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Abstract

The formation of cup–cone fracture in round bars and of slant fracture in plane strain
specimens is studied using the Finite Element (FE) method. Constitutive models
proposed by Rousselier (1987) and by Gurson (Tvergaard and Needleman, 1984) are
used. The analysis takes into account viscoplasticity and void nucleation. Different
indicators of localization are computed during FE–calculations. The analysis shows
that cup–cone is more easily formed using the Rousselier model than the Gurson
model. Cup–cone fracture is inhibited in highly viscous materials. The use of the
f? function in the Gurson model favors flat fracture. The crack path (flat or cup–
cone/slant) can be correlated to the size of the localization zone which is formed
ahead of the central penny shaped crack.

Key words: Localization, cup–cone fracture, slant fracture Rousselier, Gurson.

1 Introduction.

Models able to represent the strength and toughness of ductile materials have
found increasing interest and application. The micromechanically based model
proposed by Gurson (1977) and phenomenologically extended by Tvergaard
and Needleman (1984) (so called GTN model) has been most frequently
used. An approach based on continuum damage mechanics (CDM) and
thermodynamics has also been proposed by Rousselier (1987). Both models
modify the von Mises yield potential by introducing a single scalar damage
quantity, namely the void volume fraction of cavities, f . Both models can be
modified to describe the nucleation of cavities at inclusions or to account for
viscoplastic behavior.
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These models have been successfully applied to model crack propagation in
precracked structures (e.g. (Xia and Shih, 1995)). They have also been used
to model fracture of small uncracked laboratory tests samples such as smooth
and notched round tensile bar (Tvergaard and Needleman, 1984; Becker
et al., 1988) or plane strain specimens (Becker and Needleman, 1986; Leblond
et al., 1994). Rupture of such specimens involves both initiation and crack
propagation. Cracks propagate in regions where deformation and damage are
localized leading to either “cup–cone” fracture in round bars or to “shear lips”
in plane strain samples (figure 1). This last fracture mode will be referred to as
“slant fracture” in the following as the stress state does not correspond to pure
shear. Cup–cone formation has been first numerically analyzed in (Tvergaard
and Needleman, 1984) but has received little attention since then.

As previously noted, cup–cone or slant fracture formation results from the
localization of damage in narrow bands. Conditions for localization (expressed
as the possibility of forming a strain rate discontinuity surface) in elastoplastic
solids have been described by Rice (1976) ; the specific case of dilatant pressure
sensitive materials has been investigated in (Rudnicki and Rice, 1975). Using
a simplified model consisting of a solid body having a plane of imperfection,
the susceptibility to localization of the Gurson model has been first studied
by Yamamoto (1978) with an emphasis on the effect of heterogeneities. This
model can also be used to study the evolution of the band beyond the onset
of localization (Tvergaard, 1982). The role of void nucleation was studied
in (Saje et al., 1982) showing, in particular, that localization can be growth or
nucleation controlled depending on the stress state and material parameters.
The role of kinematic hardening was studied in (Mear and Hutchinson, 1985),
together with nucleation in (Tvergaard, 1987) showing a decrease of ductility
with increasing kinematic hardening. The choice of the corotational stress
rate was studied in (Tvergaard and van der Giessen, 1991). In particular it
is shown that localization remains unaffected by the choice of the objective
stress rate for purely isotropic hardening. Instability in solids has also been
studied using the linear perturbation analysis in the case of viscous non–voided
materials (Fressengeas and Molinari, 1985; Anand et al., 1987) incorporating
heating induced by plastic deformation, heat diffusion and inertia effects. The
case of rigid–plastic dilatant solids has been treated in (Rousselier, 1991,
1995b,a) showing that “shear lips” fracture dominates for small porosities
whereas “normal” fracture occurs at high porosities.

The above analyses of instability are however limited to the ideal situation
of an infinite medium in which a band–like discontinuity appears. In actual
structures, this situation is indeed never met. In this case, Billardon and
Doghri (1989); Doghri (1995) proposed to compute Rice’s condition for
localization during the Finite Element calculation; macro–crack initiation is
assumed to occur when the condition for localization is met; the calculation is
then stopped as stability and uniqueness of the solution are no longer insured.
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In this paper, the Finite Element (FE) method is used to numerically
investigate the conditions for the formation of cup–cone and shear fracture.
In section 2, a common framework describing Gurson and Rousselier models
is presented together with an extension to viscoplastic materials. Model
parameters are adjusted to experimental results obtained on a modern
steel containing very low sulphur and phosphorus contents. In section 3,
different localization indicators are presented and compared. In section 4,
FE simulations of cup–cone and slant fracture are carried out. The influence
of the following parameters is studied: (i) mesh refinement and element
formulation, (ii) plastic and viscoplastic flow, (iii) constitutive model: Gurson
and Rousselier models, effect of void nucleation. Following Billardon and
Doghri, localization indicators are also evaluated during the FE calculations.
They are however not used as failure criterion; calculations are carried out
beyond localization. On the other hand, simulated crack paths are compared
with predictions obtained from the indicators.

1.1 Notations

Tensorial notation is used for convenience. First order tensors are denoted
as ~a, second order tensors as a and fourth order tensors as A. Boldface
symbols denote matrices (M). Dots and colons are used to indicate the usual

contracted products: ~a.~b =
∑
i aibi, a : b =

∑
i,j aijbij, (A : a)ij =

∑
k,lAijklakl,

(M.N)ij =
∑
k MikNkj, etc. . . . The symbol ⊗ denotes the tensorial product.

Voigt or standard notations for the tensors will be used depending on the
context. Identity tensors and matrices are denoted by 1, 1 and I. The notation
~n.L.~n represents the second order tensor A such that Aij =

∑
k,l nkLkijlnl.

2 Material models

2.1 Constitutive equations

Models for porous materials proposed by Rousselier (1987) and
Gurson (Gurson, 1977; Tvergaard, 1990) are used in this study. The first
one was developed based on the thermodynamical considerations whereas the
second one was derived from a micromechanical description of the porous
material. In both cases, damage is represented by a single scalar variable: the
porosity f . In the following, both models will be described using a unified
framework. The plastic (or viscoplastic) flow potential φ is then written as:

φ = σ? −R(p) (1)
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where R is the yield stress of the undamaged material (matrix) and p an
effective plastic strain representative of the matrix hardening. σ? is an effective
scalar stress which is a function of both the macroscopic stress tensor σ and
the porosity. σ? is defined by the following equations:

Gurson Φ =
σ2
eq

σ2
?

+ 2q1f? cosh
(
q2
2

σkk
σ?

)
− 1− q21f 2

?
def. σ?= 0 (2)

Rousselier Φ =
σeq

(1− f)σ?
+
σ1
σ?
fD exp

(
σkk

3(1− f)σ1

)
− 1

def. σ?= 0 (3)

where σeq is the von Mises equivalent stress and σkk the trace (tr) of the
stress tensor. q1, q2, D and σ1 are material coefficients which are assumed
to be constant. f? is a function of the porosity f which was introduced on a
purely phenomenological basis to represent void coalescence (Tvergaard and
Needleman, 1984). In the case of the Gurson model (eq. 2) the definition of
σ? is implicit whereas it is explicit in the case of the Rousselier model (eq. 3).

