[Leroi-Gouhan, 1964] Leroi Gourhan A. Translation
of "Le geste et la parole, 2 vols. Albin Michel
eds. Paris. 1964-65). Enlish franslation “Gesture
and Speech”. Cambridge, Massachusetts &
London: MIT Press, 1993.
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Marco Fontana [PERCRO]

Confributors: Massimo Bergamasco
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The property of transparency appears once
direct manipulations of physical objects, i.e.
objects that are in the same space that the
person who manipulate them, with or with-
out mechanical tools, have been mediated by
added tool components when the manipu-
lated object becomes more and more distant
from the space of the user. This situation
needed when objects (resp. humans) are
dangerous for humans (resp. objects), when
there are physically distant, when they are not
at the same scale, etc. In such situations, one
can say that the so-distant object is teleoper-
ated. In teleoperation, two spaces have to be
distinguished: the space of the user on which
the user is manipulating a master device and
the space of the task on which the object is
manipulated by a slave device. The teleopera-
tion chain, ie. all the components between
the space of the user and the space of the
task when they are different, was originally
only mechanical (through tools extension
such as pentographs, etc...). It Progressively,
it included electrical mediation and its corre-
lated components sensors and actuators, and
more recently digital components and com-
puters.

In such context, transparency is a property
of the mediation system. Transparency, i.e.
transparency of the added teleoperation

components, is perfectly achieved if the

operator cannot distinguish between ma-

noeuvring the master device and manoeu-
vring the actual tool.

In teleoperated robotics, lot of works,
technical and theoretical have been per-
formed, and are currently performed, on
transparency [Laurence et al., 1996]. It is
impossible to obtain perfect transparency.
For example this would require an infinite
stiffness of the mechanical components.
Transparency depends on a wide number of
features or parameters of the chain. First of
all, transparency in teleoperation is strongly
affected by the communication time delay
between master and slave [Stanney, 1999].

The ability of a teleoperation system to
provide transparency depends also largely on
the performance of the master device. Ide-
ally, the master device should be able to
emulate any environment encountered by the
tool, from free-space to infinitely stiff obsta-
cles. Its performance depends on its electro-
mechanical design and the algorithms used to
control it. It depends also both to its dynamic
and static properties.

We may observe that, from the point of
view of the user, the master device is actually
a haptic device. Without considering the
properties of the rest of the chain (transmis-
sions and slave devices) in a teleoperation
chain and the properties of the simulated
wotld in a virtual reality situation, some
properties of the master — haptic — device
can be common to both situations. The two
main carachteristics are (see also, [— STABIL-
17Y1):

- Bandwidth, ie. he frequency range over
which the device is capable of exerting
forces Dynamic friction. It is the force that
has to be exerted in order to maintain a
constant low velocity of the haptic device.

- Stiffness [Uebetle et al., 2004], ie. the
maximum achievable stiffness of the ma-
nipulated object (virtual or teleoperated)
that a haptic device is able to restitute. This
depends on the mechanical compliance
and the stiffness of the controller.
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Actually, there is a common agreement to
consider that a perfect transparency is not
needed. The scope of an interface is to inter-
act with a human user so the ideal interface is
the one that achieves the perfect perceptual
transparency. For example the maximum
stiffness of a perfect perceptual transparent
device has to be greater than the maximum
perceivable stiffness by a human operator. In
technical terms, this means that the imped-
ance that is displayed by the device can
slightly differs from the commanded one but
their difference must be not perceivable by
the user.
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TURING MACHINE

John Stewart [COSTECH]

The Turing machine is a theoretical con-
cept, of basic importance for modern com-
puter science and, by extension, for the
computational theory of mind in computer
science. This “machine” was invented, in its
basic principle, by the British mathematician
Alan Turing in the 1930s in order to provide

an operational definition of calculability (or
decidability) in the context of formal symbol
systems [— FormaL symsoL sysTemsl. A Turing
machine has two components, a tape and a
reading/writing head. The tape consists of a
potentially unlimited number of discrete
positions arranged in a linear sequence. Each
position contains a single symbol; it can be
shown that without loss of generality, 3
symbols are sufficient (e.g. 0, 1 and Blank).
The head, at any given step in the operations,
will be in one of a finite number of states,
and it will be situated on one of the positions
on the tape. The head also contains a matrix,
in which the rows correspond to the symbol
written on the current position on the tape;
and the columns to the current state of the
head. Each element in the matrix contains
three items of information :

- The new symbol to be overwritten on the
current position on the tape (this can be
the same as the symbol already present).

- The next position of the head (without loss
of generality, this can be reduced to just
three possibilities, i.e. one step to the left,
one step to the right, or staying on the cur-
rent position).

- The next state of the head.

