
HAL Id: hal-04070039
https://hal.science/hal-04070039v3

Preprint submitted on 3 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GJK++: Leveraging Acceleration Methods for Faster
Collision Detection

Louis Montaut, Quentin Le Lidec, Vladimír Petrík, Josef Sivic, Justin
Carpentier

To cite this version:
Louis Montaut, Quentin Le Lidec, Vladimír Petrík, Josef Sivic, Justin Carpentier. GJK++: Lever-
aging Acceleration Methods for Faster Collision Detection. 2023. �hal-04070039v3�

https://hal.science/hal-04070039v3
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON ROBOTICS, ACCEPTED MARCH 2024 1

GJK++: Leveraging Acceleration Methods for
Faster Collision Detection

Louis Montaut, Quentin Le Lidec, Vladimir Petrik, Josef Sivic and Justin Carpentier, Member, IEEE

Abstract—Collision detection is a fundamental problem in
various domains, such as robotics, computational physics, and
computer graphics. In general, collision detection is tackled as
a computational geometry problem, with the so-called Gilbert,
Johnson, and Keerthi (GJK) algorithm being the most adopted
solution nowadays. While introduced in 1988, GJK remains the
most effective solution to compute the distance or the collision
between two 3D convex geometries. Over the years, it was
shown to be efficient, scalable, and generic, operating on a
broad class of convex shapes, ranging from simple primitives
(sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes
involving thousands of vertices. In this article, we introduce
several contributions to accelerate collision detection and distance
computation between convex geometries by leveraging the fact
that these two problems are fundamentally optimization prob-
lems. Notably, we establish that the GJK algorithm is a specific
sub-case of the well-established Frank-Wolfe (FW) algorithm in
convex optimization. By adapting recent works linking Polyak
and Nesterov accelerations to Frank-Wolfe methods, we also
propose two accelerated extensions of the classic GJK algorithm.
Through an extensive benchmark over millions of collision pairs
involving objects of daily life, we show that these two accelerated
GJK extensions significantly reduce the overall computational
burden of collision detection, leading to computation times that
are up to two times faster. Finally, we hope this work will
significantly reduce the computational cost of modern robotic
simulators, allowing the speed-up of modern robotic applications
that heavily rely on simulation, such as reinforcement learning
or trajectory optimization.

Index Terms—Convex Optimization, Collision Detection, Com-
putational Geometry, Computer Graphics, Simulation, Trajec-
tory Optimization, Motion Planning

I. INTRODUCTION

PHYSICS engines designed to simulate rigid bodies are an
essential tool used in a wide variety of applications, no-

tably in robotics, video games, and computer graphics [1]–[3].
Collision detection, a crucial feature of any physics engine or
robot motion planer [4]–[6], consists of finding which objects
are colliding or not, i.e. are sharing at least one common point
or if there exists a separating hyper-plane between both. As
simulation often needs to deal with multiple objects and run in
real-time (i.e., in video games) or at very high frequencies (i.e.,
in robotics), collision detection must be carried out as fast as
possible. To reduce computational times, collision detection is
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Fig. 1. Two distinct collision problems using shapes from the YCB
dataset: in (a) the shapes A1 (in green) and A2 (in red) are not in
collision (dist(A1,A2) > 0) whereas in (b) the shapes are in collision
(dist(A1,A2) = 0). In the left column, the oriented bounding boxes (OBB)
of the objects are represented in light colors. In the right column, the light
colors represent the convex hull of each object. In both collision problems,
(a) and (b), the broad phase finds a collision between the object’s OBBs; the
narrow phase must thus be called to confirm or infirm the collision. The right
column corresponds to the narrow phase in which the GJK algorithm is called
on the objects’ convex hulls. In this paper, we propose the Polyak-accelerated
GJK and Nesterov-accelerated GJK algorithms in order to accelerate collision
detection.

usually decomposed into two phases thoroughly covered in [7].
The first phase is the so-called broad phase which consists
in identifying which pair of simulated objects are potentially
colliding. The broad phase relies on the simulated objects’
bounding volumes, as shown in Fig. 1, allowing to quickly
assess if the objects are not in collision. The second phase is
the so-called narrow phase in which each pair identified in
the broad phase is tested to check whether a collision is truly
occurring. Collision detection during the narrow phase is the
focus of this paper.

