of Theorem 12. Due to Theorem 11, the formal computation of

the time derivative of V1 previously computed is rigorously justified. Hence

we have

V̇1 = −
∫ 1

0

ztsat(azt)dx.

This is a weak Lyapunov function because V̇1 ≤ 0 which guarantees the

stability of the origin. In order to prove the attractivity of the origin,

we are going to invoke LaSalle’s Invariance Principle [17, Chapter 11] for

infinite-dimensional systems. To apply LaSalle’s Invariance Principle, we

have to check that the set of solutions is precompact. This result can be

obtained here by following the approach reported in19,20 and relies on the

following lemma (see below for a sketch of proof).

Lemma 3. The canonical embedding from D(A1), equipped with the graph

norm, into H1
0 (0, 1)× L2(0, 1) is compact.
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Using the dissipativity of A1 and Lemma 3, the trajectory

(
z(t, .)

zt(t, .)

)
is precompact in H1

0 (0, 1) × L2(0, 1). Moreover the ω-limit set

ω

[(
z(0, .)

zt(0, .)

)]
⊂ D(A1) is not empty and is invariant with respect to the

nonlinear semigroup T (t) (see66). We these elements in hand, we can indeed

apply LaSalle’s Invariance Principle to show that ω

[(
z(0, .)

zt(0, .)

)]
= {0}.

This shows that the origin of the equation (88) with the boundary condi-

tions (74) is attractive. This concludes the proof of Theorem 12.

Let us now give the main steps of the proof of Lemma 3.

Proof of Lemma 3. Consider a sequence

(
fn
gn

)
n∈N

in D(A1), which is

bounded in graph norm, that is there exists M > 0 such that, for all n ∈ N,∥∥∥∥(fngn
)∥∥∥∥2

D(A1)

:=

∥∥∥∥(fngn
)∥∥∥∥2

+

∥∥∥∥A1

(
fn
gn

)∥∥∥∥2

≤M

which means that∫ 1

0

(|f ′n|
2

+ |gn|2 + |g′n|
2

+ |f ′′n − asat(gn)|2)dx ≤M.

From that, we deduce that
∫ 1

0
(|gn|2 + |g′n|

2
)dx and

∫ 1

0
(|f ′n|

2
+ |f ′′n |

2
)dx are

bounded. Hence, with compact injection of H1
0 (0, 1) in L2(0, 1), and of

H2(0, 1) in H1
0 (0, 1) we infer the existence of a subsequence of

(
fn
gn

)
n∈N

which converges in H1
0 (0, 1)×L2(0, 1), giving the precompactness of the set

of solutions to equation (88) with the boundary conditions (74).

4.1.3. A boundary linear control

We now consider the wave equation with a boundary control, as depicted

in Figure 9. The system dynamics reads

ztt(t, x) = zxx(t, x), ∀x ∈ (0, 1), t ≥ 0, (91)

with the boundary conditions

z(t, 0) = 0 ,

zx(t, 1) = u(t) ,
(92)
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u(t)

z(x, t)

x = 0 x = 1

Fig. 9. Wave equation with unbounded control operator

for all t ≥ 0 and with the initial condition

z(0, x) = z0(x) ,

zt(0, x) = z1(x) .
(93)

for all x in (0, 1).

We define the linear control

u(t) = −bzt(t, 1), x ∈ (0, 1), ∀t ≥ 0 (94)

and we consider

V2 =
1

2

∫
(eµx(zt + zx)2dx+

∫
(e−µx(zt − zx)2dx.

A formal computation of the time derivative along the solutions to (91),

(92) and (94) gives

V̇2 = −µV2 + 1
2

(
eµ(1− b)2 − e−µ(1 + b)2

)
z2
t (t, 1)

Assuming that b > 0 and letting µ > 0 such thatd eµ(1− b)2 ≤ e−µ(1 + b)2,

it holds that V̇2 ≤ −µV2. Hence V2 is a strict Lyapunov function and

thus the origin of (91) with boundary conditions (92) and command (94)

is exponentially stable.