An important point is that a “mother”
Turing machine can simulate another Turing
machine; and in particular, it can be shown
theoretically that there are certain Turing
machines (defined by the matrix in the head)
which can simulate any other Turing machine
whatsoever. Intuitively, one makes a separa-
tion between the symbols on the tape that are
the data on which the calculation is to be
performed; and another part of the tape
which contains the information of the Turing
machine to be simulated. The mother ma-
chine stores the information concerning its
current state and the symbol on the current
position by way of special states devoted to
such storage; it then moves to the part of the
tape containing information on the “daugh-
ter” machine to be simulated, and looks up
what the daughter machine would have done
in this condition; it stores this information
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and returns to the current position to carry
out the appropriate actions. Turing machines
of this sort which can simulate any other
Turing machines whatsoever are called uni-
versal Turing machines.

An extremely powerful concept in the the-
ory of formal symbol systems is that of for-
mal equivalence: two such systems are
formally equivalent if but only if, for each
legal operation in one system, there is one
and only one legal operation in the other
system, and vice versa (l.e. complete isomozr-
phism). Formal symbol systems that are
formally equivalent can vary not only in their
material instanciation, but also in their syn-
tax. However, from a theoretical point of
view, these variations are totally insignificant.
As far as is known, no actual Turing machine
(with a physical tape and physical head) has
ever been built; the reason is that since other
machines (in particular, computers as we
know them now) are formally equivalent to
universal Turing machines, there is just no
point in building an actual Turing machine.

In other words, a Turing machine does not
refer to any actual physical machine. It is an
abstract, theoretical concept, but an ex-
tremely powerful one which is at the basis of
the actual computers that have been built. In
cognitive science, the computational theory
of mind postulates that the brain is a formal
equivalent of a universal Turing machine.
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USABILITY

Haakon Faste [PERCRO]

There are several definitions of usability.
The most simple and general is: “The extent to
which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of us¢’ - 1ISO
9241, Part 11.

This definition is particularly general be-
cause it refers to all human computer inter-
faces (software and hardware). It includes in
particular enactive interfaces. Therefore an
enactive interface is usable when the follow-
ing three factors are optimized:

- Effectiveness: accuracy and completeness
of the obtained results or of the performed
tasks.

- Efficiency: the resources expended in
relation to the effectiveness.

- (User) Satisfaction: the comfort and ac-
ceptability of the work system to its users
and other people affected by its use.
Nielsen employs usefulness as an umbrella

term for utility and usability [Nielsen, 1994].

- Utility is the question of whether the func-
tionality of the system in principle can do
what is needed.

- Usability is the question of how well users
can use that functionality.

- Usefulness is the issue of whether the
system can be used to achieve some de-
sired goal.

In Nielsen’s definition, usability is the sum
of several factors: learnability, efficiency of
use, memorability, few and non-catastrophic
errors, and subjective satisfaction.

Particularly with regards to user satisfac-
tion, these factors point towards an under-
standing of usability implying not only that
the interface is effective and efficient, but

also that it is useful. While usefulness is not a
requirement of usability, is an integral con-
cern for all interfaces and makes their use
useworthy. The usability of an interface is
given purpose if the interface addresses a
latent underlying human need. The process
of identifying needs is known as needfinding
and is an important aspect of user centred
design and design research [Faste, 1988]
[Patnaik & Becker, 1999]. Designers with
empathy for end users’ needs not only insure
the long-term usefulness of a product’s de-
sign, they are also more well equipped to
address usability issues through their work
[Moggridge, 2006] [Brenda Laurel et al.,
2003].

Usable systems have affordances causing
the user to respond to features of objects and
environments intuitively [Norman, 1990].
Thus usability also hinges on physical and
perceived design aspects of the interface
itself, including its intuitiveness, ergonomics,
multimodal feedback, and the ability to per-
sonalize, customize, and understand the
interaction paradigm. To this end, the use of
control/command metaphots in robotics and
control [— ConTROL METAPHORs] can be useful,
in addition to interaction paradigms learned
over time. In designing usable Enactive
Interfaces, important considerations include,
in addition to useworthiness, the system’s
encumbrance and approachability, clarity of
the control mechanism, latency, range of
movement, and degree of interactivity of the
interface. Effectiveness, efficiency, and en-
joyability of the system can be measured
based on user response.
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Useworthiness is a concept that has been
introduced by Hikan Eftring in his PhD
dissertation [Eftring , 1999].

The purpose of the concept of useworthi-
ness is to focus on the importance of a prod-
uct in the user’s life situation, thereby gaining
increased knowledge of the needs of the user.
The focus of the related concept of usability
[Nielsen, 1994] [Lindgaard, 1994] [Lowgtren,
1993] is more focused on the user interface,
le. the ease and efficiency with which a
product can be used, and to some extent on
the functionality and versatility of the prod-
uct, i.e. the tasks for which the product can
be used. Knowledge of the needs of users
with disabilities can be used not only for
establishing user requirements and develop-
ing more useworthy robots, but also for
developing other technical tools, as well as
for rehabilitation purposes Another purpose

of the concept of useworthiness is to give the

user the initiative and the power. No-one else

can determine what is worth using for the

person concerned. This may seem like a

disadvantage if one wants to develop usewor-

thy technology. However, by gathering expe-
rience of what different people find worth
using it is possible to form a general idea of
what many people who have similar interests
and impairments, who are of the same age,
etc. find worth using, and to develop tech-
nology to suit their requirements. In each
specific situation, one must always engage in

a discussion to determine the needs of the

individual user. In this connection, the con-

cept of useworthiness is a way of prioritizing
all the useful tasks an artefact can be used
for.