Problem formulation. We consider two convex shapes A1

and A2 in Rn (with n = 2 or 3 in common applications).
If the shapes are not convex, we use their respective convex
hulls or decompose them into a collection of convex sub-
shapes [8]. The separation distance between A1 and A2,
denoted by dist(A1,A2) ∈ R+, can be formulated as a
minimization problem of the form:

d1,2 = min
x1∈A1,x2∈A2

∥x1 − x2∥2

and dist(A1,A2) =
√
d1,2 ,

(1)
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where x1 ∈ A1 and x2 ∈ A2 are both vectors in Rn, d1,2
is the optimal value of (1) and ∥·∥ is the Euclidian norm
of Rn. If A1 and A2 intersect (i.e., they are in collision),
we necessarily have dist(A1,A2) = 0. If the two shapes do
not intersect, we have dist(A1,A2) > 0. These two cases are
illustrated in Fig. 1.

Problem (1) allows us to consider both the distance com-
putation problem and the computationally cheaper Boolean
collision check as one single convex optimization problem. In
the distance computation problem, we aim at computing the
separation distance between A1 and A2, denoted dist(A1,A2),
i.e. the distance between their closest points. This distance
is helpful in some applications such as collision-free path
planning [9], [10], especially for pairs of objects entering the
narrow phase. If the broad phase has not selected a pair of
objects, a cheap estimate of dist(A1,A2) is usually enough [7].
In the Boolean collision check, we only aim at determin-
ing if A1 and A2 intersect, and computing dist(A1,A2) is
unnecessary. However, we will later see that the Boolean
collision check is a sub-problem of the distance computation
problem: solving (1) can be early-stopped once a separating
plane between A1 and A2 has been found. In the rest of this
paper, we will use the generic term “collision detection” to
refer to distance computation and Boolean collision checking
altogether. We will specify when the distinction is needed.

Contributions and paper outline. Our work builds on the
seminal works by [11] and [12] as well as on the work of [13],
[14] to globally accelerate distance computation and collision
checking algorithms between convex shapes. We make the
following contributions:

↪→ In Sec. II, we provide an in-depth tutorial on the state-of-
the-art Gilbert-Johnson-Keerthi (GJK) algorithm used to
solve collision detection problems. Although it is often
presented and discussed as a computational geometry
algorithm, we show that GJK is, in fact, a sub-case of the
much older fully-corrective Frank-Wolfe (FW) algorithm;

↪→ In Sec. III, we adapt recent works on Polyak and
Nesterov-accelerated FW to accelerate both the distance
computation and the Boolean collision check problems;

↪→ In Sec. IV, we empirically analyze the convergence of
our proposed approach on two large shape benchmarks.
Results show a faster convergence of our approach lead-
ing to a computational time up to two times faster than
the state-of-the-art GJK algorithm on both distance com-
putation and Boolean collision checking. We also provide
a benchmark against other collision detection algorithms
from the libCCD [15], FCL [16] and BulletCollision [17]
collision detection librairies which are used in physics
simulators like Drake [18], MuJoCo [3], ODE [19] and
Bullet [1].

↪→ We empirically show that GJK-like algorithms, which our
proposed methods belong to, are superior by orders of
magnitude to generic quadratic programming solvers on
collision detection problems;

↪→ Finally, we show that our methods can be used in any
physics simulator by benchmarking them on trajectories
generated by the Bullet simulator. Like GJK, our methods

can benefit from being warm-started using the previous
simulation time steps, enabling temporal coherence for
our proposed accelerated collision detection algorithms.