In the case of a plastic material, one has φ = 0 whereas in the viscoplastic case
φ > 0. The irreversible deformation rate ε̇p is obtained assuming the normality
rule, so that:

ε̇p = (1− f)ṗ
∂φ

∂σ
= (1− f)ṗ

∂σ?
∂σ

= (1− f)ṗυ (4)

where υ is the normal to the flow potential. The total strain rate ε̇ is expressed
as ε̇e + ε̇p where ε̇e is the elastic strain rate. Elastic strains and stresses are
related by: σ = C : εe. As the void volume fraction is usually small, the
elasticity tensor C is assumed to be constant. υ can be computed noting that
for a fixed porosity, a variation of σ induces a variation of σ? such that Φ
remains equal to zero (this derivation must be used in the case of the Gurson
model, where the definition of σ? is implicit). Therefore:

δΦ =
∂Φ

∂σ
: δσ +

∂Φ

∂σ?
δσ? = 0 ⇒ υ =

∂σ?
∂σ

= −
(
∂Φ

∂σ?

)−1
∂Φ

∂σ
(5)

The plastic multiplier ṗ can be related to the deformation rate tensor. In the
case of the Gurson model, one notes that (∂σ?/∂σ) : σ = σ?, so that:

ε̇p : σ = (1− f)ṗσ? (6)

In the case of the Rousselier model, the previous relation does not hold and
one has:

ṗ = ε̇eq ≡
√

2

3
ė : ė (7)
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where ė is the deviator of the strain rate tensor. In this case, ṗ corresponds to
the von Mises equivalent strain rate. ṗ can be computed writing the consistency
condition φ̇ = 0 in the case of plasticity or using the viscous flow law of the
dense material in the case of viscoplasticity:

ṗ = F(φ) = F(σ? −R) (8)

In the following the creep function F will be chosen as a Norton law, i.e.
F(φ) = 〈φ/K〉n, where K and n are material parameters and where 〈.〉 is such
than 〈x〉 = x if x > 0, and 〈x〉 = 0 otherwise.

The evolution of the porosity is given by mass conservation modified to account
for strain controlled void nucleation (Chu and Needleman, 1980):

ḟ = (1− f)trε̇p + Anṗ =
(
(1− f)2υ : 1 + An

)
ṗ (9)

An is a material function used to represent nucleation. In the following, it will
be assumed that it depends on p only.

Remark: In the case of the viscoplastic Rousselier model (Barbier, 1999), the
ratio ḟ/ṗ depends on ṗ so that porosity grows faster for higher strain rate.
This is due to the fact that σ1 is taken to be rate independent so that the ratio
σkk/σ1 will increase with strain rate. This dependence is not observed for the
Gurson model as Φ can be expressed as a function of σ/σ? only (in the case
of the Rousselier model Φ is a function of both σ/σ? and σ/σ1). A solution
could be to modify the Rousselier model as follows:

Φ =
σeq

(1− f)σ?
+

2

3
fD exp

(
qR
2

σkk
(1− f)σ?

)
− 1

def. σ?= 0 (10)

where qR is a new adjustable material parameter. In that case the strain rate
dependence is suppressed. The study of this new model is however out of the
scope of the present work. In the following, the original model will be used
with the model parameters σ1 and D adjusted for the experimental strain
rate. Parametric studies involving a strong effect of viscosity will be carried
out using the Gurson model only.

2.2 Comparison: Gurson—Rousselier models

At this point, it is interesting to outline some differences between the Gurson
and Rousselier models. Figure 2 compares both yield surfaces in the σeq—σkk
plane in the case of tensile stress states (σkk > 0). Under pure shear (σkk = 0),
damage is still generated in the case of the Rousselier model (as the normal
to the yield surface does not coincide with the σeq axis) whereas, in absence
of nucleation, the Gurson model does not lead to damage growth. Under pure
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hydrostatic stress states (σeq = 0), the Rousselier yield surface has a vertex
which implies that at high stress triaxiality ratios (τ = 1

3
σkk/σeq) the plastic

deformation tensor always keeps a non–zero shear component. Note that the
model proposed in (Fleck et al., 1992) for plastic metal powders has the same
property.

The ratio of volumetric to shear deformation rate (strain rate triaxiality ratio)
τε = 1

3
ε̇kk/ε̇eq is given for both models by:

Gurson τε =
1

2
q1q2f? sinh

(
q2
2

σkk
σ?

)
σ?
σeq

(11)

Rousselier τε =
1

3
fD exp

(
σkk

3(1− f)σ1

)
(12)

Taking the limits of the strain rate triaxiality ratio for σeq → 0 such that the
yield condition is met, one gets 1 :

Gurson lim
σeq→0

τε =

(
q1f?

2

) 3
2

q2
σ?
σeq

= +∞ (13)

Rousselier lim
σeq→0

τε =
1

3

σ?
σ1

(14)

2.3 Material parameters

The material parameters used in this study correspond to a X70 HSLA (High
Strength Low Alloyed) ferritic-pearlitic steel (Rivalin, 1998). Due to its very
low sulphur and phosphorus content, the inclusion volume fraction is equal to
1.5 · 10−4. Inclusions consist of small, globular particles of low mean diameter
(about 1µm), composed of two phases combining calcium sulfide (CaS) and
aluminum (Al2O3) or magnesium oxides (MgO). It is assumed that immediate
debonding between the matrix and the inclusions takes place so that the
inclusion volume fraction corresponds to the initial porosity f0.

Due to the low inclusion volume fraction, the effect of damage on the overall
behavior remains very limited up to elevated plastic strains. This implies
that parameters relative to plastic hardening and viscosity can be directly
determined from tensile tests. The material was provided as hot rolled sheets ;
its plastic behavior is therefore anisotropic as shown in (Rivalin, 1998). In
the following, it will however be assumed that the material is isotropic in

1 Using the modified Rousselier model (equation 10), the strain rate triaxiality ratio
is equal to 1

3DfqR exp(qRσkk/2(1− f)σ?). The limit for σeq → 0 is equal to qR/2.
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order to simplify the FE calculations. Elastic properties are: Young’s modulus
E = 210 GPa, Poisson’s ratio ν = 0.3. Plastic hardening is described using a
simple power law relationship:

R(p) = K ′ (p+ ε0)
n′

(15)

with K ′ = 795 MPa, ε0 = 0.002 and n′ = 0.13. Parameters of the Norton
law are: K = 55 MPa.s1/n, n = 5. Tests carried out at different temperatures
have also shown that the behavior is almost unaffected by temperature up to
300◦C so that heating due to plastic deformation can be neglected.

Ductile rupture was characterized using smooth and notched round
bars (Mackenzie et al., 1977; Decamp et al., 1997) as well as plane strain
specimens (Anand and Spitzig, 1980). Round bars have an initial minimum
diameter equal to 10 mm. The notch radius is equal to 4 and 2 mm. Plane
strain specimens have a thickness of 5 mm. The area reductions at fracture are
given on table 1 for all specimens. Figure 1 shows examples of fracture surfaces
obtained in round bars and plane strain specimens. Note the anisotropic
deformation of bars. An example of cup–cone formation in another isotropic
material is also given in figure 1. This material has a similar composition as
the material of this study but was subjected to a thermal treatment leading
to a ferritic–bainitic microstructure and to isotropic plastic properties.