Nielsen [Nielsen 1994] employs usefulness
as an umbrella term for utility and usability.
In Nielsen’s conceptual framework:

- Udlity is the question of whether the func-
tionality of the system in principle can do
what is needed.

- Usability is the question of how well users
can use that functionality, how easy it is to
learn how to use the robot, how efficient
the robot is once the user knows how to
use it, how easy it is to remember how to
use it after a period of not using it, how
often minor or catastrophic errors occur,
and how pleasant it is to use.

- Usefulness is the issue of whether the
system can be used to achieve some de-
sired goal. Thus, usefulness is a combina-
tion of utility and usability, i.e. whether the
robot can be used for its intended purpose.
Can the user turn pages in the way that was
intended?

Lindgaard [Lindgaard, 1994] also makes
also a distinction between usability and util-
ity:

- “Usability is related to human performance in the
specific tasks supported by the computer system
and to the user’s attitude towards the system. |...]
Usability is thus expressed non quantifiable,
measurable terms by which to assess when a 'good’
system is 'good enough’”’.
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“Usefulness...”  corresponds to Nielsen’s
concept of utility and “... is a separate entity
which is defined in the requirements capture stage
in terms of the tasks to be supported and explicit
links between tasks, the attainment of which must
be 100% wunless renegotiated and modified during
the system development process”.

An ISO standard provides another defini-
tion of usability (ISO 9241). In this standard,
usability is defined as the extent to which a
product can be used by specified users to
achieve specified goals with effectiveness,
efficiency and satisfaction in a specified
context of use, in which:

- Effectiveness is defined as: measures of
the accuracy and completeness of goals
achieved.

- Efficiency is defined as: measures of the
accuracy and completeness of goals ac-
complished relative to the resources (e.g.
time, human effort) used to achieve the
specific goals.

Using Nielsen’s definition of usability as a
starting-point, Hakan Eftring [Eftring 1999]
introduced the concept of useworthiness as a
combination of utility, usability, and the
user’s high-priority needs.

The same product may have high usewor-
thiness but low usability, which is the case if
the utility of the product is low and the user
interface is unsatisfactory but the product
meets one of the user’s high-priority needs.
The product may be useworthy even though
it is never used. The user knows that the
product is capable of performing a task that
is important to him or her, but for practical
reasons, not necessarily connected to the
product, it is impossible for the user to use
the product. On the other hand, just because
a product is used, it is not necessarily worth
using. The user may be forced to use it or
may have no other alternative, or the product
may not meet the user’s high-priority needs.
The user’s motivation when it comes to using
the system is an important component of the
concept of useworthiness. A high degree of
correspondence between possibilities and
needs leads to high motivation and a desire

to use the system. When the user sees new
possibilities and finds his motivation, his way
of thinking may change. Ingrained patterns
and subconscious limits to what is possible
may be broken, and the user may become
more active and grow as a person.

To conclude, useworthiness is a concept
that moves focus from the technology to the
users - usability can be said to be a system
property, while useworthiness is clearly
something that a human decides. Thus it is a
useful concept to consider in user centred
design processes, and generally when design-
ing enactive systems intended to be consid-
ered worth using by the users.

REFERENCES

[Eftring, 1999] Eftring, H., The Useworthiness of
Robots for People with Physical Disabilities, PhD
dissertation, ava ilable at www.certec.lth.se/
doc/useworthiness/useworthiness.pdf, 1999.

[Lindgaard, 1994] Lindgaard, G., Usability testing
and system evaluation, A guide for designing
useful computer systems. Chapman & Hall, UK.
Paperback ISBN 0-412-46100-5, 1994.

[Lédwgren, 1993] Léwgren, J., Human-Computer
Interaction: What every system developer
should know. Studentlitteratur, Sweden. ISBN 91-
44-39651-1, 1993.

[Nielsen, 1994] Nielsen, J., Usability Engineering. AP
Professional, Academic Press. ISBN 0-12-518406-
9,1994.

RELATED ITEMS

DESIGN AND ENACTION

DESIGN FOR ALL (INCLUSIVE DESIGN)
DESIGN, USER CENTRED

DESIGN PROCESS

INTERFACE DESIGN

USABILITY

DESIGN, VIRTUAL MOCK-UP

BELIEVABILITY_ 182

PRESENCE, IN COMPUTERIZED ENVIRONMENTS

298 ENACTION AND ENACTIVE INTERFACES: A HANDBOOK OF TERMS



V

VIRTUAL REALITY AND
VIRTUAL ENVIRONMENT

Annie Luciani [ACROE&INPG]

Contributors: Pierre Davy [UNIGE], Bart
Kevelham [UNIGE], Ronan Boulic [EPFL], Emilio
Sanchez [CEIT]

These two terms are usually considered as
being synonymous, and are equally used
when speaking about a world that is totally
recreated by computer simulation. They
indeed present similarities, but they also
differ in their history, in the contexts in
which they are used, and finally in the con-
cepts they are carrying.