4.1.4. A boundary saturating control

Let us consider now the nonlinear control u(t) = −sat(bzt(t, 1)), for all

t ≥ 0. The boundary conditions become:

z(t, 0) = 0 , zx(t, 1) = −sat(bzt(t, 1)) . (95)

Inspired by [14, Sec. 2.4], we introduce H1
(0)(0, 1) = {u ∈ H1(0, 1), u(0) =

0} and ‖u‖H1
(0)

(0,1) =
√∫ 1

0
|u′|2(x)dx for all u ∈ H1

(0). We are now in

dThis constraint is always satisfied for µ > 0 small enough by a continuity argument at
µ = 0.
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position to state the following well-posedness and asymptotic stability result

(see56 for a complete proof).

Theorem 13. For all b > 0, the origin of the PDE (91) with the boundary

conditions (95) is globally asymptotically stable. More specifically, for all

(z0, z1) ∈ {(f, g) ∈ H2(0, 1)×H1
(0)(0, 1) : fx(1) + sat(bg(1)) = 0, f(0) =

0}, there exists a unique solution to (91) with the boundary conditions (95)

and the initial condition (75). Moreover it satisfies the following stability

property, for all t ≥ 0,

‖z(t, .)‖H1
(0)

(0,1) + ‖zt(t, .)‖L2(0,1) ≤ ‖z0‖H1
(0)

(0,1) + ‖z1‖L2(0,1) ,

together with the attractivity property

‖z(t, .)‖H1
(0)

(0,1) + ‖zt(t, .)‖L2(0,1) → 0, as t→∞ .

Proof of Theorem 13. To prove the well-posedness of the Cauchy prob-

lem we can show that A2 defined by

A2

(
f

g

)
=

(
g

f ′′

)
with the domain D(A2) = {(f, g) ∈ H2(0, 1) × H1

(0)(0, 1) : f ′(1) +

sat(bg(1)) = 0, f(0) = 0} is a semigroup of contraction by applying

Lumer-Phillips thereom. The global stability property is immediately in-

ferred from contraction property (consequence of the dissipativity of A2).

Finally, the global attractivity property comes from the following lemma

establishing that the origin of the PDE (91) with the boundary conditions

(95) is semi-globally exponentially stable. This completes the proof of the

theorem.

Lemma 4. For all r > 0, there exists µ > 0 such that, for all initial

condition satisfying

‖(z0)′′‖2L2(0,1) + ‖z1‖2H1
(0)

(0,1) ≤ r
2 , (96)

it holds

V̇2 ≤ −µV2

along the solutions to (91) with the boundary conditions (95).

Proof of Lemma 4. First note that by dissipativity of A2, it holds that

t 7→
∥∥∥∥A2

(
z(t, .)

zt(t, .)

)∥∥∥∥ (97)
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is a non-increasing function. Moreover by continuity of the trace function

on H1
(0)(0, 1), it holds

|zt(t, 1)| ≤ ‖ztx(t, .)‖L2(0,1) ≤
∥∥∥∥A2

(
z(t, .)

zt(t, .)

)∥∥∥∥ ≤ ∥∥∥∥A2

(
z(0, .)

zt(0, .)

)∥∥∥∥
where the decreasing property of the function in (97) has been used for the

last inequality. Thus, for all t ≥ 0,

|zt(t, 1)| ≤
∥∥∥∥A2

(
z(0, .)

zt(0, .)

)∥∥∥∥ . (98)

Now, given r > 0, for an initial conditions satisfying (96), we have

|zt(t, 1)| ≤ r and thus there exists c 6= b such that, for all t ≥ 0,

(b− c)|zt(t, 1)| ≤ 1

and thus, recalling the definition of the deadzone function φ in (20), the

local sector condition holds φ(φ + czt(t, 1)) ≤ 0 , see (21). Let us now

go back to the Lyapunov function candidate V2. Given b > 0, using the

previous inequality, we infer that
V̇2 = −µV2 + eµ(σ − sat(bσ))2 − e−µ(σ + sat(bσ))2

≤ −µV2 + eµ((1− b)σ − φ)2 − e−µ((1 + b)σ + φ)2 − 2φ(φ+ cσ)

≤ −µV2 +

(
σ

φ

)>
M
(
σ

φ

)
where

M(µ, c) =

[
eµ(1− b)2 − e−µ(1 + b)2 −eµ(1− b)− e−µ(1 + b) + c

? −2 + eµ − e−µ
]
.

In particular we have at µ = 0 that

M(0, c) =

[
−4b −2 + c

? −2

]
.

