N

N

Correlation functions of crystal atoms as a function of
the distance to a free surface

J. Lajzerowicz, Leonard Dobrzynski

» To cite this version:

J. Lajzerowicz, Leonard Dobrzynski. Correlation functions of crystal atoms as a function of the dis-
tance to a free surface. Physical Review B, 1976, 14 (6), pp.2695-2697. 10.1103/PhysRevB.14.2695 .
hal-04070514

HAL Id: hal-04070514
https://hal.science/hal-04070514
Submitted on 15 Apr 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04070514
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW B

VOLUME 14, NUMBER 6

1S SEPTEMBER 1976
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We consider the correlation functions between two crystal atoms situated in the vicinity of a free surface.
Using an isotropic elastic continuum, we find that the difference between these correlation functions when one
introduces a free surface into an infinite solid is proportional to the inverse of the depth, and argue that the
derived coefficient should be accurate to within a few percent even one layer below the surface.

We demonstrated recently! that the difference
between the surface mean-square displacement
(MSD) and the bulk one is proportional to the in-
verse of the depth c. However, this result was
obtained from a well-defined model? not rotational-
ly invariant for surface atoms. Therefore the
coefficient of the 1/c term could not exhibit the
right dependence on the modulus of rigidity and
the Poisson’s ratio. This suggested that such a
result can be obtained in the frame of elasticity
theory. We give here this coefficient for an iso-
tropic solid bounded by a free surface, as well as
the difference due to a free surface. The result
also applies to certain correlation functions.

We use for this purpose a solution given by
Mindlin® of the elasticity equations for a homoge-
neous isotropic solid for the case of a concentrated
force acting in the inside of a semi-infinite solid.
Let us first show how these two problems are con-
nected. -

When a force P is applied at a point ?1, this
point experiences a displacement {u,) and another
point T, of the medium has a displacement (uz)
This displacement (u,) is related to the force P
acting at r1 by the tensor G(r,, rl) usually called
the Green’s function:

() = G(Ty, T,)P . (1)

In linear-response theory, this tensor is related
to the correlation function (U,, @,). This relation
is obtained easily in the following manner. Let
H, and H be the Hamiltonians of the system, re-
spectively, without the force P and with this force

H=Hy,-P -4,. (2)
Let us introduce the partition function
Z(P)=(e"), (3)

where ( ) denotes the expection value, and

B:(kBT)-ly (4)

kg being the Boltzmann constant and T the absolute
temperature,
The mean value of u, is then

(0,) = (U, €77/ Z (5)

To first order in Bu1 (expansmn valid at high
temperatures), this mean value is

1+Bu1 P)ﬁ
-BHO 1+BU1 (6)

In the absence of the force 5, the mean values of
u, and u, vanish and

(@) = B(8, +u)P . (7

Comparing this result with the definition (1), one
obtains the Green’s function

G(Ty, 1) = B(U, +4,) . (8)

This classic relation was also introduced in another
manner in our recent paper [Eq. (10) in Ref. 1].

A long time ago, Mindlin® derived the explicit
expressions (1) for the displacements due to a
force P applied at a point (0, 0, +c) of a semi-in-
finite solid bounded by the plane z =0, the positive
z axis penetrating into the body (see Fig. 1). He
introduced G as the modulus of rigidity, u as the
Poisson’s ratio, (u,, u,, u;) as the displacements
of the point (x, v, 2), 7% as x2+)®+2%, R, as the
distance between (¥, y, 2) and (0, 0, +c), and R,
as the distance between (x, v, z) and (0, 0, - c).

He obtained?® the following expressions in the
frame of an isotropic elastic approach:

(i) When the force P acts in the positive z direc-
tion
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(uy(x, v, 2)) = (u,(x, v, z)):m}:—lr_—u-) <__k_3,_ +(3—422(Z—C) _ g-a(R:il(zl+cz)u) 6021(2§+C)) , (9)

P 3-4p 8(1—u)2—(3 4u) (z—c)2 (3-4p)(z+cP-2cz 6Bcz(z+c)
S R Terer ) < R, R R} TR ) (10)

Combining the identities (1) and (8) gives for the correlation functions

(uy(x, ¥, 2) 4,(0, 0, ¢)) = (1/BP) (y(x, y, 2)),

and these can now be evaluated with (9) and (10).