The term virtual reality has been coined in
1988 by Jaron Lanier [Lanier, 1988]. How-
ever, the same concept has developed under
the name of artificial reality, coined by Myron
Kruger in 1977 [Krueger, 1977] [Krueger,
1983], who claimed the paternity of the
concept. In addition, in 1987, before the
Lanier’s virtual reality, the term artificial
reality had been used by James Foley [Foley,
1987], a renowned researcher in Computer
Graphics. The expressions virtual environ-
ment and virtual world appeared later.

Indeed, in all these expressions, the term
virtual relates to the same concept: “com-
puted by numbers, as opposed to created by
physical matter”. Virtual reality, virtual envi-
ronment, virtual words, etc.: they all require
computers equipped by computer simulation
processes and transducers that transform the
digital representations into a perceptible
expetience (visual, acoustical, mechanical).

However Virtual reality, virtual environ-
ment, virtual words, etc. can be differentiated
by the position of the human in the respec-

tive cases: the immersive position or vis-a-vis
position [— IMMERSION VS. VIS-A-VISI.

Virtual Reality and Virtual Environment:
immersive situation

The Krueger’s and Lanier’s approaches are
indeed similar. Both emphasize the immer-
sive approach, in the continuity of the mean-
ing of virtual reality initiated by the data
glove, data suit and head-mounted display,
that were designed as means of completely
isolating the user from the real world and
putting him within a completely virtual
wortld. Lanier writes: “virtual reality uses the
approach of designing clothing devices, “computer
clothing’, which is worn directly over the sense organs.
The objective is to instrument this in such a way that
you can provide exactly the stimulus to the person's
sense organs that they wonld receive if they were in an
alternate reality". [Lanier, 1988]. This meaning
of virtual reality is synonymous to the mean-
ing of virtual environments, in the sense of
worlds surrounding the user and being ex-
plored by him. Here, the user is here totally
immersed in a virtual (i.e. non real) world. In
these uses, the interactivity with the Virtual
space involves usually the whole human
body, large spatial and visual spaces and 3D
sound rendering. A Virtual Environment may
faithfully recreate an existing real environ-
ment or can be completely fictional [Cadoz,
1994] [Milgram et al., 94]. Correlated ques-
tions are, at least: co-location problem [— Co-
tocatrond, graphical representations of hu-
mans [— Avatar], whole human body motion
capture [— MOTION CONTROL, HIGH-LEVELI, real-
time adaptive visual rendering, etc. Classical
applications are those involving large spatial
space exploration and navigation, but also “as
experimental  platform to study the aliened and
altered states of the consciousness, ...” |Reingold,

1991].

Virtual reality, artificial reality: vis-a-vis
situation

Following the Sutherland’s approach that
grounds the concept of interactive computer

graphics, [Sutherland, 1963], and before, and
conversely, to Lanier, J. Foley adopted the
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vis-a-vis point of view, and introduced force
feedback devices in computer graphics
[Foley, 1987]. The Foley’s meaning refers to
an instrument-in-hand approach. Here, the
virtual world is in front of the users. Users
are acting, manipulating and transforming the
objects of the virtual world, instead of being
immersed in it. Also, usually, the interactivity
involves rarely the whole body, but focuses
on hand and arm manipulation. These virtual
realities implemented first hand interactivity
and visual feedback. They progressively
include, more and more, several sensors,
haptic devices, 3D models, physics and dy-
namics, sound synthesis, hence becoming
more and more multisensorial and enactive.
Basic correlated questions are, at least: accu-
racy of the manipulation, accuracy of the
visual representation of objects, collision
process optimization, dynamics of objects,
precision of force feedback [— Force FreeD-
Back], cooperation between geometrical
models and physical models, etc.

Some remarks

As a first remark, whatever the meaning
chosen, one should also note that virtual
reality and virtual environment computerized
systems are often components to augmented
reality systems and to mixed reality systems
[— REALITY, AUGMENTED AND MIXEDI.

As a second, remark, one can notice that
the way of categorisation we propose here,
based on the distinction between on the one
hand virtual environment / immersion and
on the other hand virtual reality / vis-a-vis,
which allows understanding the differences
between these quite-similar terms, is perfectly
compatible with the enactive concept: the
categorisation is grounded by the type of
relation between the humans and the external
world.