Damage parameters (σ1 and D for the Rousselier model ; q1, q2 and f? for the
Gurson model) were adjusted to represent the experimental area reductions
at fracture. In the case of the Rousselier model, the values recommended
in (Rousselier, 1987) are D = 2 and σ1 = 1

3
(Re + Rm) = 321 MPa, where Rm

is the maximum engineering stress and Re the yield limit. These values lead
however to an underestimation of the ductilities. Adjusted values are equal to
D = 1.4 and σ1 = 450 MPa. In the case of the Gurson model, many studies
published in the literature use q1 = 1.5 and q2 = 1.0 whereas the function f?
is simply defined as follows:

f? =

f if f < fc

fc + δ (f − fc) if f > fc
(16)

where δ > 1 and fc (critical porosity at which coalescence starts) have to
be adjusted. Using f? = f leads to an overestimation of the ductilities. In
section 4.3 different solutions (use of f?, use of nucleation, modification of q2)
will be envisaged in order to adjust the experimental data.

Failure occurs for the Gurson model when f? = 1/q1 ' 66%. In the case of
the Rousselier model, the material loses its stress carrying capacity when f
reaches 1. In order to obtain a more realistic failure porosity, the material is
usually considered as broken when f is larger than a critical value fR. In the
following fR = 0.9 will be used.
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3 Localization indicators

In a infinite homogeneous medium, localization is assumed to occur when it
becomes possible to form a strain rate discontinuity in a planar band. This
band is characterized by its unit normal ~n and the displacement jump across
the band whose direction is denoted ~g (figure 3). Note that the magnitude of
the jump remains unknown. In the case of voided materials, ~n and ~g are not
necessarily orthogonal (Rousselier, 1995a).

In the following, Rice’s condition for bifurcation is presented together
with analytical results concerning localization angles and critical hardening
modulus allowing to further compare Rousselier and Gurson models
(section 3.1). The perturbation analysis, which can be applied to viscoplastic
materials is then presented (section 3.2). In section 3.3, the consistent
tangent matrix is computed. It is proposed to use this matrix instead of the
elastoplastic tangent matrix in Rice’s condition for localization. In section 3.4
the different localization indicators are compared ; in particular it is checked
that the indicator using the consistent tangent matrix gives predictions in
agreement with both other indicators.

3.1 Plastic materials: bifurcation analysis

In the case of elastoplastic materials, the incremental constitutive equation
can be expressed as:

σ̇ = Lt : ε̇ (17)

where Lt is the elastoplastic tangent matrix. The calculation of Lt is
detailed in appendix A. Writing the continuity of displacements and the
stress equilibrium, it can be shown (Rice, 1976, 1980) that the jump of the
deformation tensor is expressed as:

1

2
(~g ⊗ ~n + ~n⊗ ~g) (18)

and that the condition for bifurcation is written as:

∃~n, det(At(~n)) = 0 with At(~n) = ~n.Lt.~n (19)

~g is then the eigenvector of At(~n) corresponding to the eigenvalue equal to
zero. This condition corresponds to continuous bifurcation (plastic yielding on
each side of the band). Discontinuous bifurcation (plastic yielding on one side
and elastic unloading on the other side) corresponds to det At(~n) < 0 (Rice,
1980; Borré, G. and Maier, G., 1989). Equation 19 can be modified in the case
of large deformations. The stress rate in eq. 17 being considered as the Jauman

8



rate, the bifurcation criterion is now written as: ∃~n, det(At(~n) + R) = 0 with
2R = −~n⊗(~n.σ)+(~n.σ)⊗~n+(~n.σ.~n)1−σ (Rice, 1980; Mear and Hutchinson,
1985).

The bifurcation criterion was implemented as a post-processor of the FE
calculations. In practice, the condition det At = 0 is never exactly met.
Localization will be defined as occurring when det At < 0 for the first time.
~n is then defined as the vector which minimizes det At(~n). The corresponding
minimum value will be used as a localization indicator. Minimization is done
using the simplex algorithm. The eigenvector corresponding to the minimum
eigenvalue of At(~n) is then computed ; it coincides with ~g when det At becomes
zero. In the case of the specimens and constitutive equations investigated in
this work, accounting for the Jauman rate modifies the results only slightly.
In the following, results using eq. 19 will be shown only.

The bifurcation criterion can be used to further compare the localization
behavior of Gurson and Rousselier models. The plastic flow direction,
expressed in its eigen–coordinate system, is supposed to be of the following
form:

υ ∝


1 0 0

0 u 0

0 0 t

 with t ≤ u ≤ 1 (20)

This corresponds to a general tensile situation where minor stresses can be
negative. Assuming that t ≤ u ≤ 1, the vectors ~n and ~g lie in the x1—x3
plane provided dilatancy is not too large (Rudnicki and Rice, 1975; Yamamoto,
1978). This localization plane is always assumed in the following. ~n and the
angle ψ between ~g and ~n (fig. 3) are given by:

~n =

√1 + νu

1− t
, 0,±

√
−t− νu

1− t

 cosψ =
1 + 2νu+ t

1− t
(21)

The angle ψ characterizes the type of failure which varies from pure opening
fracture ψ = 0 to pure tangential fracture (ψ = π

2
). The results are summarized

in fig. 3 in the t—u plane for −2 < u < 1. The case t+ νu > 0 (shaded area)
corresponds to pure opening fracture (~n //~g), the normal to the band being
aligned with the principal strain direction. The case 1+νu < 0 corresponds, for
ν = 0.3, to negative volume changes (crosshatched region) and is not relevant
in the present study. Constant band orientation (constant θ) or constant
fracture mode (constant ψ) are represented by straight lines in the previous
diagram. Location of constant strain rate triaxiality (τε = 0, 1

4
, 1
2
, 1, 2) are

also indicated on the diagram (grey lines). In particular, it can be seen that
for τe <

1
2

normal separation is never possible. As noted in section 2.2, τe
lies between 0 and 1

3
σ?/σ1 for the Rousselier model. So that, in some cases,

normal separation will be impossible. One can therefore generally expect a
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higher tendency to pure opening fracture for the Gurson model than for the
Rousselier model.

The condition for localization detAt(~n) = 0 can then be rewritten using the
previous solution for ~n as:

H ′

1− f
=


−υ211 E u2 if t+ νu < 0

−υ211 E
u2 + 2νut+ t2

1− ν2
if t+ νu ≥ 0

(22)

with H ′ = H − [(1− f)2υ11(1 + u+ t) + An]σ?,f

where H is the plastic hardening modulus and σ?,f = ∂σ?/∂f . H ′ incorporates
both plastic hardening and softening due to porosity growth. The states most
resistant to localization are those of axisymmetric extension u = t whereas
localization is much easier for plane strain u = 0 (Needleman and Rice, 1978).

3.2 Viscoplastic materials: linear perturbation analysis

The previous bifurcation analysis is however only valid for materials for which
the elastoplastic tangent matrix is defined. For viscoplastic materials, the
linear perturbation analysis can be applied. The method consists in analyzing,
inside an homogeneous volume element, the stability of a perturbation ~g of the
displacement field which is supposed to be of the following form (Fressengeas
and Molinari, 1985; Anand et al., 1987; Rousselier, 1991, 1995b; Barbier et al.,
1998; Barbier, 1999):

~g = δ~u exp(iq~x.~n + ωt) (23)

ω is the growth rate of the perturbation and 1/q its characteristic length. Note
that q plays only a role in processes involving length scales such as thermal
diffusion, dynamic loading or non-local constitutive equations. It will not be
considered hereafter.