This article is an extended version of a previously published
paper [20] which presented the Nesterov-accelerated GJK
algorithm. To expand on our previous work, we introduce the
Polyak-accelerated GJK algorithm, provide additional bench-
marks, notably against existing collision detection libraries,
and show that our proposed methods can be used in the context
of physics simulation by benefiting from being warm-started
using previous simulation steps.

In the rest of this section, we first formulate the problem of
collision detection and then provide an overview of collision
detection related works.

Related work. The so-called Gilbert-Johnson-Keerthi algo-
rithm (GJK) [12] is the most well-known algorithm for colli-
sion detection between two convex shapes. It can handle the
distance computation and the Boolean collision check [21].
The expanding polytope algorithm (EPA) [22], an extension
to GJK, can compute the penetration depth i.e. the norm of the
separation vector, when shapes are in collision. The separation
vector is the vector of smallest norm needed to translate one of
the two shapes such that the two shapes do not intersect. The
EPA solves a non-convex and more complex problem than (1),
which is not the focus of this paper.

Most alternatives to GJK in the literature focus on com-
puting collisions between convex polyhedra, such as the Lin-
Canny algorithm [23] or the V-Clip [24] algorithm. Although
GJK is equivalent in performance to these algorithms [25],
it is not restricted to convex polyhedra. The strength of
GJK is formulating the collision detection problem on the
Minkowski difference. The properties of the Minkowski dif-
ference are used to cleverly compute support vectors on
the Minkowski difference (these notions are introduced and
detailed in Sec. II). GJK can thus handle collision detection,
and distance computation for many different shapes such as
convex polyhedra and basic primitives (i.e., spheres, ellipsoids,
cylinders, capsules etc.) [7], [21], [26]. The Minkowski Portal
Refinement (MPR) [27] is a variant of the GJK algorithm
which is slightly simpler to implement; however, MPR can
only perform boolean collision checks as it cannot be used
to perform distance computation between non-overlapping
shapes. Overall, the generality of GJK, efficiency, good preci-
sion, and ease of implementation make it the state-of-the-art
algorithm for collision detection between two convex shapes.

Collision detection has been casted into a convex opti-
mization problem for many years [12], [28], [29]. However,
collision detection is traditionally presented and considered
mainly as a computational geometry problem [7], [21], [24],
[25], [30], [31]. Over the years, this computational geometric
perspective allowed enhancing the computational efficiency of
GJK, thanks to improvements to its internal sub-routines [21],
[30]. However, we argue that this view has also limited
collision detection improvement. Instead, we propose to tackle
collision from the perspective of convex optimization. This
correlates with some observations raised in the original GJK
papers. Indeed, as briefly mentioned already in their 1988
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paper [12] and brought up again by [29], [32], the ideas
developed by Gilbert, Johnson, and Keerthi are rooted in
convex optimization, notably in the works of [33] and [34]
for solving Minimum-Norm Point (MNP) problems. This arti-
cle proposes exploiting the Frank-Wolfe convex optimization
setting to tackle collision detection. In particular, by leveraging
recent progresses in acceleration methods in convex optimiza-
tion [35], we show how to accelerate collision detection by
directly lowering the number of iterations needed to solve
a collision problem instance compared to the vanilla GJK
algorithm.

The Frank-Wolfe algorithm (FW) dates back to 1956 and
is one of the first convex optimization algorithms. It has been
heavily studied over the years by the optimization commu-
nity. This algorithm iterates over the computation of support
points to approach the optimal solution. The undesired zig-
zagging behavior of FW, already identified by its authors,
has been addressed by introducing corrections to the original
FW method [33], [34], [36]–[40]. In [38] and [40], widely
used corrections of the FW algorithm are analyzed, and their
convergence properties.

In this work, we notably show in Sec. II that the GJK
algorithm is an instance of the fully-corrective Frank-Wolfe
algorithm, covered in [40], applied to solving a MNP problem.
Finally, recent works have also tried accelerating the FW
algorithm by applying the so-called Nesterov acceleration [41],
a classic acceleration technique in unconstrained optimization.
Nesterov momentum has been successfully added by [14] to
accelerate FW.