We have to select c close to b such that M(0, c) is symmetric semi-definite

negative. Of course, c = b is not convenient since M(0, c) is not semi-

definite negative (moreover the choice c = b would yield the global section

condition which does not hold, confirming that the choice c = b is not

suitable for c). But c < b and close to b exists such that det(M) > 0. Thus

M < 0.

Given r > 0, we consider initial condition such that ‖A2

(
z(., 0)

zt(., 0)

)
‖ ≤

r. This implies, for a suitable c ensuring that (b − c)|zt(t, 1)| ≤ 1 for all

t ≥ 0, that V̇2 ≤ −µV2. The semi-global exponential stability follows.

Note here that the exponential stability is only achieved on bounded

sets of initial conditions. An open question is whether we have (or not) the

global exponential stability of the origin of the PDE (91) with the boundary

conditions (95).
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4.2. KdV equation with a bounded control operator

In the previous section we reviewed two classes of controllers for the lin-

ear wave equation with linear and nonlinear feedback. Different methods

for proving asymptotic stability have been reported, one using LaSalle’s

Invariance Principle and another one establishing semi-global exponential

stability based on a local sector condition. In this section, we move to

a control problems for a nonlinear PDE. Specifically, let us consider the

following nonlinear Korteweg-de-Vries (KdV) PDE:
zt + zx + zxxx + zzx + u = 0, x ∈ [0, L], t ≥ 0,

z(t, 0) = z(t, L) = zx(t, L) = 0, t ≥ 0,

z(0, x) = z0(x), x ∈ [0, L],

(99)

where z stands for the state and u for the control.

As shown in,59 in the uncontrolled scenario (u = 0) and for a length L

of the spatial domain such that

L ∈

{
2π

√
k2 + kl + l2

3

/
k, l ∈ N∗

}
, (100)

there exist solutions of the linearized version of (99) for which the L2(0, L)

norm of the state does not decay to zero. This can be observed, for instance,

in the particular case for the first critical length L1 = 2π (obtained by

letting k = l = 1 in (100)) by considering the initial condition z0(x) =

1 − cos(x) for all x ∈ [0, L]. Let us denote the second critial by L2 =

2π
√

7
3 (obtained by letting k = l = 1 in (100))We refer the reader to the

papers10,11,59 for controllability results of (99) and the role of the so-called

critical lengths (100).

In these notes we are interested in the stabilization problem of the origin

of the KdV. We refer the reader to69 for the stabilization of the origin of

the linearized KdV equation with anti-diffusion. In9 and in,54 localized

damping are considered for the linearized KdV equation. Specifically, when

setting linear control u = a(x)z, for a non-negative continuous function

a : [0, 1]→ R, we obtain
zt + zx + zxxx + a(x)z = 0, x ∈ [0, L], t ≥ 0,

z(t, 0) = z(t, L) = zx(t, L) = 0, t ≥ 0,

z(0, x) = z0(x), x ∈ [0, L]

(101)

The following theorem is proven in.54

Theorem 14. The following results hold true for (101).
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• When L is not a critical length (i.e., (100) does not hold) and a ≡ 0,

the origin of (101) is asymptotically stable. To be more specific, there

exist M and µ such that

‖z(t)‖L2 ≤Me−µt‖z(0)‖L2 .

• When a > 0 on an non-empty subset of [0, L], then the same conclusion

holds.

Let us now shortly review the stabilization results of the origin of the

nonlinear KdV PDE (99) when using a control given by u = a(x)z. The

papers13,54,68 consider the following closed-loop dynamics:
zt + zx + zxxx + zzx + a(x)z = 0, x ∈ [0, L], t ≥ 0,

z(t, 0) = z(t, L) = zx(t, L) = 0, t ≥ 0,

z(0, x) = z0(x), x ∈ [0, L],

(102)

The following theorem summarizes some of the contributions contained in

these papers (see13 and68 for the proof of the first item, respectively for

L = L1 and L = L2, and see54 for the proof of the second item).

Theorem 15. The following results hold true for (102).