Following the generic treatment of the problem proposed in (Barbier et al.,
1998), the material is characterized by internal variables denoted Z = (εe, z).
In the present case, z represents the plastic strain and the porosity. The
evolution laws of these variables are written as a set of differential equations:

Ż = F(Z, ε̇) (24)

which, applying a perturbation, leads to:

δŻ =
∂F

∂Z
.δZ +

∂F

∂ε̇
.δε̇ (25)
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The perturbation δZ can be estimated from the perturbed rate as (Anand
et al., 1987): δZ = δŻ/ω. The perturbed state variables are then related to
the perturbed strain by:

δZ =

(
I− 1

ω

∂F

∂Z

)−1
.
∂F

∂ε̇
.δε = Hp(ω).δε (26)

The calculation of Hp is detailed in appendix B for the viscoplastic case. As
shown in (Barbier et al., 1998), the plastic case coincides with Rice analysis
for ω → +∞. The sub–matrix of Hp relating the perturbed total strain to the
perturbed elastic deformation is denoted Hp. The perturbation on the stresses
is therefore computed as:

δσ = C : Hp(ω) : δε = Lp(ω) : δε (27)

Writing the stress equilibrium, as in the case of the bifurcation analysis, leads
to the following condition for the appearance of a localization band:

∃~n, det Ap(~n, ω) = 0 with Ap(~n, ω) = ~n.Lp(ω).~n (28)

~g (or δ~u) is the associated eigenvector. The criterion for localization is then
applied by finding the maximum value of ω for which a vector ~n exists which
verifies det Ap(~n, ω) = 0. Localization occurs when the rate of variation of
the perturbation is much larger than the rate of variation of the unperturbed
solution. This condition can be expressed as: ω � ṗ/p.

3.3 Consistent tangent matrix as localization indicator

In the framework of the FEM, material constitutive equations can be
integrated using an implicit integration scheme (Simo and Taylor, 1985;
Chaboche, 1996; Aravas, 1987; Foerch et al., 1997). The increment of the
state variable ∆Z over a finite time step ∆t is given by the following set of
implicit (with respect to ∆Z) nonlinear equations:

I0.∆Z = F?(Z,∆t,∆ε) (29)

In the following, only fully implicit integration will be used so that Z =
Z0 + ∆Z where Z0 is the known set of state variables at the beginning of
the time increment. The matrix I0, defined in appendix C, is used to describe
plasticity and viscoplasticity in the same framework. Eq. 29 is solved using
a Newton–Raphson method which requires the calculation of ∂F?/∂Z (see
appendix C). Any infinitesimal variation of the deformation increment will
induce a variation of the solution state variables such that eq. 29 is still
satisfied, so that:

I0.δZ =
∂F?

∂Z
.δZ +

∂F?

∂ε
.δε (30)
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Solving the previous equation for δZ gives:

δZ =

(
I0 −

∂F?

∂Z

)−1
.
∂F?

∂ε
.δε = Hc.δε (31)

The calculation of Hc is detailed in appendix C. Using the same arguments
as in 3.2, the variation of the stresses is related to the variation of the total
strain by:

δσ = C : Hc : δε = Lc : δε (32)

where Hc is the sub–matrix of Hc relating δε and δεe. Lc corresponds to
the so-called “consistent tangent matrix”. If a small variation of stresses δσ
develops in a planar band, the mechanical equilibrium of the band requires
that: δσ.~n = ~0. The corresponding variation of the deformation must be of
the form given by equation 18 to ensure the continuity of displacement. Using
the equilibrium condition together with equation 32, a non null vector ~g exists
if:

∃~n, det(Ac(~n)) = 0 with Ac(~n) = ~n.Lc.~n (33)

This condition is similar to Rice localization criterion (equation 19) with Lt

being replaced by Lc. In the following, it is proposed to use it to post–process
the FE calculation in a similar way as in section 3.1. A potential advantage of
using the consistent tangent matrix is that the same criterion can be applied
to both elastoplastic and elastoviscoplastic materials.

3.4 Comparison of the different localization indicators

In this section, the three previously described localization indicators will be
compared for plane strain conditions using the Gurson model with q2 = 1.15
and f? = f . Otherwise specified, material parameters are those given in
section 2.3.

Figure 4 compares, in the case of an elastoplastic material behavior, the
localization indicator based on the the tangent matrix to the one based on
the consistent matrix using constant deformation increments in the loading
direction. Values of the indicator are normalized with respect to the value De

corresponding to a purely elastic behavior:

De = det ~n.C.~n =
1

4

(1− ν)E3

(1− 2ν)(1 + ν)3
∀~n (34)

It can be seen that both indicators essentially give similar results for
increments of deformation ∆ε up to 0.5%. A slight difference is observed for
∆ε = 1.0%. For larger increments, convergence is not always obtained. In that
case sub–stepping must be used.
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Indicators based on the perturbation method or the consistent tangent matrix
give qualitatively similar trends: stability is increased with increasing K and
strain rate and with decreasing n. Figure 5–(a) gives an example of the
evolution of the growth factor ω̃ = ω/(ṗ/p) as a function of deformation for
different values of K. An interesting feature of the perturbation analysis, is
that it provides a continuous evaluation of the localization angles. An example
of the evolution of ψ and θ is given on figure 5–(b) showing a progressive change
from pure tangential to pure opening fracture as deformation increases. Curves
obtained for different values of K coincide as soon as the growth factor is large
enough (≈ 1000).

Figure 6 compares, in the case of elastoviscoplastic material behavior, the
localization indicator based on the consistent matrix for different values of
the creep parameter K. It can also be seen that the results converge to the
results obtained for an elastoplastic material (dashed line) as K → 0. Similar
results are obtained for ε̇→ 0. As shown in table 2, the porosity at the onset
of localization (defined by min~n det ~n.Lc.~n = 0) increases with increasing K ;
this also corresponds to an increase of θ > π

4
and to a decrease of ψ < π

2
: the

normal component of the fracture mode increases. For K → 0 (or ε̇→ 0) the
viscoplastic analysis (porosity, angles θ and ψ, strain) coincides with the plastic
case. As in the plastic case, the deformation increment influences the consistent
tangent matrix and consequently the time step for which min~n det ~n.Lc.~n
starts to be negative. This effect remains limited for plasticity (figure 4) but
increases with increasing viscosity. For example, for K = 50 the corresponding
deformation is equal to 2.09 for ∆ε = 0.5%, 1.78 for ∆ε = 1.0% and 1.56 for
∆ε = 2.0%. This corresponds to the fact that non–converging global time
steps can be divided into converging sub–steps.