II. COLLISION DETECTION FROM A FRANK-WOLFE
PERSPECTIVE

In this section, we highlight the natural connection between
computing the distance between convex shapes and convex
optimization, particularly within the frame of the Frank-Wolfe
(FW) setting. The first part of this section is a tutorial on
collision detection, starting with FW and gradually working
towards GJK. We then show that the GJK algorithm can
be seen as a variant of the FW algorithm that leverages
properties of convex 3D shapes to lower the computational
complexity drastically.

Distance computation and Boolean collision checking. As
recalled in Sec. I, collision detection is a sub-case of distance
computation: dist(A1,A2) > 0 means that the two shapes do
not overlap while dist(A1,A2) = 0 means that the shapes
are in collision. In the case of dist(A1,A2) > 0, finding a
strictly positive lower bound on d1,2 to solve the collision
problem is sufficient. In the context of convex shapes,
this is often simpler than computing the distance between
the two shapes [10] and can be done by finding a plane
separating A1 from A2. In the rest of the paper, we focus on
the generic problem of computing the distance between A1

and A2, as it encapsulates the more straightforward Boolean
collision check covered later in this section. Results for the
particular Boolean collision checking case are analyzed in the

experimental section IV.

Collision detection from the perspective of quadratic pro-
gramming. From the perspective of numerical optimization,
the first idea is to look at problem (1) through the lens of
quadratic programming. In the case of meshes, which are
shapes represented by soups of 3D points and which faces
represented as triangles, we can use the implicit description
of a convex mesh as a linear inequality of the form Ax ≤ b.
The collision detection problem between two meshes can thus
be cast as a quadratic programming (QP) problem:

d1,2 = min
x1,x2∈R3

∥x1 − x2∥2

s.t A1x1 ≤ b1

A2x2 ≤ b2.

(2)

While many off-the-shelf solvers exist to solve QP problems,
their performances scale poorly with respect to the number
of constraints [42]. This is especially true in the presence
of complex meshes composed of hundreds or thousands of
vertices, for which QP solvers can take a few milliseconds to
assess a collision, as we experimentally highlight in Sec. IV-C.
Having established that solving collision detection requires
dedicated methods, we turn our attention to solutions such
as GJK, which has been shown to operate on a large class
of shapes, ranging from simple primitives to very complex
meshes.

Recasting the distance computation problem onto the
Minkowski difference. The first important idea of 1988’s
paper by Gilbert, Johnson, and Keerthi [12] is to recast the dis-
tance computation problem onto the Minkowski difference D
of the shapes and defined as follows:

D = A1 −A2 = {x = x1 − x2 | x1 ∈ A1,x2 ∈ A2} ⊂ C ,
(3)

where C = Rn is the so-called collision space. The shapes A1

and A2 lie in the shape space and the Minkowski difference D
lies in the collision space.

Although both the shape space and the collision space
are isomorphic to Rn, we distinguish between the two to
highlight the change in perspective. In Fig. 2, we illustrate
the link between a pair of two convex shapes and their corre-
sponding Minkowski difference. We stress that the Minkowski
difference D is specific to shapes A1 and A2. If the relative
position or relative orientation between A1 and A2 changes,
their Minkowski difference changes accordingly.

The following properties, illustrated in Fig. 2, hold for the
Minkowski difference D:

1) Since A1 and A2 are convex sets, D is also convex.
2) If A1 and A2 are intersecting, the origin of C, de-

noted as 0C , lies inside the Minkowski difference D,
i.e. 0C = x1 − x2 for some x1 ∈ A1 and x2 ∈ A2.