Going further: reducing the gap

The most important challenges of the fu-
ture interactive systems is to develop adap-
tive systems able to merge these two
approaches in order to create really virtual
wortlds in which humans could evolve from

an environment point of view when explos-
ing spaces to a vis-a-vis point of view when
manipulating objects. The merging, however,
is nothing but difficult [— Immers1ON vs. vIs-
A-visl.
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VIRTUAL REALITY
THERAPY

Helena Grillon [EPFL]
Ronan Boulic [EPFL]

Virtual Reality Therapy (VRT) or Virtual
Reality Exposure Therapy (VRET) is a
method of psychotherapy that uses virtual
reality technology to treat patients with anxi-
ety disorders, Post Traumatic Stress Disorder
(PTSD), and several other medical phobias.
It is a therapeutical approach that can over-
come some difficulties inherent to traditional
treatments. It can provide the needed stimuli
for a patient having difficulties imagining the
feared situation. Moreover, it can be used in
privacy and can be tuned to patients’ needs.
This allows to avoid embarrassment and
violation of patient confidentiality and allows
the possibility to stop the exposure at any
time should the patient suffer from a panic
attack. The first research for VRT was done
in the early 1990s [North et al., 1997].

The use of virtual reality therapy to combat
phobias was introduced in the 1990’s by
Barbara O. Rothbaum and Larry F. Hodges
for treating fear of heights, fear of flying, fear
of public speaking and PTSD in Vietnam war
veterans [Hodges et al., 1995] [Klinger, 2005].

Many studies have been conducted regard-
ing the use of virtual reality in therapy:

- Regarding psychological disorders, the use
of virtual reality in the treatment of acro-
phobia, addictions, aero-acrophobia, ago-
raphobia, arachnophobia, claustrophobia,
developmental learning disorders, driving
phobia, eating disorders, fear of public
speaking, male sexual disorders, OCD
(Obsessive Compulsive Disorders), PTSD
(Post-Traumatic Stress Disorders), and so-
cial phobia has been studied [Klinger,
2005].

- Other studies have been led in the field of
distraction from pain [Hoffman, 2004].

Some anxiety provoking scenarios are dif-
ficult to access and are not easily available in
real life. As an example, it would be ex-
tremely difficult for a therapist to fill his/her
office with spiders in order to treat a patient.
The main aim of VRET is to present an
alternative to standard in vivo exposures
when these are difficult to reproduce.

When it comes to enactivity, the aim is not
for the patient to directly influence the scenes
to which he/she is exposed, since this re-
quires the therapist’s judgment. However, the
therapist is able to choose the degree of
anxiety to which the patient is exposed. Even
more, based on the feedback produced by
patient, the therapist can adjust and modulate
the virtual reality program for the exposures
to be fully adapted to the patients’ needs. As
an example, for a patient who fears crowded
areas, he will first be exposed to a scene
depicting a small crowd of maybe 20 people.
Once the patient is able to deal with this
small crowd and the therapist considers that
his anxiety has fallen below a certain thresh-
old (by using physiological measures for
example, such as heart rate or skin conduc-
tance), the degree of exposure will be in-
creased. The patient will then be exposed to a
crowd of maybe 50 people. This cycle will be
repeated until the patient is able to deal with
real life situations.

A higher degree of enactivity can be
achieved by using the physiological measures
and the patient’s visual contact behaviour to
automatically tune the scene to which he is
exposed. However this is not without risks,
so the therapist’s expertise will always remain
essential to assert the patient experience and
adapt the experience in fine.
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VISUAL PERCEPTION

Manfred NUsseck [MPIT]

The visual system, part of the nervous sys-
tem, lets organisms receive, collect and inter-
pret visible stimuli of (reflected) light with
different wavelengths. For developing hu-
man-computer interfaces or applications,
which focus on believability and simulation
of reality, it is most important to know the
basic operating modes of the human visual
system. There are a lot of traps [— ILLusIONS,
visuaLl as well as helpful findings of vision
research, which should be taken into account
for perceptual and technological studies of
enactive interfaces.

Generally, the eye receives light and turns
it into neural impulses that are analyzed and
interpreted by several separated areas of the
visual cortex, which are specialized in differ-
ent aspects of vision. The physiological ap-
proach on visual perception focuses directly
on the nervous system and the visual cortex
and tries to detect the rules of the process of
how patterns of light, falling on the receptors
on the retina, are transformed by neural
networks into patterns of electrical activity
[Hubel, 1989] [Bruce et al., 2003].

A different approach turns away from the
physiological level and concentrates on how

it is possible that light-signals reaching a
perceiver give rise to perceptual experiences
and visually guided actions [Bruce et al,
2003] [Goldstein, 20006]. This field can be
divided into several different theories of
visual perception.

One important theory is the computational
approach to visual perception. It formulates
models of interpretation of information to be
existent in retina images first invented by
Marr. Vision is seen as an (computer) opera-
tion in which a set of symbolic descriptions
of the retinal image is converted into a sym-
bolic shape-oriented representation [Marr,
1982]. The visual system does this by analyz-
ing mathematically how certain intensities in
the images change, co-calculating so called
natural constraints (similar to the regularities
of the Gestalt theory). Marr’s work-in-
progress influenced later the so called feature
integration theory [Treisman, 1998].