In order to further evaluate the different localization indicators, comparisons
were made with simple FE calculations. The mesh consists in a 10 × 10
plane strain small deformation elements square computed using periodic
boundary conditions. The imposed deformation step is 0.5% and sub–stepping
was allowed. In practice, sub–stepping is needed when numerical localization
starts. An initial imperfection is introduced as a uniformly distributed
random porosity field f0 = 1.5 10−4 ± 1.0 10−6. The calculations were post–
processed in order to determine: (i) the strain εD at which min~n ~n.Lc.~n
becomes negative at at least one Gauss point in the structure, (ii) the strain
εB at which a continuous elastically deforming band is formed. Using the
perturbation analysis of a uniform volume element, the growth factors ω̃D and
ω̃B corresponding these strains can be computed. Finally, εL is defined as the
strain at which min~n ~n.Lc.~n < 0 in a uniformly deforming element. Results are
gathered in table 3. For plasticity and low values of K one gets εD ≈ εL < εB.
This shows that the indicators underestimate the actual numerical onset of
localization. Similar results are obtained for plastic behavior using equation 19.
On the other hand, for high values of K, one gets εD ≈ εB < εL. In
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that case, the indicator computed for a uniform material overestimates the
actual localization. On the other hand, the indicator computed during the FE
calculation at each Gauss point provides in that case pertinent informations
about the onset of localization. Values of ω̃D and ω̃B are decreasing functions
of K and onset of localization does not correspond to some “critical value”.
As soon as localization starts the ω̃ field becomes strongly heterogeneous with
some very high values (typically over 104). Similar conclusions were drawn
from another set of FE calculations carried out on a 10 × 10 square with an
initial geometrical imperfection, homogeneous initial porosity and common
boundary conditions.

From this part, it can be concluded that localization indicators can be used
in FE calculations (section 4) to determine where localization is currently
occurring. An overestimation of the zones where localization occurs is to be
expected for plastic and slightly viscous materials.

4 Finite Element simulations — Discussion

Finite element simulations were performed using the FE softwares
ABAQUS (ABAQUS, 1998) and Zébulon (Besson and Foerch, 1997; Foerch
et al., 1997). The FE implementation of both Gurson and Rousselier models
in ABAQUS follows the method proposed in (Aravas, 1987) The method used
in Zébulon is detailed in appendix C. Both methods use a fully implicit
integration scheme. It was shown by Zhang and Niemi (1995) that more
accurate integration can be obtained using a semi–implicit scheme with
ζ = 0.75—0.85 (ζ = 0 fully explicitly, ζ = 1 fully implicit). The Aravas method
uses a reduced set of integration variables (scalar deviatoric and volumetric
components of the plastic strain) to describe deformation. On the other hand,
Zébulon uses the full elastic strain tensor. Although less numerically efficient,
this makes it possible to easily extend the method to plastically anisotropic
materials (Grange et al., 2000) and to directly compute the consistent tangent
matrix. In the present study the fully implicit algorithm is used. Finite
strains were treated using corotational reference frames (ABAQUS (Hughes
and Winget, 1980), Zébulon Ladevèze (1980)). The localization analysis was
implemented in Zébulon only. It is made in the rotated material frame, defined
using the Jauman rate for the stresses, for each Gauss point using eq. 19, 28 or
33. Vectors ~n and ~g can then be expressed in the fixed reference frame. In the
following, calculations obtained using Zébulon are only presented. Very similar
results in terms of mesh dependence, occurrence of localization, formation of
cup–cone were obtained with ABAQUS.
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4.1 Effect of meshing

As already mentioned in (Tvergaard and Needleman, 1984), mesh design
plays an important role in describing localization and cup–cone formation.
Tvergaard and Needleman (1984) used square elements (4 nodes) which were
divided in 4 linear triangles (3 nodes). In order to numerically study the effect
of meshing, calculations were performed for round bars using the Rousselier
model as this model was found to more easily lead to cup–cone formation as
the Gurson model.

Specimens were meshed without using an initial geometrical imperfection as
in (Tvergaard and Needleman, 1984). However the loading ends were meshed ;
this is sufficient to generate stress and strain heterogeneities so that necking
and subsequent failure always occur in the middle of the specimen. An example
of mesh is shown on figure 7. Symmetry was not enforced so that the entire
specimen and not only one half is meshed. This choice was motivated by the
experimental observation that one single crack (and not two symmetric cracks)
is generated during cup–cone formation. Ductility was characterized using the
diameter reduction as the tensile elongation is highly sensitive to strain path
and calculation parameters (Bonora, 1999). Simulations were carried out with
a macroscopic strain rate equal to 2. 10−3 s−1.

In the following porosity maps will be presented using the following scale
0(white) ≤ f ≤ 0.1(black). Figure 7 shows damage maps at Gauss points for
meshes having a number of elements in the minimum cross section Nh equal to
20, 40 or 80 and for initial element aspect ratios rh equal to 3:1, 6:1 and 12:1.
Elements have quadratic shape functions with 8 nodes and reduced integration
(4 Gauss points). The aspect ratio equal to 6:1 leads to approximately square
elements at the onset of fracture. Too flat elements (rh = 12 : 1) always lead to
flat fracture. A minimum number of elements in the cross section is required
to trigger the cup–cone : it was found that Nh ≥ 30 is needed here. Provided
this condition is met, elements with an initial aspect ratio of 3:1 (thus leading
to elongated elements at fracture) can also generate cup–cone. In the following
and otherwise stated, elements with rh = 6 : 1 and Nh = 40 will be used.

Figure 8 compares the damage maps obtained with different type of elements.
First linear (cax4: 4 nodes, 4 Gauss points) and quadratic (cax8r: 8 nodes,
4 Gauss points) square elements are compared. The selective integration
method (Hughes, 1980) is used in the case of the cax4 element. It is shown
that the cax4 leads to flat fracture. With this element, using 80 elements
leads also to cup–cone formation. The number of degree of freedom (DOF)
is then approximatively the same as in the case of the cax8r elements with
Nh = 40. This is also consistent with the flat fracture path obtained in the
case cax8r—Nh = 20 for which the number of DOF (4302) is about the same
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as for cax4—Nh = 40 (4018).

The previous square elements were divided into 4 triangular elements as done
in (Tvergaard and Needleman, 1984): cax8r→cax6r (6 nodes, 3 Gauss points)
and cax4→cax3 (3 nodes, 1 Gauss point). In both cases, cup–cone is observed.
A difference can however be noted between the cax8r and the cax6r/cax3

elements. In the case of the triangular elements the highly damaged band will
tend to stay along a preferred mesh direction. The crack appears to have more
freedom to follow a direction not related to the mesh in the case of cax4 and
cax8r elements (figure 8). As a result, cup-cone angles obtained with quadratic
and triangular elements differ. Note that the zigzagging crack path obtained
with triangles is a numerical artifact generated when the crack comes close to
the coarse elements zone of the mesh.

Remark: Effect of symmetry Figure 9 compares calculations for a notched
bar carried out using an entire mesh or a half mesh with symmetry conditions.
A zigzagging crack is obtained with the later whereas a flat crack is simulated
with the first. This indicates that cup–cone formation is favored when using
symmetry.

4.2 Cup–cone formation

The evolution of damage f and of the localization indicator min~n ~n.Lc.~n is
detailed in figure 10 during cup–cone formation. After the maximum load
has been reached, progressive necking is observed and the specimen can
be divided into two regions: elastic unloading and plastic loading ((1) in
figure 10). Damage is concentrated at the center of the necked region so that
the localization indicator becomes negative (2). This also corresponds to the
sharp slope change on the normalized load F/S0—diameter reduction ∆d/d0
curve (F : force, S0 initial cross section, ∆d: diameter variation, d0 initial
diameter). The diameter reduction is monitored in the initial symmetry plane.
The highly damaged zone grows and leaves, behind its tips, an elastically
unloaded zone which correspond to the flat portion of the cup–cone (3) and
forms a penny–shaped crack. Ahead of this zone, two “wings” where the
localization criterion is met, develop and become larger as the central crack
grows (3)—(5). Crack deflection starts with a relatively small angle. Deflection
seems to be possible when the localization wings extend over 2 and more
elements. At step (5) the wings have grown sufficiently so that the cup–cone
develops (6)(7). Some secondary highly damaged regions, which are no longer
deforming, are left behind the main crack (figure 7). They could possibly
correspond to the bands observed on the surface of the specimens in figure 1.
At some point, the diameter does not vary any more. This occurs when the
point of measure leaves the active plastic zone which is ahead of the highly
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damaged band.