3) If A1 and A2 are not intersecting, the projection of 0C
onto D, x∗ = projD(0C), corresponds to two vectors
x∗
1 ∈ A1 and x∗

2 ∈ A2, also called witness vectors in the
computational geometry literature [7]. Contrary to x∗,
these vectors x∗

1 and x∗
2 are not necessarily unique, as
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(a)

(b)
Fig. 2. (a) Distant vs. (b) overlapping pairs of shapes and their respective
Minkowski difference. Left column: two convex shapes in 2D. Right column:
the Minkowski difference D of A1 and A2. Since A1 and A2 are convex, D
is also convex. In (a), the shapes are not in collision hence the origin of the
configuration space C, 0C (in red) lies outside the Minkowski difference, 0C ̸∈
D. The vector x∗ = x∗

1 −x∗
2 separates A1 from A2. It is also equal to the

projection of 0C onto the Minkowski difference D, x∗ = projD(0C). In (b),
the shapes overlap, thus 0C ∈ D. In this case, we have x∗ = projD(0C) =
0C .

is the case for non-strictly convex shapes such as two
parallel boxes.

4) Finally, we always have ∥x∗∥ = dist(A1,A2).

This final remark allows us to recast the distance computation
problem (1) onto the Minkowski difference as follows:

d1,2 = min
x∈D

∥x− 0C∥2 = min
x∈D

∥x∥2 . (4)

The convex optimization problem (4) is equivalent to (1)
and is known as a Minimum-Norm Point problem in the
optimization literature [34], [40], [43]. In our case, 0C ∈
C = Rn is the null vector i.e. the origin of the collision
space. We thus aim at finding the point in D with the lowest
norm. This vector x∗ is the optimal solution to (4), given
by d1,2 = ∥x∗∥2 = dist(A1,A2)

2.
Directly computing the Minkowski difference D is neither

analytically tractable nor computationally efficient. Most of
the first and second-order methods for constrained convex
optimization problems, such as projected gradient descent or
interior point methods [44], are thus sub-optimal choices.
However, computing support vectors of the Minkowski differ-
ence D, a notion defined hereinafter in this section, is relatively
simple and largely demonstrated by [12]. As we discuss next,
solving convex optimization problems by computing support
vectors is the strengh of the Frank-Wolfe algorithm and its
variants [38].

Distance computation using the Frank-Wolfe algorithm.
The Frank-Wolfe algorithm (FW) [11] is one of the oldest
convex optimization methods and solves the following con-
strained optimization problem:

f(x∗) = min
x∈D

f(x), (5)

Algorithm 1 Frank-Wolfe algorithm with linesearch [38]
Let x0 ∈ D, ϵ > 0
For k=0, 1, ... do

1: dk = ∇f(xk) ▷ Direction of support
2: sk ∈ argmins∈D⟨dk, s⟩(= SD(dk)) ▷ Support (8)
3: If gFW (xk) ≤ ϵ , return f(xk) ▷ Duality gap (16)
4: γk = argminγ∈[0,1] f(γxk + (1− γ)sk) ▷ Linesearch
5: xk+1 = γkxk + (1− γk)sk ▷ Update iterate

In the case of the distance computation problem (4),
where f(x) = ∥x∥2, line 4-5 correspond to projecting 0C
on the segment [xk, sk]:

6: xk+1 = proj[xk,sk]
(0C) ▷ Project 0C on [xk, sk]

Fig. 3. Computing a support vector sk in direction ∇f(xk) on convex
set D. We illustrate with the example of distance computation. On the left, we
draw the Minkowski difference D of which point of minimum norm (MNP)
is x∗ i.e. x∗ is the projection of 0C onto D, x∗ = projD(0C). The iterate
at iteration k of the FW algorithm is xk . In purple we draw the level sets
of the function f(x) = ∥x∥2. On the right, we draw in purple the level
sets of the linearization of f at iterate xk , hk . The first step of the FW
algorithm is to compute support vector sk in the direction of ∇f(xk) (green
arrow), sk ∈ SD(∇f(xk)). In the second step of the FW algorithm, we
compute xk+1 as a convex combination of xk and sk i.e. xk+1 is a point
on the segment [xk, sk].

where f : Rn → R is a convex and differentiable function and
D is a compact convex set. For our distance computation
problem (4), we use f(x) = ∥x∥2 and the Minkowski
difference D as convex constraint set. As a side note, the
following discussed algorithms all require an initial starting
point x0 ∈ D. Shapes used in physics engines are usually
attached to a frame to keep track of their position and
orientation in space. We denote c1 ∈ A1 and c2 ∈ A2 the
origins of the frames attached to A1 and A2, respectively. In
the rest of this paper, we take x0 = c1 − c2.