Another important approach emphasizes
and investigates the information itself avail-
able in extended spatial and temporal pat-
terns in the optical array. It situates the
human in an action-perception-loop and tries
to describe the reciprocal process of how
perceived information influences the move-
ment of an observer and its movements
influence in return following percepts. This
ecological theory, invented by Gibson [Gib-
son, 19799, takes not the retinal image as the
starting point, but the ambient optical array,
which an observer actively samples. Gibson
maintains that optic flow and disturbances in
the structure of the total optic array provide
information cues for the perceptual impres-
sion, rather then computable symbols.

To avoid perceptual misinterpretations and
to clarify communication about it, this
knowledge is important for developing be-
lievable enactive interfaces and applications.
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LOOMABLE EXPERIENCE

Mounia Ziat [COSTECH]

Contributors: Armen Khatchatourov
[COSTECH], John Stewart [COSTECH]

The zoom as a form of human experience
appeared historically with the invention of
optical instruments. Developmentally, it also
requires learning in order to become an
integral part of human perception. This
zoomable perception is enactive, in the sense
that it only through action that the subject
brings forth a knowledge and a meaning of
this world of varying scales. Directly inspired
from cinematographic zoom, zoomable user
interfaces [— ZooMABLE INTERFACES] can pro-
vide the affordance [— Arrorpances] of loco-
motion, in the sense that subjects can
experience multi-scale navigation as a fore-
shortening of distances that enable them to
approach the object of perception. By invent-
ing these instruments of enlargement, human
beings have instrumented their eyes and
increased their perceptual capabilities to
scrutinize on one hand the microscopically
tiny and on the other the confines of the
universe. There is a biological precedent, i.e.
the eye of the eagle which, thanks to a spe-
cialized anatomy, confers a magnifying glass
effect when observing the ground during
flight.

There are several types of zooming tech-
niques [— ZoomasLe 1nTERFACEs]. The original-
ity of the semantic zoom (compared to a
bitmap or geometrical zoom) is that it pro-
vides a feed-back on the magnification factor,
because each element of semantic content is
associated with a certain level in the scale. As
concerns the nature of the subjective experi-
ence of the user — is it the object which
increases in size, or does the user approach

the object? — the semantic zoom is interesting
because both types of experience can occur.
When the subject zooms on an object, sev-
eral levels of zoom are performed before the
qualitative change in semantic content oc-
curs, i.e. during this phase the object does
not change its appearance. This phase is
experienced as an enlargement of the size of
the object. When the semantic content
changes, however, the subject is conscious of
perceiving more details and thus has the
impression of moving closer to the object in
the dimension of depth. Thus, the navigation
occurs in two steps : an initial navigation
without depth, and then a navigation with
depth which is experienced as an extension
of the body on the axis of scales. In other
words, if depth is experienced on the axis of
scales, then the subject has the experience of
approaching the object. Conversely, if depth
is not experienced, the subject has the im-
pression that the object is expanding.

In the case where access to depth is
achieved, a zoomable user interface simulates
the affordance of locomotion, since the
subject has the impression of approaching
the object (or that the object is approaching
the observer). On the other hand, the classi-
cal mode of zoom does not give the impres-
sion of navigating in depth and therefore
does not afford displacement.

From the point of view of the optical array
[— ARRAY, cLoBALl, this is translated by a
symmetrical radial flow in the case of a clas-
sical zoom (Guiard et al., 2005); but by an
asymmetrical radial flow in the case of a
semantic zoom or a 3D zoom. These two
types of flow “have in common that they specify a
progression in the position of the observer with respect
to the document. |...] These flows thus both give
information on displacements that are directly usabl.
However, only the second (asymmetrical) flow carries
prospective information”.

To sum up, there are two distinct types of
zoomable experience : the enlarging zoom
and the approaching zoom. The enlarging
zoom is essentially a 2D zoom which, directly
inspired by a magnifying glass, makes it
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possible to increase or to decrease the di-
mensions of an image (digital zoom, cinema
zoom, magnifying glass). The approaching
zoom is a 3D zoom that makes it possible to
visually bring the objects nearer or further
(optical zoom, travelling, microscope / tele-
scope). Zoomable user interfaces can be
considered as 2DY2 objects (Perlin and Fox,
1993).

Another criterion that intervenes with
zoomable interfaces is the concept of re-
versible occlusion. As introduced by Gibson,
it rests on the fact that a surface hidden by
another surface can be revealed to an ob-
server in movement, and conversely some
parts of a previously visible surface can be
occluded when the observer reverses the
trajectory. For Gibson, all locomotion is
essentially reversible, so that any surface
occluded by one direction of locomotion will
be revealed again by the reverse movement
(Gibson, 1979). In terms of the optical array,
one speaks of projected surfaces to designate
visible surfaces. Conversely, hidden surfaces
have no solid angle in the ambiant optical
array and so they are said to be non-projected
in the array.