Figure 11 shows the localization angles θ expressed in the fixed frame as
a function of the element position along the radial direction. The values
correspond to the angles computed when min~n det ~n.Lc.~n becomes negative for
the first time. The graph is divided in different segments 1··6. Rupture remains
flat over 10 elements (seg. 2). This part can however be sub–divided. Below
5 elements localization occurs only on one single row of Gauss points (seg. 1).
In this region the localization angles are θ = ±60◦. From 5 to 10 elements
(seg. 3), localization wings start to grow, and slightly more dispersed angles
are obtained. Note that the macroscopic fracture surface remains flat whereas
locally an inclined crack path is predicted: this could explain the rough
fracture surface observed in the center of the specimens. Above 10 elements,
an inclined fracture path is formed. The crack first moves towards the upper
part of the specimen (seg. 4) corresponding to a negative localization angle
θ ≈ −60◦ 2 . Segment 5 corresponds to the formation of two localization bands
(step 5 in figure 10). After this point (seg. 6) the crack takes a new direction
(going towards the bottom of the specimen, i.e. positive values of θ) with
increasing values of θ. Dots on figure 11 show the actual numerical orientation
of the crack showing a relative good agreement up to 30 elements. Above this
value, the localization analysis indicates that the crack should continuously
turn toward the top of the specimen (θ > 90◦) or abruptly change its path
with θ ≈ 10 · · · 20◦. Numerically, the crack tends to become horizontal. This
discrepancy could be due to the fact that the mesh is already highly deformed
in the outer region or that post–localization evolution could modify the crack
orientation. Note that an abrupt crack path change can sometimes be observed
(e.g. with the Gurson model, q2 = 1.15, Nh = 80 in figure 12).

Remark 1: Effect of material heterogeneities Following the method
presented in (Decamp et al., 1997; Devillers-Guerville et al., 1997), the mesh
was divided in square regions of size (d0/80)×(d0/80). In each square an initial
value of the porosity was randomly selected according to a uniform distribution
with 1.1 10−4 ≤ f ≤ 1.9 10−4. Starting from this level of heterogeneity it
becomes possible to generate zigzagging crack paths which are similar to what
was experimentally observed (figure 1–(c)). The deformation corresponding to
the first sharp drop of the load is reduced. On the other hand, the strain to
failure (defined by the vertical drop of the load) is increased as more plastic
strain in the central region of the specimen is generated due to the zigzag.
These effects are limited in the present case and represent about 2% of the
total strain to failure.

2 As slightly different parameters were used for the calculation of figure 11 and
figure 10, crack paths do not exactly coincide. In figure 10, the first crack deflection
corresponds to the θ = +60◦ branch. This clearly illustrates the non–uniqueness of
the solution. Otherwise, results of both calculations are consistent.
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Remark 2: Mesh size effect The mesh size effect observed in section 4.1 is
also related to the size of the localization zone ahead of the highly damaged
region: when it extends over 1 or 2 elements only, cup–cone fracture will not
occur. Many authors consider that mesh size is a material parameter which
should be adjusted and be kept constant when specimens of different sizes
are computed. As the size of the localization zone scales with the size of the
specimen, this means that cup–cone fracture should be more easily observed
in large specimens than in small ones.

Remark 3: Results on notched bars It is experimentally observed that
fracture in notched bars (figure 1–(g,h)) is essentially flat. A narrow shear lip
is formed at the very end of rupture. FE calculations for a notch radius equal
to 4 mm are shown in figure 9 showing that a flat fracture is modeled using
Nh = 40. Once again, the local localization angle θ is smaller than π/2 but
the localization “wings” remain too small to trigger deviation. For Nh = 80
a cup–cone is formed. Similar results are obtained applying rate independent
plasticity.

4.3 Role of constitutive equations

4.3.1 Gurson model

As already mentioned, the Gurson model together with the most commonly
used parameters for q1 and q2 leads to an overestimation of the ductility.
Three different solutions were envisaged to fit the ductility: (1) use of the f?
function, (2) adding strain controlled nucleation, (3) adjustment of q2. In the
first case, the adjusted parameters are: fc = 0.005, δ = 3. For the second case,
one considers that after a critical porosity is reached a second population of
inclusions (e.g. NbC) acts as a new source for void nucleation. The same value
for the critical porosity as in the first case was taken. Above this value, An
is constant and equal to 0.2. In the third case, q2 = 1.15 gives the best fit.
Numerical results using the Gurson model are shown in figure 12.

Using f?, flat fracture is always obtained for both cax8r or cax6r elements
with 40 or 80 elements in the cross section, with plastic or viscoplastic
behavior. f? is a function whose derivative is discontinuous, so that any
localization indicator is also discontinuous. This implies that localization can
occur at one Gauss point whereas the neighborhood remains stable. It follows
that the previously described “localization wings” completely vanish leading
to flat fracture although locally an inclined crack path is predicted. In the
case of strain controlled nucleation and although a discontinuous localization
function is used, a zigzagging crack path is obtained. This is due to the fact
that damage is then enhanced in the inclined highly deformed regions formed
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ahead of a penny–shaped crack.

The difference between the calculations carried out with the Rousselier model
and the Gurson model using q2 = 1.15 are outlined in the following. (i) The
localization angle predicted at the center of the bar is higher and equal to
≈ ±80◦. (ii) The flat part on the cup–cone extends over more that 35% of the
initial radius (25% for the Rousselier model). (iii) The size of the localization
“wings” are, for a given material behavior, smaller than for the Rousselier
model. Consequently, with Nh = 40 and cax8r elements a slightly zigzagging
crack path is obtained. This zigzagging crack path is more pronounced with an
elastoplastic behavior which is more susceptible to localization. Using a finer
geometrical description (Nh = 80—cax8r or cax6r) leads to a clear cup–cone
formation. These numerical results are in agreement with the simple analysis
of section 3.1 which indicates that the Rousselier model can lead more easily
to inclined fracture than the Gurson model.

Remark: Effect of fR on the crack path In the case of the Rousselier
model, the value of the failure porosity fR was chosen equal to 0.9 which
corresponds to a very high level of damage (section 2.3). Similar results are
obtained with smaller values down to 0.4—0.5. Below this value, fR acts as
f? so that the development of the localization zones is inhibited: this, again,
leads to flat fracture. Similarly, using the localization criterion as a rupture
criterion at each Gauss point will probably lead to the same results.

4.3.2 Viscosity

Figure 13 compares the macroscopic response and the development of
localization in a round bar for which the material is either plastic or
viscoplastic.

In the case of plasticity, it can be seen that indicators based on tangent and
consistent matrix give very similar results in terms of zones where localization
occurs. At the onset of the cup–cone formation, the localization “wings”
extend over about 10 elements. However based on the results of section 3.4,
it is very likely that the actual localization zone is overestimated. In the case
of viscoplasticity, zones where min~n ~n.Lc.~n are negative correspond to zones
where the normalized growth factor ω/(ṗ/p) is larger than 1000 showing also
a good correspondence between both criteria. These zones only extend over
5 elements.