The FW algorithm, summarized in Alg. 1, is a gradient-
descent method. It consists in iteratively applying two steps in
order to converge towards the optimal solution x∗ of (5). If
we denote by xk the estimate of x∗ at iteration k, these two
steps correspond to:

1) First, we compute a support vector sk in the direction
of ∇f(xk), by solving a linear optimization problem
on D.

2) Second, we update our current iterate xk to obtain xk+1,
by taking a convex combination of the current iterate xk

and the computed support vector sk.

In the following, we detail these steps in the context of
distance computation. At iteration k, the current iterate xk

is the estimate of the optimal solution x∗ and f(xk) is the
estimate of the optimal value of (5), f(x∗), at iteration k. We
write the linearization of the function f at xk and denote it
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as hk:
hk(s) = f(xk) + ⟨∇f(xk), s− xk⟩ (6)

where s is a vector of Rn, ∇f(xk) is the gradient of f at xk

and ⟨·, ·⟩ denotes the dot product between two vectors of Rn.
↪→ Step 1. The first step of the FW algorithm at iteration k

consists of finding a minimizer sk ∈ D of hk on the convex
set D (line 2 in Alg. 1). Such a vector sk is called a support
vector of D or simply a support and is defined as follows:

sk ∈ argmin
s∈D

hk(s) = argmin
s∈D

⟨∇f(xk), s⟩ . (7)

Fig. 3 gives a graphical understanding of support sk. The
vector sk belongs to D and is in the most opposite direction
w.r.t. ∇f(xk). In order to highlight the importance of the
direction in which a support sk is computed, we now introduce
the notion of support direction and support function. Given a
support direction d ∈ Rn, the support function SD returns a
set of D and is defined as:

SD(d) = argmin
s∈D

⟨d, s⟩ ⊂ D . (8)

The support function SD may return a set with more than one
vector. We only need to use one vector of this set. Thinking
in terms of the direction of support allows us to understand
that this direction can be rescaled while preserving the output
of the support function:

∀d ∈ Rn, ∀α > 0, SD(αd) = SD(d). (9)

A support sk ∈ D at iteration k is thus computed in the
direction dk = ∇f(xk) and belongs to SD(∇f(xk)), sk ∈
SD(∇f(xk)).

We now explain how to compute the support vector sk in
the case of the distance computation problem (4) where we
minimize f(x) = ∥x∥2 on the Minkowski difference D of A1

and A2. First, we have ∇f(x) = 2x. Therefore, in the case
of problem (4), it follows that:

sk ∈ SD(xk) = argmin
s∈D

⟨xk, s⟩ . (10)

As demonstrated by [12], any vector s ∈ SD(d) related to the
Minkowski difference can be decomposed as the difference be-
tween two support vectors sA1 ∈ SA1(d) and sA2 ∈ SA2(−d)
over the two individual shapes, leading to the following
relation:

s = sA1
− sA2

∈ SD(d). (11)

Equation (11) shows that we can construct a support of the
Minkowski difference from the supports of the original shapes.
This property highlights the powerful change of perspective
of working on the Minkowski difference. Indeed, there exists
a large number of shapes for which computing supports
is simple: spheres, ellipsoids, cylinders, capsules, polytopes
etc. [7], [21], [26]. Fig. 4 illustrates the construction of a
support of the Minkowski difference D using the supports of
the original shapes A1 and A2.
↪→ Step 2. Once a support vector sk ∈ SD(xk) has been

computed, we update the iterate xk to obtain xk+1 by taking
a convex combination between sk and xk. The original FW
algorithm uses a parameter-free update:

xk+1 = γkxk + (1− γk)sk , (12)