Just as in the real world, in a zoomable vir-
tual world objects tend to occlude each other.
An object that exists at a certain level of
zoom is occluded by a semantically different
object at a different level of zoom. This can
be an advantage in the sense that the infor-
mation is distributed over different levels of
zoom; but it has the disadvantage of the desert
Jfog phenomenon (Jul et Furnas, 1998), i.e. the
empty space within which the user can lose
himself after a certain time spent in navigat-
ing at several different scales. After several
successive levels of zoom, it is necessary to
apply a reversible occlusion so as to find
again the information present on the context
page. Thus, with a zoomable interface, the
transfer to a virtual world of the principle of
reversible occlusion is successful since it is
sufficient to return on one’s tracks to recover
the contextual information. This is made
possible by the affordance of movement in

depth.
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LOOMABLE INTERFACES

Mounia Ziat [COSTECH]

Contributors: Armen Khatchatourov
[COSTECH], John Stewart [COSTECH]

The appearance of personal computers has
opened to theirs users general purpose tasks
such as word processing, Internet browsing,
multimedia playback, computer game play,
etc. If all these tasks benefit of computer
hardware evolution (power, memory, etc.),
the display possibilities and interaction means
remain the same since twenty years (Beau-
douin-Lafon, 2004). The field of information
visualization plays an important and crucial
role for visual representation possibilities
because it considers limits and possibilities of
the human perception and the display sup-
port. One of the interfaces created in the
field of information visualization are zoom-
able user interfaces (ZUI) which give an
efficient and promising mean of interaction
to represent and manipulate great quantity of
information. The principle of navigation
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inside zoomable user interfaces is based on
the space-scale diagrams developed by Fur-
nas and Bederson (1995). The objects con-
taining the information are organized in the
spatial dimension but also in the scale dimen-
sion. In order to access the information, the
user interacts directly with the information
space using mainly pans and zooms. By
contrast with the classic zoom or bitmap
zoom (see below), which is discrete, the
zoom employed in ZUI, is a continuous
geometrical zoom (see below) which gives
the user a feel of flying through a space. In
addition to the continuous zoom, the graphic
content of the information changes at each
level by the technique of semantic zoom (see
below). The main improvement brought
about by zoomable interfaces is a reduction
in the amount of information that is dis-
played at any one point in time. This reduc-
tion alleviates the cognitive overload during
navigation in a large data-base, because the
principle underlying these interfaces is much
more intuitive. These interfaces do however
require an amplification of the database itself
which must contain a number of different,
hierarchically structured representations of
the object.

Below we present the different types of
zoom.

Bitmap zoom

A bitmap zoom consists of performing an
enlargement of a pixellized bitmap image.
The zoom is carried out directly on the pix-
els, so that the zoom corresponds to a
change in resolution. The bitmap zoom is
discrete (the unit is the pixel) and its range of
variation is limited (it is bounded in both
directions). Thus: at the lowest level of zoom,
the whole image is reduced to a single pixel.
In the other direction, the more the size of
the pixels is increased, the resolution is re-
duced. In some software applications, when
the image is enlarged additional pixels are
created; but even this inevitably leads to a
blurring of the image. This type of zoom is
used in Paint software for MS Windows,
Adobe Photoshop.

Geometrical zoom

When a zoom is performed on a vectorial
image, the curves which compose the image
are automatically recalculated for the rescaled
image. Thus, contrary to the bitmap image
where the objects are composed of pixels, a
vectorial image is composed of points, lines
and mathematical curves. For example, a
straight line is defined solely by the co-
ordinates of the two extreme points. A circle
is defined solely by the co-ordinates of its
centre and its radius. Thus, all the transfor-
mations involved in rescaling the image
change only these mathematical values and
do not alter the quality of the curves. The
main advantage of a geometrical zoom is that
it does not suffer from the phenomenon of
pixelization when all or part of the image is
zoomed. With a bitmap image composed of
discrete points (pixels), when a forward
zoom (magnification) is performed, the pixels
become clearly visible (this phenomenon is
familiar to users of software such as Paint).
By contrast, in vectorial mode, all the com-
ponents of the image are mathematical
curves which are not intrinsically pixelized.
When performing a forward zoom, the com-
puter recalculates all the curves so as to adapt
them to the required scale. This geometrical
zoom is unlimited since whatever the scale,
the contours are perfect and the images
appear clean. This type of zoom is used in
software for vectorial drawing as Corel Draw,
Adobe Illustrator.