Calculations were also carried out with a much higher viscosity (e.g. K =
1000) or a higher strain rate (e.g. 1000 s−1). The localization zones shrink and
eventually vanish ; this leads to flat fracture surfaces as shown on figure 13. As
noted in section 2.1 changing the viscosity using the Rousselier model leads
to a higher porosity growth rate and a higher ration σ?/σ1 thus increasing the
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possibility of normal fracture. The viscosity effect was therefore checked using
the Gurson model with q2 = 1.15 and cax6r elements. As necking is more
pronounced in that case the mesh had to be slightly redesigned to obtain
approximatively square elements at the onset of rupture. Results are also
shown in figure 13 indicating that cup–cone formation is also suppressed in
that case.

4.4 Plane strain specimens

Results obtained with plane strain specimens are consistent with those
obtained on round bars. Some typical results are shown in figure 14. Necking
occurs, so that failure is initiated at the center of the specimen. As it is easier
to form localization bands in this case, slant fracture is obtained with the
Gurson model for Nh = 40 except when using the f? function.

5 Summary — Concluding remarks.

In this study, the formation of cup–cone and slant fracture has been analyzed
using the FE method. Constitutive equations are based on the Rousselier and
Gurson models including viscosity and damage nucleation. Indicators are also
computed to detect zones where localization of deformation and damage can
occur.

For plastic behavior, the localization indicator is based on Rice’s analysis of
bifurcation. For time dependent plasticity, the indicator uses the perturbation
analysis. It is also proposed to use the consistent tangent matrix to derive
a localization criterion similar to Rice’s condition for bifurcation but which
can be used for both plastic and viscoplastic materials. Comparison of the
three indicators shows that they give consistent descriptions of the cup–cone
development in bars.

Cup–cone formation can be analyzed considering the size of the zone (hereafter
referred to as LZ) where localization occurs and where the material is not yet
highly damaged (f > 20, 30%) or broken. After necking, localization occurs
first at the center of the specimen. However the LZ remains small due to the
axisymmetric deformation state prevailing at the center of the specimen. As
the central crack extends, the LZ can grow so that the cup–cone can be formed.
Based on the size of the LZ, most of the computed effects can be interpreted:

Mesh size: When the mesh size is too coarse to capture the LZ, cup–cone
cannot be formed. In addition, assuming that the mesh size is a material
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characteristic parameter should imply that cup–cone is more likely to appear
in large specimens.

Viscosity: Viscosity has a regularizing effect which lead to the diminution
of the LZ. Increasing viscosity will lead to flat fracture.

Strain rate: For a given viscosity, increasing the strain rate also limits
localization thus promoting flat fracture. This result is in agreement with
creep experiments carried out by Kobayashi et al. (1998) on notched
aluminum bars. Under a high mean stress (30 MPa, high strain rate)
specimens exhibit a flat fracture surface whereas under low stress (16 MPa,
low strain rate) cup–cone fracture is formed.

Use of f?: The f? function employed in the GTN model can cause the
crack path to remain flat. As its derivative with respect to porosity is
discontinuous, it may suddenly induce localization as f reaches fc at one
single Gauss point whereas the surrounding Gauss points remain in a state
far from instability. This process inhibits the formation of a large LZ and
therefore of crack deviation unless fc is large enough so that localization
occurs for lower values of the porosity. This suggests also that it would
be more appropriate to adjust q1 and q2 with a high value of fc used for
numerical purposes only. This solution was in fact adopted by Gullerud et al.
(2000) ; q1 and q2 can be adjusted from unit cell calculations as in (Faleskog
et al., 1998).

Nucleation: Strain controlled nucleation favors cup–cone fracture, as this
mechanism induces damage in the plastic “wings” formed ahead of the
central penny shaped crack.

Similar conclusions can be drawn from the study of round notched bars. In
plane strain specimens slant fracture can be more easily obtained; once again
using f? can produce flat fracture.

The comparison of constitutive models shows that cup–cone is formed more
easily when employing the Rousselier model that the Gurson model even when
the f? function is not used. This is attributed to the shape of the yield function;
in the case of the Rousselier model, the presence of a vertex for a tensile
hydrostatic stress state implies that the deformation rate tensor always keeps
a shear component. This inhibits pure opening mode fracture. It is interesting
to note that calculations (Koplik and Needleman, 1988; Brocks et al., 1995) on
axisymmetric unit cells indicate that during void coalescence the macroscopic
strain rate tensor has its radial and hoop component equal to zero. Assuming
isotropy and using the normality rule implies that the yield surface is then
a straight line of slope −3/2 in the σeq—σkk/3 plane (figure 2) (Thomason,
1985). Such a behavior can be accounted by the Rousselier model although it
was not explicitly designed for this purpose. On the other hand, the Gurson
model does not represent this behavior; moreover the use of f? tends to
increase the volumetric part of the deformation. An other solution could be
to use a combination of the Gurson model (low porosity) and of the model
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proposed by Fleck et al. (1992) (high porosity) which presents a vertex as
done in (Redanz and Tvergaard, 1999). An alternative solution could consist
of using a combination of the Gurson model and of the straight line yield
surface derived by Thomason (1985). In (Redanz and Tvergaard, 1999) and
(Fleck et al., 1992) the transition porosity between both model is fixed; it could
also be derived from micromechanical models of coalescence as in (Thomason,
1985; Zhang and Niemi, 1995; Benzerga et al., 1999).
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Table 1
Area reductions at fracture.

K pl. 1 5 10 25 50

θ (◦) 45.65 45.73 46.06 46.49 46.95 40.75

ψ (◦) 88.67 88.53 87.88 87.03 84.05 78.44

f (%) 1.31 1.45 2.14 3.01 6.32 13.1

ε 1.29 1.32 1.44 1.55 1.80 2.09

Table 2
Angles θ and ψ (figure 3), porosity and deformation (ε) at localization predicted

using the consistent tangent matrix for elastoplastic and elastoviscoplastic behaviors
(Gurson model, ε̇ = 2. 10−3 s−1, ∆ε = 0.5%). The evolution of the corresponding
localization indicator is given on figure 6.

28



FE calculation Localization analysis

K εD εB ω̃D ω̃B εL

pl. 1.28 1.66 — — 1.29

1 1.34 1.67 6882 61150 1.32

5 1.43 1.67 2350 12800 1.44

10 1.53 1.69 2300 6860 1.55

25 1.67 1.71 2252 2990 1.80

50 1.76 1.77 1850 1900 2.09

100 1.82 1.83 1140 1250 2.54

εD deformation at which min detAc < 0 at, at least one Gauss
point in the FE calculation.

εB deformation at which a localization band is formed in the
FE calculation.

ω̃D normalized growth factor corresponding to εD.

ω̃B normalized growth factor corresponding to εB.

εL deformation at which min detAc < 0 for the homogeneous
analysis.

Table 3
Comparison of FE calculations and localization analysis (∆ε = 0.5%, ε̇ = 2. 10−3).
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Fig. 1. Examples of experimentally observed cup–cone and slant fractures: (a,b)
Isotropic material. (c,d) Anisotropic material ; the arrow indicates a secondary
deformation band. (e,f) Plane strain specimen ; secondary bands can also be
observed on the surface. (g,h) Notched bar.
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Fig. 2. Comparison of the Gurson and Rousselier yield surfaces.