• When L = L1 or L = L2 and a ≡ 0, the origin of (99) is locally

asymptotically stable. More preciselye, there exist r > 0, M > 0, and

µ > 0 such that the solutions to (102) issuing from z(0) with ‖z(0)‖L2 ≤
r satisfy

‖z(t)‖L2 ≤Me−µt‖z(0)‖L2

• For all L > 0, when a > 0 on an non-empty subset of [0, L], then the

origin of (102) is globally asymptotically stable. More preciselyf , for all

r > 0, there exist M > 0, and µ > 0 such that

‖z(t)‖L2 ≤Me−µt‖z(0)‖L2

4.2.1. Saturating control for KdV

Let us now consider the case of a saturating control. To symplify the

presentation, we will consider the case where the function a(x) in (102) is

a constant denoted by a. The localized control is subject to a saturation

eThis property is the definition of the global exponential stability of the origin.
fThis property is the definition of the semi-global asymptotic stability of the origin.
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map. To be more specific, let the KdV equation controlled by a saturated

distributed control be described by
zt + zx + zxxx + zzx + sat(az) = 0,

z(t, 0) = z(t, L) = 0,

zx(t, L) = 0,

z(0, x) = z0(x).

(103)

where sat is the saturation map defined in (17) with m = 1, and with level

s. The corresponding nonlinear equation (103) is studied in.45 The case of

L2 saturation, defined in (89), is also considered. In these notes we focus

on the nonlinear equation (103), but some numerical simulations will also

be performed with the L2 saturation in the next numerical example.

The well-posedness result is proven in45 by proving first existence of

solution for small time following the approach of,12,60 and then removing

the smallness property of the time existence using a priori estimates. It

yields the following theorem.

Theorem 16. For any initial condition z0 ∈ L2(0, L), there exists a unique

solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) to (103).

The global asymptotic stability of the origin, which is also proven in the

same paper, can be stated as follows.

Theorem 17. The origin of (103) is globally asymptotically stable. More

precisely there exist µ > 0 and a class K functiong α : [0,∞)→ [0,∞) such

that for any z0 ∈ L2(0, 1), any solution z to (103) satisfies, for all t ≥ 0,

‖z(t)‖L2(0,1) ≤ α(‖z0‖L2(0,1))e
−µt.

This result is proved by following the approaches of9,60 by showing that

the origin of (103) is semi-globally exponentially stable.

Proposition 1. For any given r > 0, there exist positive values C and µ

such that for all initial condition z0 satisfying ‖z0‖L2(0,L) ≤ r, the solution

to (103) satisfies, for all t ≥ 0,

‖z(t)‖L2(0,L) ≤ C‖z0‖L2(0,L)e
−µt.

Proof of Proposition 1. To prove this proposition, a key result is the

following claim.

Claim 3. For all T > 0 and r > 0, there exists C > 0 such that for any

solution z to (103) starting from z0 ∈ L2(0, L) with ‖z0‖L2(0,L) ≤ r, it

gA class K function is a continuous and increasing function that is zero at zero.
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holds

‖z0‖2L2(0,L) ≤ C

(∫ T

0

|zx(t, 0)|2dt+ 2

∫ T

0

∫ L

0

sat(az)zdtdx

)
. (104)

Assume Claim 3 holds for the time being. Then with (104) it holds

‖z(t, .)‖2L2(0,L) = ‖z0‖2L2(0,L) −
∫ T

0
|zx(t, 0)|2dt

−2
∫ T

0

∫ L
0
sat(az)zdxdt

we get

‖z(., kT )‖2L2(0,L) ≤ γ
k‖z0‖2L2(0,L) ∀k ≥ 0

where γ ∈ (0, 1). From the dissipativity property, we have ‖z(t, .)‖L2(0,L) ≤
‖z(., kT )‖L2(0,L) for kT ≤ t ≤ (k + 1)T . Thus we obtain, for all t ≥ 0,

‖z(t, .)‖2L2(0,L) ≤
1

γ
‖z0‖L2(0,L)e

log γ
T t

We conclude the proof of the semi-global exponential stability, as stated in

Proposition 1.

Let us now prove Claim 3 that has been used in the proof of Proposi-

tion 1.

Proof of the Claim 3. We prove (104) by contradiction Assume that

there exists a sequence of solution zn to (103) with

‖zn(., 0)‖L2(0,L) ≤ r (105)

and such that

lim
n→+∞

‖zn‖2L2(0,T ;L2(0,L))∫ T
0
|znx (t, 0)|2dt+ 2

∫ T
0

∫ L
0
sat(azn(t, x))zn(t, x)dtdx

= +∞.