Semantic zoom

The semantic zoom is an articulation be-
tween the geometrical zoom, which makes it
possible to provide greater detail, and the
logical zoom which provides more informa-
tion. Goldstein & Roth (1994) define access
to a certain level of detail as follows: the user
changes the granularity of the data which are
the focus of attention. Since Goldstein &
Roth use this definition to describe hierarchi-
cally structured data, this definition can also
be used to give an account of the technique
of semantic zoom. In other words, a seman-
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tic zoom is just a modification in the struc-
ture of data which are organized hierarchi-
cally and presented at different levels of
granularity. By contrast with an ordinary
zoom where the object has just a single rep-
resentation with different degrees of resolu-
tion, the object in the environment of a
semantic zoom has a number of different
representations in the database of the inter-
face. The idea of using a semantic zoom as
the basis for interaction has been proposed
by Perlin & Fox (1993) with the Pad inter-
face, as an alternative to the WIMP para-
digm. In Pad, a hierarchy is created where at
the lowest level the object resembles a legend
or a title, and at the highest level the object is
a (part of) the complete document. This
technique has been taken up by Frank &
Timpf (1994): in order to render this intelli-
gent zoom operational, use a hierarchical
tree-structure to display representations of
geographical maps at different scales. Thus,
the semantic zoom changes the form and the
context in which the information is pre-
sented. For example, the display of a digital
clock can differ according to the scale. In an
initial median view, the clock displays the
time of day and the date. If the user performs
a forward zoom, the form of the clock
changes and displays the minutes and sec-
onds. With a backward zoom, the time of day
disappears and only the date and year are
displayed (Stephens 2003). The advantage of
the semantic zoom is that it avoids the use of
deformed views such as the Fisheye (Leung
and Appetrley, 1994). This advantage is linked
to the use of a semantic transition between
the general view and the detailed view (Mod-
jeska, 1997). This type of zoom is used in
zoomable user interfaces.

The use of the type zoom depends on the
task. For example, it is more judicious to use
bitmap zoom to modify pictures because one
works on pixels, but it is more recommended
to use geometrical or semantic zoom when
one works on the display of a great amount
of data. New techniques of interaction, as
ZUI have the advantage to be more intuitive

and natural. A couple of ZUI examples are
provided in the Related Document field.
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ZOOM, HAPTIC

Mounia Ziat [COSTECH]

Contributors: Armen Khatchatourov
[COSTECH], John Stewart [COSTECH]

A zoomable experience [— Z00MABLE EXPE-
riencel iIs generally considered as visual.
However, the use of sensory substitution

ENACTION AND ENACTIVE INTERFACES: A HANDBOOK OF TERMS 307



devices [— SENSORY SYSTEMS]
give us the possibility to experience in a given
perceptual modality what is usually experi-

enced in another.

SUBSTITUTION

In general, a zoom corresponds to a
change in the resolution of an object. This
can be represented as a window of constant
size moving on a vertical axis of scales (Fut-
nas and Bederson, 1995). If the object be-
comes small relative to the window, this
corresponds to moving away; if the object
becomes large relative to the window, this
corresponds to a movement towards the
object. It is the relation between the size of
the image and the size of the window which
defines the level of zoom; this can be ex-
pressed by the formula z = I/F, where z is
the level of zoom, I the size of the object,
and F the size of the window.

On the basis of this formula, we can exam-
ine the situation when the size of the image
remains constant, but the size of the window
changes. In this case, when the size of the
window F increases, the level of zoom de-
creases; when the size of the window de-
creases, the level of zoom increases.
Technically, this situation is functionally
equivalent to the classic zoom.

The principle used for visual zoom can be
used for haptic modality. Here we provide an
example of use of the haptic zoom with a
sensory substitution device named Tactos
(Lenay et al., 2007). This device allows the
display of 2D graphical objects by mean of
the haptic modality. Tactos makes it possible
to explore 2D graphical objects by moving a
stylus on a graphic tablet. These displace-
ments of the stylus command the displace-
ment of a the virtual window (or the matrix
of receptor field) on the computer screen,
and which give rise to a tactile stimulus
(namely a dynamic pattern on Braille cells) if
the receptor field encounters a 2D object on
the screen. This window moving on the
screen can be compared to a virtual screen
that moves over fixed numerical objects. By
changing the size of this window, we can
obtain the resolution and precision required.

In haptic zoom, the change of he side of the
window (i.e. receptive field) result in a differ-
ent tactile pattern on Braille cells.

Thus, the smaller the size of the win-
dow/receptor field, the higher the resolution;
the larger the size of the window, the lower
the resolution and the (virtual) zoom. Tech-
nically, this corresponds to a change of scale.
To obtain full functional equivalence with the
classical form of zoom where it is the size of
the object which changes, the movements of
the stylus (and hence the movements of the
receptive field on the computer screen) must
be scaled down in strict proportion to the
size of the window.

Different experimental situations have
been implemented with this interface in order
to define factors which encourage a zoom-
able perception through the haptic modality
(for more details, see Ziat et al.,, 2007). On
one hand, these experiments helped us to
better understand the constitution of a
zoomable perception. A zoomable percep-
tion corresponds to an alternation of expan-
sion and depth, when it is visual; and to
cither a real displacement on a surface or the
displacement of an object relatively to an-
other, when it is haptic.

On the other hand, they reinforce the idea
that a prosthetic perception is submitted to
the same laws than the others perceptual
modalities. Perception by means of prosthe-
sis is a new perceptual experience which can
be constructed in the same way as the natural
perceptual modalites.

To sum up, if the zoom is a perceptual ex-
perience often conceived as visual, it is pos-
sible to constitute this perception with haptic
modality, notwithstanding the fact that the
tactile is not favourable to the depth percep-
tion [— HapTIC DEPTH PERCEPTION] in the real
world (this sense requests the contact with
the object).

In other words, the depth experience can
be the subject of a true substitution within
the framework of the interaction of the
subjects with virtual objects.
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