31



Fig. 3. Rupture mode map.

32



Fig. 4. Minimum value of the localization indicator as a function of the deformation
using the elastoplastic tangent matrix (dashed line) and for consistent tangent
matrix (full line) with ∆ε = 0.1, 0.2, 0.5, 1.0% (plane strain, Gurson model).
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Fig. 5. (a) Localization indicator ω/(ṗ/p) as a function of the deformation for
different values of the creep parameter K (b) Localization angles as a function
of the deformation. (ε̇ = 2. 10−3 s−1, Gurson model).
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Fig. 6. Minimum value of the localization indicator as a function of deformation
using the consistent tangent matrix for an elastoviscoplastic material (full lines) for
different values of the creep parameter K (∆ε = 0.5% and ε̇ = 2. 10−3, Gurson
model). The elastoplastic case is indicated by dashed lines.
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Fig. 7. Effect of mesh refinement and element initial aspect ratio on the formation
of the cup–cone (cax8r elements).

36



Fig. 8. Effect of the element type on the formation of the cup–cone (cax8r, cax6r,
cax4 and cax3 elements). A cup–cone is formed using cax4 and Nh = 80. A
calculation with initial heterogeneous distribution of the porosity is also shown :
a cup–cone with a “zigzag” is formed. The crack path in the undeformed mesh is
also shown for cax8r and cax6r elements. The arrow indicates a change in the crack
direction in the undeformed mesh.

Fig. 9. Fracture path in notched round specimens.
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Fig. 10. Load vs. diameter reduction curve and cup–cone formation for a round bar.
Contour maps indicate damage (white: f = 0, black: f > 0.1) and the localization
indicator (white: elastic unloading, gray: plastic loading, black plastic loading and
negative indicator).
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Fig. 11. Predicted angle of localization θ as a function of the element position along
the radial direction and comparison with the actual numerical crack orientation
(dots).

Fig. 12. Simulated fracture of round bars using the Gurson model with different sets
of parameters.
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Fig. 13. Effect of viscosity on the macroscopic behavior and on the cup–cone
formation.

Fig. 14. Fracture path in plane strain specimens for different models.
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A Calculation of the elastoplastic tangent matrix: Lt.

The rate equations governing the evolution of the state variables are:

ε̇e = ε̇− (1− f)ṗυ (A.1)

ḟ = (1− f)2ṗυ : 1 + Anṗ (A.2)

ṗ= consistency (A.3)

The consistency condition φ̇ = 0 yields:

ṗ =
1

h
υ : C : ε̇ (A.4)

with h = (1− f)υ : C : υ +H − [(1− f)2υ : 1 + An]σ?,f

H = dR/dp is the hardening modulus. The derivative σ?,f = ∂σ?/∂f can be
computed (in the case of the Gurson model) as:

∂σ?
∂f

= − 1

χ

∂Φ

∂f
(A.5)

with χ = ∂Φ/∂σ?. In the following, it will be assumed that h > 0. h = 0
can be encountered for low porosities and high stress triaxiality ratios. In this
case, the constitutive equations cannot be integrated for a prescribed strain
rate tensor (snap back effect). Finally the elastoplastic tangent matrix is given
by:

Lp = C− 1− f
h

(C : υ)⊗ (υ : C) (A.6)

which is a special case of the more general form studied in (Rudnicki and Rice,
1975) for instance.

B Perturbation analysis: calculation of Hp

In the case of viscoplasticity, the rate equations governing the evolution of the
elastic strain and the porosity are still given by eq. A.1 and A.2. The evolution
of p is given by the viscoplastic flow law:

ε̇e = ε̇− (1− f)Fυ ≡ Fe (B.1)

ḟ = ((1− f)2υ : 1 + An)F≡ Ff (B.2)

ṗ = F(φ) ≡ Fp (B.3)
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The vector F introduced in section 3.2, is then written as: F(Z, ε̇) =
(Fe, Ff , Fp) Using the following notations,

N =
∂υ

∂σ
=
∂2σ?
∂σ2

=
1

χ2

∂2Φ

∂σ∂σ?
⊗ ∂Φ

∂σ
− 1

χ

∂2Φ

∂σ2
(B.4)

υ,f =
∂υ

∂f
=

∂2σ?
∂σ∂f

=
1

χ2

∂2Φ

∂σ?∂f

∂Φ

∂σ
− 1

χ

∂2Φ

∂σ∂f
(B.5)

A′n =
dAn
dp

(B.6)

F′=
∂F

∂φ
(B.7)

the partial derivative needed to compute Lp are given by:

∂Fe

∂εe
=−(1− f)FN : C− (1− f)F′(υ : C)⊗ υ

∂Fe

∂f
= F (υ − (1− f)υ,f )− (1− f)F′σ?,fυ

∂Fe

∂p
= (1− f)F′Hυ

∂Ff

∂εe
= (1− f)2FN : C : 1 + ((1− f)2υ : 1 + An)F′υ : C

∂Ff

∂f
= F(1− f) ((1− f)υ,f : 1− 2υ : 1) + ((1− f)2υ : 1 + An)F′σ?,f

∂Ff

∂p
=A′nF− ((1− f)2υ : 1 + An)F′H

∂Fp

∂εe
= F′υ : C

∂Fp

∂f
= F′σ?,f

∂Fp

∂p
=−F′H

One also gets:

∂F

∂ε
= (I,0,0) (B.8)
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C Calculation of the consistent tangent matrix: Lc

The fully implicit integration of the model is obtained using a time
discretization of the rate equations A.1, A.2 and A.3 or B.3

∆εe = ∆ε− (1− f)∆pυ ≡ F?
e (C.1)

∆f = [(1− f)2υ : 1 + An]∆p ≡ F?
f (C.2)

All quantities should be considered at the end of the time increment. The
equation corresponding to ∆p is written as:

0 = σ? −R ≡ F?
p (C.3)

in the case of plasticity. This condition expresses the fact that the material
lies on the yield surface at the end of the time increment. In the case of a
viscoplastic material, the previous equation is replaced by:

∆p = F(φ)∆t ≡ F?
p (C.4)

The matrix I0 appearing in eq. 29, is therefore the unity matrix in the case of
viscoplasticity. In the case of plasticity, its diagonal term corresponding to p
is set to zero. The function F? is given by (F?

e,F
?
f ,F

?
p).

The derivative ∂F?/∂ε and ∂F?/∂Z can then be calculated noting that
∂∆x/∂x = 1, ∀x. One gets:

∂F?

∂ε
= (I,0,0) (C.5)

The derivatives of F? are:
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∂F?
e

∂εe
=−(1− f)∆pN : C

∂F?
e

∂f
= ∆p (υ − (1− f)υ,f )

∂F?
e

∂p
=−(1− f)υ

∂F?
f

∂εe
= (1− f)2∆pN : C : 1

∂F?
f

∂f
= ∆p(1− f) ((1− f)υ,f : 1− 2υ : 1)

∂F?
f

∂p
= (1− f)2υ : 1 + An + A′n∆p

∂F?
p

∂εe
=

F′∆tυ : C vp

υ : C p

∂F?
p

∂f
=

F′∆tσ?,f vp

σ?,f p

∂F?
p

∂p
=

−F′∆tH vp

−H p
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