(106)

By dissipativity property, there exists β > 0 such that

sup
t∈[0,T ]

‖zn(t, .)‖L2(0,L) ≤ r , sup
x∈[0,L]

∫ T

0

|zn(t, x)|2dt ≤ β. (107)

Now let us define Ωi :=
{
t ∈ [0, T ], supx∈[0,L] |z(t, x)| > i

}
⊂ [0, T ]. We

have

β ≥
∫ T

0

sup
x∈[0,L]

|zn(t, x)|2dt ≥
∫

Ωi

sup
x∈[0,L]

|zn(t, x)|2dt ≥ i2ν(Ωi),
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Therefore, denoting the Lebesgue mesure by ν, and the complementary set

of Ωci ) by ν(Ωci ), we obtain, with (107), ν(Ωi) ≤ β
i2 , and thus ν(Ωci ) ≥

max
(
T − β

i2 , 0
)
.

Let us note that denoting, k(i) = min( sai , 1), for each i in N, it holds

for all z in Ωci , |z| ≤ i, and thush

(sat(az)− k(i)az)z ≥ 0 (108)

Moreover, using again the local sector condition, we have∫ T

0

∫ L

0

sat(azn)z2dtdx =

∫
Ωi

∫ L

0

sat(azn)zndtdx+

∫
Ωci

∫ L

0

sat(azn)zn

≥ 0 +

∫
Ωci

∫ L

0

ak(i)(zn)2dtdx. (109)

where (108) has been used in the last inequality. Thus, with (105), for all

i in N \ {0},

‖zn(t, .)‖2L2(0,L) ≤ ‖z
n(., 0)‖2L2(0,L) −

∫ T
0
|znx (t, 0)|2dt

−2
∫

Ωci

∫ L
0
ak(i)(zn)2dtdx.

Let λn := ‖zn‖L2(0,T ;L2(0,L)) and vn(t, x) = zn(t,x)
λn . Due to (105), up to

extracting a subsequence, we may assume that λn → λ ≥ 0. Due to (106)

and (109), we have, for all i ∈ N∫ T

0

|vnx (t, 0)|2dt+ 2

∫
Ωci

∫ L

0

ak(i)(vn)2dtdx→ 0 (110)

Using Aubin-Lions lemma in,65 we get {vn}n∈N converges strongly in

L2(0, T ;L2(0, L)). Thus, with (110), we have, for all i ∈ N

vx(t, 0) = 0, ∀t ∈ (t, 0) and v(t, x) = 0, ∀x ∈ [0, L],∀t ∈ Ωci .

We know that ν
(⋃

i∈N Ωci
)

= T . We get a contradiction with

‖v‖L2(0,T ;L2(0,L)) = 1. This concludes the proof of Claim 3.

Example 7. Let us discretize (103) and illustrate Theorem 17. Moreover

we will discretize this equation using the saturation map satL2 instead of

sat and without any saturation map (the equation becomes (102)).

hTo prove (108), assume first that ai ≤ s, then k(i) = 1, and sat(az) = az, which gives

(108). Second, if ai > s and sat(az) = az, then 1 − k(i) > 0 and (sat(az) − k(i)az) =
(1− k(i))az, which gives (108). Third, if ai > s and az > s, then (sat(az)− k(i)az) =

s − s
ai
az = s(1 − i

z
) ≥ 0, which gives (108). The fourth case ai > s and az < −s is

studied in a simular way as the third one.
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1 """

2 Discretizing KdV equation with saturating control.

3 Use of central difference in space and forward

4 Euler in time schemes.

5 Code originally written by S. Marx for

6 [S. Marx et al, SIAM J. Control Opt., 2017]

7 """

8 import numpy as np

9 import matplotlib as mpl

10 import matplotlib.pyplot as plt

11 from mpl_toolkits.mplot3d import Axes3D

12

13 # Parameters of the PDE

14 L=2*np.pi;

15 a=1.0

16

17 # Space discretization

18 Nx = 30

19 x= np.linspace(0,L,Nx+1)

20 dx = L/Nx;

21

22 # Time discretization

23 dt = 0.06; tfinal =6

24 Nt= np.floor(tfinal/dt).astype(int)

25

26 # Saturation level

27 s0=0.5

28

29 # Set initial condition

30 z0=[]

31 for ii in range(Nx+1):

32 z0.append(1-np.cos(x[ii]))

On line 14, we set the first critical length L = 2π and the initial condition

z0(x) = 1− cos(x) is chosen on line 32 so that its energy is constant along

the linearized KdV equation, without any control. The function a is chosen

as the constant value 1 on line 15, and the level of the saturation map is

set at 0.5 on line 27. The space and time discretization steps are selected

respectively at lines 20 and 23.