0=x’y’z

(11)

’

(ii) When the force P acts in the positive x direction

(. 2)) = p 3-4p 1 x? (3 4p)x? L2z (1 3x2) 41-p)(1- 2u) (4 x2 )]
R TN Tel P R, "R TR} Ry RZ) " TRyvz+c TR,(R,+z+0))]"’
(12)
__ Pxy 1 3-4p 6cz 4(1-pu)(1-2u)
w6y, = T (E{ YR TR T RyBye2r0) (13)
x z—-c (3- 4u)(z—-c) 6cz(z +c¢) 41-p)(1- Zu)) 1
= . 4
Guln, 3, 2= 16nc(1—u)( R, 7R *RyR, +2+0) 1)
{
In the same way as above, the correlation func- 1 kB
tion is (,(0, 0, €) us(7y, 0, ¢))5 = 4n Gry (19)

(us(x, y, 2)1,(0, 0, c)) = (1/8P) (uy(%, ¥, 2)),

o=x,92. (15)

Let us note that in the above expressions (9)-
(15) we have two types of terms: first those that
depend on the relative positions of the points (x,
9, 2) and (0, 0, +¢), second those that depend on
the relative positions of the point (x, y, 2) and of
the image point (0, 0, —¢).

The first terms give the bulk contribution
(,+u,)p to the correlation functions. Let us note
that (4, 1)3 diverge when x=y=0 and z=c, be-
cause the theory of elasticity is no longer valid in
this atomic limit, However let us consider two
points, for example, (0, 0, ¢) and (7, 0, ¢) with 7,
«¢. From Egs. (10) and (11), one obtains in this
limit

(10, 0, €)1, (7, 0, €)) = (,(0, 0, ¢) u, (7o, 0, ¢))g
L8a- pf+1) kT

*Ber(l-p) Ge T
(16)
where
1 3~ 4u. kB
(4,0, 0, ¢) u, (75, 0, )y g = 167 1-4 Gr,’ 17

and from the Eqs. (12) and (15)
<ux(0y 0, c)u,(ru, 0, C)> = <ux<0y 0, C) ux(roy 0, C)>B

7-12u+8u2 kT

*T8ar(1-p) Ge ’ (18)

where

The bulk MSD are isotropic ((u2)p= @2 z=(u?),).
Owing to the invariance of the trace of the matrix
U,(0, 0, ¢) uy(7,, 0, ¢)), we have to calculate the
bulk mean-square displacements from

— (0,0,-¢)

Plane z:0 |

xV

FIG. 1. Geometry and notation used in the text.
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<uczy>B= 32_ <uz(07 0, c) uz(TO’ 0’ c)>B

+é<ux(01 0’ C)ux(’}’o, Oy c)>8; O=x, yv or z.

(20)
Using Eqgs. (17) and (19), we have
1 5-6p kyT
2y _ a2
<u0>B_247T 1_“ G,yo’ o x)y’z' (21)

Let us remark that this result can also be ob-
tained from the fundamental Kelvin solution? for a
force applied at a point in an infinite solid. Final-
ly this bulk mean-square displacements can also
be obtained in the Debye approximation

(25 = (kp/612) (2/c% +1/c2) kpT/p, (22)

where ¢, and ¢, are, respectively, the transverse
and longitudinal speeds of sound, p the mass den-
sity, and &, the Debye cutoff for the propagation
vector. This result is obtained by assuming the
elasticity theory valid in the whole three-dimen-
sional Brillouin zone. The summation on the wave
vector k is stopped at the cutoff |K| =k, such that
one has the right number of vibrational modes.
The modulus of rigidity G and the Poisson’s
ratio p are related® to the speeds of sound by

p=(c?-2c3)/2(c% - c2), (23)
G=pc?, (24)

and the Debye cutoff &, can be related to the lat-
tice parameter a by

sn kS =(2n/a)®. (25)

Using the above expressions, in order to compare
Egs. (21) and (22), one finds the order of magni-
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tude of 7, in function of %,
ro=(m/34a. (26)

However our interest in not here in the bulk MSD
but rather in the difference between them and the
MSD of an atom situated in the vicinity of the sur-
face. This difference is obtained from the Eqgs.
(16) and (18) to be

8(1-pP+1 1

2 T OTE:) P S o e

<u z(o; 07 C)) <uz>B 327TG(1 —_ “) c + ’ (27)
2 ey _T=12p+8p% 1

<ua(09 O’C)> <uu>8—64ﬂc(1—u) P +... s

a=x,y. (28)

These results are obtained here in the frame of
elasticity theory, which, as noticed before, ! can
give only the term of order ¢!, We saw! that
when the frequencies w(k) are calculated to order
k? rather than %, one obtains the second term of or-
der ¢ in the expansions (27) and (28). That term
gave! a correction of only 3%, even at the first
layer under the surface. One can therefore ex-
pect the results (27) and (28) to be good within a
few percent everywhere one or more layers below
the surface.

We understand that some of our results have
recently been derived in a different way.®
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