33

34 t = 0 # current time

35 j = 0 # current time index

36

37 # pointwise saturation function

38 def sat(u):

39 m=np.size(u)

40 sigma=u

41 for i in range(m):



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 77

Saturated boundary stabilization of partial differential equations 77

42 if np.absolute(u[i])>s0:

43 sigma[i]=s0*np.sign(u[i])

44 return sigma

45

46 # L2 saturation function

47 def sat2(u):

48 L2=np.linalg.norm(u)*np.sqrt(dx)

49 sigma=u

50 if not L2 <s0:

51 for ii in range(Nx):

52 sigma[ii]=s0*u[ii]/L2

53 return sigma

54

55 L2norm =[] # L2norm of the sol with sat

56 L2normNoSat =[] # L2norm of the sol without sat

57 ztot=np.zeros ((Nx+1,Nt+1)) # to save the solution

58 ztotNoSat=np.zeros((Nx+1,Nt+1)) # to save the solution without

sat

59

60 ztot [: ,0]=z0

61 ztotNoSat [:,0]=z0

62 L2norm.append(np.linalg.norm(ztot [: ,0])*np.sqrt(dx))

63 L2normNoSat.append(np.linalg.norm(ztotNoSat [: ,0])*np.sqrt(dx))

The localized saturation sat and the L2 saturation satL2 are defined

after line 37 and line 46 respectively. Between lines 55 and 63 the initial-

ization of the state and of its norm for both the linear control (thus with

(102)) and the saturated control (thus with (103) with either the saturation

map sat or with satL2.

65 def discretNoSat(z,dx,dt,a):

66 """

67 discretization of the nonlinear KdV using

68 [Pazoto , et al , Numer. Math., 2010]

69 method without saturation

70 """

71 n=len(z)

72 n1=n-1

73 Dm=1/dx*np.identity(n1)

74 Dp=-Dm

75 for i in range(n1 -1):

76 Dp[i,i+1]=-Dp[i,i]

77 Dm[i+1,i]=-Dm[i,i]

78 D=1/2*( Dm+Dp)

79 I=np.identity(n1)

80 A=np.dot(np.dot(Dp,Dp),Dm)+D

81 C=I+dt*A

82 NS=np.zeros((n1,n1))

83 NS[n1 -1,n1 -1]=C[n1 -1,n1 -1]

84
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85 #Fixed -point method

86 NIter = 100 # number of iterations

87 J =[]

88 J.append(z[: -1])

89 tmp=J[-1]

90 for k in range(NIter):

91 tmp=np.linalg.solve(C-NS ,z[:-1]-dt/2*np.dot(D,np.

multiply(tmp ,tmp))-np.dot(dt*a,tmp))

92 J.append(tmp)

93 return tmp

94

95 def discret(z,dx,dt ,a):

96 """

97 discretization of the nonlinear KdV using

98 [Pazoto , et al , Numer. Math., 2010]

99 method with saturation (select sat or sat2 function)

100 """

101 n=len(z)

102 n1=n-1

103 Dm=1/dx*np.identity(n1)

104 Dp=-Dm

105 for i in range(n1 -1):

106 Dp[i,i+1]=-Dp[i,i]

107 Dm[i+1,i]=-Dm[i,i]

108 D=1/2*( Dm+Dp)

109 I=np.identity(n1)

110 A=np.dot(np.dot(Dp,Dp),Dm)+D

111 C=I+dt*A

112 NS=np.zeros((n1,n1))

113 NS[n1 -1,n1 -1]=C[n1 -1,n1 -1]

114

115 #Fixed -point method

116 NIter = 100 # number of iterations

117 J =[]

118 J.append(z[: -1])

119 tmp=J[-1]

120 for k in range(NIter):

121 tmp=np.linalg.solve(C-NS ,z[:-1]-dt/2*np.dot(D,np.

multiply(tmp ,tmp))-dt*sat(np.dot(a,tmp)))

122 J.append(tmp)

123 return tmp

To discretize (103) and (102), we follow the approach of,52 and solve,

at each time-step, a fixed point problem. No proof of convergence of the

numerical scheme is garanteed in the context of (103), since another non-

linearity is considered in.52 In particular the term zxxx is discretized as

follows

D+D+D−z
i
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where zi is the discretized version of z, and where Dp and Dm are the

matrices defined by

Dp =
1

dx


−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . −1

Dm =
1

dx


1 −1 0 . . . 0

0 1 −1 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . 1


It yields two discretizations, for respectively the equations (102) and (103),

between lines 66-93 and lines 95-123 respectively. It asks to solved a fixed

point problem that is solved using a iteration scheme wit 100 steps (see after

lines 85 and 115). The choice of the saturation map (either sat or satL2

is made on line 121). In the python code given here, sat is considered.

125 # making a loop until t > tfinal

126 while t<tfinal -dt:

127 #Forward Euler step

128 ztotNoSat [:-1,j+1]= discretNoSat(ztotNoSat[:,j],dx,dt ,a)

129 ztot[:-1,j+1]= discret(ztot[:,j],dx,dt,a)

130 t+=dt

131 j+=1

132 L2normNoSat.append(np.linalg.norm(ztotNoSat [:,j])*np.sqrt(

dx))

133 L2norm.append(np.linalg.norm(ztot[:,j])*np.sqrt(dx))

134

135 # plotting the figures

136 space= np.linspace(0,np.pi,Nx+1)

137 t=np.linspace(0,tfinal ,Nt+1)

138

139 fig , ax= plt.subplots ()

140 ax.plot(t,L2normNoSat , label=’without saturation ’)

141 ax.plot(t,L2norm , label=’with saturation ’)

142 ax.set_xlabel(’t’)

143 ax.set_ylabel(’L2 norm’)

144 ax.legend ()

145 plt.savefig(’pde -l2norm.png’,bbox_inches=’tight’)

146

147 mpl.rcParams[’legend.fontsize ’] = 10

148 fig = plt.figure (); ax = fig.add_subplot (111, projection=’3d’)

149 SX, ST = np.meshgrid(space , t)

150 ax.plot_surface(SX, ST, ztotNoSat.T, cmap=’jet’)

151 ax.set_xlabel(’x’)

152 ax.set_ylabel(’t’)

153 ax.set_zlabel(’z(t,x)’)

154 ax.set_title(’Solution without saturation ’)

155 ax.view_init(elev=15, azim =20) # adjust view so it is easy to

see

156 plt.savefig(’pde -3 dNoSat.png’)
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157

158 mpl.rcParams[’legend.fontsize ’] = 10

159 fig = plt.figure (); ax = fig.add_subplot (111, projection=’3d’)

160 ax.plot_surface(SX, ST, ztot.T, cmap=’jet’)

161 ax.set_xlabel(’x’)

162 ax.set_ylabel(’t’)

163 ax.set_zlabel(’z(t,x)’)

164 ax.set_title(’Solution with saturation ’)

165 ax.view_init(elev=15, azim =20) # adjust view so it is easy to

see

166 plt.savefig(’pde -3d.png’)

The discretization in time is done after line 125, where an Euler scheme

is used. The figures are drawn after line 135. It yields Figures 7 and 7 where

the time-evolutions of the solutions to (103) and to (102) are respectively

given. It is observed that the solutions converge to the origin, as predicted

in Theorem 17 and the second item of Theorem 15.

Fig. 10. Solution to (103) with the saturation map sat

On Figure 7 the corresponding L2 norms are compared where it is

checked that, as expected, the L2 norm decreases faster along the solution

to (102) than along the solution to (103) with the chosen initial condition.

Selecting the saturaton map satL2 give the Figures 7 and 7 with ana-

loguous conclusions on the time-evolution of the solution to (103) and on
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Fig. 11. Solution to (102)

Fig. 12. Comparison of the time-evolutions of the L2 of the solutions to (103), with the
saturation map sat, and to (102)

the L2 norm.
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Fig. 13. Solution to (103) with the saturation map satL2

Fig. 14. Comparison of the time-evolutions of the L2 of the solutions to (103), with the
saturation map satL2, and to (102)

4.3. Conclusion so far

In this section we have reviewed the well-posedness and the asymptotic

stability of the origin of the wave equation and of the Korteweg–de-Vries

equation in presence of (possibly saturating) control. Different proofs have
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been provided for the attractivity, using either direct Lyapunov method or

a LaSalle invariance principle or a contradiction argument.

Let us emphasize that the approaches presented in this section are also

useful for certain other classes of equations such as hyperbolic systems.

See5 for the stabilization of linear and quasilinear hyperbolic systems. See

also64 for the stabilization of hyperbolic systems using saturated control.

In46 an output feedback control has been computed for the linearized

KdV equation. It would be relevant to evaluate the impact of the saturation

map on the obtained result.

Finally, in addition to the stabilization control problem, the impact

of disturbances could be studied. It would be relevant to obtain Input-to-

State Stability results in the context of this section (see28,47 for introductory

presentations on this subject for infinite-dimensional systems.)
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5. Conclusion

This chapter has reviewed some recent results on stability analysis of dis-

tributed parameter systems as those modeled by parabolic partial differ-

ential equations, or the wave equation or the Korteweg-de-Vries equation.

The suggested approach succeeds to design boundary stabilizing controllers,

possibly subject to amplitude constraint, ensuring an asymptotic stability

of the closed-loop equation. The constructive approach is based on Lya-

punov function, and numerically tractable conditions. Some simulations

have illustrated our results and design methods. More recent works follow

the present chapter as the control of reaction-diffusion equation coupled

with ordinary differential equations (see35), or control of such partial dif-

ferential equation by means of delayed control (see42) to cite just a few. As

far as hyperbolic system are considered, nonlinear controllers could be also

designed as done in.56,72 Finally, let us cite the papers36,37 dealing with

regulation problems, that could be seen as generalizations of stabilization

problems for both the parabolic equations and the wave equation.
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form stabilization of numerical schemes for the critical generalized korteweg-
de vries equation with damping. Numerische Mathematik, 116(2):317–356,
2010.

53. A. Pazy. Semigroups of linear operators and applications to partial differential
equations. Applied mathematical sciences. Springer-Verlag, 1983.

54. G Perla Menzala, Carlos F Vasconcellos, and Enrique Zuazua. Stabilization of



December 24, 2021 13:32 ws-rv9x6 Book Title main˙v1 page 88

88 H. Lhachemi and C. Prieur

the korteweg-de vries equation with localized damping. Quarterly of applied
Mathematics, 60(1):111–129, 2002.

55. C. Prieur and J. de Halleux. Stabilization of a 1-D tank containing a fluid
modeled by the shallow water equations. Systems & Control Letters, 52(3-
4):167–178, 2004.

56. C. Prieur, S. Tarbouriech, and J. M. Gomes da Silva Jr. Wave equation
with cone-bounded control laws. IEEE Transactions on Automatic Control,
61(11):3452–3463, 2016.
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71. André L Tits and Yaguang Yang. Globally convergent algorithms for robust

pole assignment by state feedback. IEEE Transactions on Automatic Control,
41(10):1432–1452, 1996.

72. N. Vanspranghe, F. Ferrante, and C. Prieur. Velocity stabilization of a wave
equation with a nonlinear dynamic boundary condition. IEEE Transactions
on Automatic Control, to appear, 2022.

73. W Wonham. On pole assignment in multi-input controllable linear systems.
IEEE Transactions on Automatic Control, 12(6):660–665, 1967.

74. L. Zaccarian and A.R. Teel. Modern Anti-windup Synthesis: Control Aug-
mentation for Actuator Saturation. Princeton Series in Applied Mathematics.
Princeton University Press, 2011.

75. Liguo Zhang and Christophe Prieur. Stochastic stability of Markov jump hy-
perbolic systems with application to traffic flow control. Automatica, 86:29–
37, 2017.


	1. Saturated boundary stabilization of partial differential equations
	H. Lhachemi and C. Prieur
	H. Lhachemi and C. Prieur
	Introduction
	Finite-dimensional systems
	Stability notions of nonlinear finite-dimensional systems
	Control systems: a basic tour
	Lyapunov direct method
	Separation principle for linear systems
	Saturated control
	Section conclusion

	Parabolic equations
	Introduction
	Bounded observation operator
	Dirichlet boundary measurement
	Saturated control with internal measurement
	Section conclusion

	Stabilization of wave and KdV equations
	Wave equation with a bounded control operator
	KdV equation with a bounded control operator
	Conclusion so far

	Conclusion
	References