Fig. 4. Computing a support vector on the Minkowski difference using
support vectors (represented by star shapes in the drawing) on the individual
shapes. The vector sA1

is a support vector of shape A1 in direction d. The
vector sA2

is a support vector of shape A2 in direction −d. The constructed
vector s = sA1 − sA2 is a support vector of the Minkowski difference D
in the direction d.

where γk = k+1
k+2 ∈ [0, 1] controls the step size. Alternatively,

a line search can be carried out to find a better iterate xk+1

(line 4 in Alg. 1):

γk = argmin
γ∈[0,1]

f(γxk + (1− γ)sk)

xk+1 = γkxk + (1− γk)sk.
(13)

In the distance computation case where f(x) = ∥x∥2, this
linesearch (13) is equivalent to projecting 0C onto the seg-
ment [xk, sk], xk = proj[xk,sk]

(0C) (line 4 in Alg. 1). Since D
is convex, both (12) and (13) updates are guaranteed to remain
in D.

Stopping criteria. As Frank-Wolfe deals with convex prob-
lems, the duality gap associated with problem (5) can be used
as a stopping criterion. Due to its convexity, the function f is
always above its linearization. Otherwise said, for any x ∈ Rn

and any s ∈ Rn:

f(s) ≥ f(x) + ⟨∇f(x), s− x⟩ . (14)

Reworking this inequality and applying the min operator en-
ables us to compute the Frank-Wolfe duality gap gFW(x) ∈ R+

which gives an upper-bound on the difference f(x)− f(x∗):

f(x)− f(x∗) ≤ −min
s∈D

⟨∇f(x), s− x⟩ = gFW(x) . (15)

In particular, at iteration k of the FW algorithm, we have:

f(xk)− f(x∗) ≤ gFW(xk) = ⟨∇f(xk),xk − sk⟩ , (16)

where sk ∈ SD(∇f(xk)) is the support vector computed at it-
eration k in the direction of ∇f(xk). The duality-gap gFW(xk)
serves as a convergence criterion for the Frank-Wolfe method
and is cheap to compute. Applied to the distance computation
problem (4), the duality gap at iteration k, gFW(xk), guarantees
that:

∥xk∥2 − ∥x∗∥2 ≤ gFW(xk) = 2⟨xk,xk − sk⟩. (17)

Using the triangular inequality of the Euclidian norm and the
convexity of the Minkowski difference D, we can show that:

∥xk − x∗∥2 ≤ ∥xk∥2 − ∥x∗∥2 ≤ gFW(xk) . (18)

Inequality (18) is useful in practice as it allows the fine
control of the desired tolerance on the distance to the optimal
solution x∗ (line 3 in Alg. 1). Indeed, if ones wants to compute
an estimate x of the optimal solution x∗ at precision ϵ,
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Algorithm 2 Boolean collision checking: separating plane
condition
Insert after line 2 in Alg. 1:

1: If max(0, ⟨dk/ ∥dk∥ , sk⟩) > ϵcol , return False
If after termination d1,2 ≤ ϵcol, return True, otherwise
return False.

meaning that ∥x− x∗∥ ≤ √
ϵ, it is sufficient to check that

gFW(x) ≤ ϵ.

Boolean collision checking. As mentioned earlier, the prob-
lem of distance computation encompasses the problem of
collision checking. Indeed, in collision checking, we are only
interested in finding a separating plane between A1 and A2,
if it exists. This is equivalent to finding a separating plane
between D and 0C . For any support direction d, if we have:

⟨d, s⟩ > 0, s ∈ SD(d), (19)

then the plane supported by the vector d separates D
from 0C [21]. This also means that, in the case where the
two shapes intersect, collision checking has the same com-
putational complexity as distance computation. In general, at
iteration k, the value max(0, ⟨dk/ ∥dk∥ , sk⟩) is a lower bound
on the distance between the shapes, dist(A1,A2), and it can
be used as a stopping criterion in the boolean collision check.
As soon as the lower bound on dist(A1,A2) is guaranteed
to be positive, the algorithm can be stopped. Otherwise, the
algorithm continues until the stopping criterion defined by (18)
is met. As shown in Alg. 2, we add this separating plane
condition before line 2 in Alg. 1. The condition on the lower
bound of dist(A1,A2) is met relative to a threshold ϵcol. This
threshold sets at what distance the shapes are considered to
be in collision and depends on the application. In practice,
since we use double-precision floats in our benchmarks (see
Sec. IV), the test on the lower bound of dist(A1,A2) can be
computed down to machine precision. This means the distance
computation threshold ϵ can take values down to 10−12 in (18).
This corresponds to a precision on the distance between shapes
on the order of micro-meters (

√
ϵ = 10−6m). In robotics

applications where the entire pipeline is no more precise than
millimeters, it is often sufficient to consider that below a
threshold of 10−4m (i.e ϵ = 10−8) the shapes are in collision;
above that threshold the shapes are not in collision. In our
applications, we use ϵcol =

√
ϵ.

Computing support vector on meshes. While the support
vector of basic primitives (sphere, ellipsoid, box, etc.) presents
closed-form solutions, this is not the case for meshes. In the
case of convex meshes, an efficient approach for computing the
support direction of meshes is the hill-climbing algorithm [26],
which allows retrieving the supporting vertex or face of the
meshes thanks to a simple neighbor-descent procedure. Yet,
this procedure is sensitive to the initial-guess solution. By
leveraging Nesterov and Polyak acceleration schemes intro-
duced in Sec. III, which both tend to reduce the oscillations
hindered by gradient-descent type algorithms, we show in

Algorithm 3 Frank-Wolfe algorithm with line-search (see
Alg. 1) rewritten with active-sets and applied to the distance
computation problem (4)
Let x0 ∈ D, W0 = {x0}, ϵ > 0
For k=0, 1, ... do

1: dk = xk ▷ Direction of support
2: sk ∈ SD(dk) ▷ Support (8)
3: If gFW (xk) ≤ ϵ , return f(xk) ▷ Duality gap (16)
4: W̃k+1 = Wk ∪ {sk} ▷ Augment active-set
5: xk+1 = projconv(W̃k+1)

(0C) ▷ Project 0C on conv(W̃k+1)

6: Wk+1 = {xk+1} ▷ Update active-set

Sec. IV that this helps the hill-climbing algorithm to perform
less iterations in practice, leading to faster computation times.

The Frank-Wolfe active-set. As with many gradient-descent
algorithms, the FW method tends to zig-zag towards the
optimal solution [40], slowing down the convergence to the
optimum. This behavior is undesired and amplified if the
optimal solution x∗ lies close to the boundary of the constraint
set D. In collision detection, this corresponds to the case
where the two shapes are not intersecting. This zig-zagging
behavior is due to the way that Frank-Wolfe approaches the
set of active constraints [40], also called active-set in the
optimization literature [44]. In the FW setting, the active set
at iteration k, denoted Wk = {s0, ..., sr} ⊂ D, is the set
of vectors in D used by the algorithm to maintain a convex
combination of the iterate xk:

xk =

r∑
i=0

λisi,

r∑
i=0

λi = 1with si ∈ Wk ⊂ D and λi > 0.

(20)
In Alg. 3, we rewrite the FW algorithm with line search
(Alg. 1) in order to highlight the notion of active set:

• At iteration k, the active-set is only composed
of xk, Wk = {xk}.

• The active-set Wk is then augmented by computing a
support sk (line 2 in Alg. 3) to obtain W̃k+1 = {xk, sk}
(line 4 in Alg. 3).

• We then minimize function f on the convex-hull
of W̃k+1, conv(W̃k+1), which is simply the seg-
ment [xk, sk]. For the distance computation problem (4),
this linesearch operation is equivalent to projecting 0C
onto the segment [xk, sk] (line 5 in Alg. 3).

• Finally, the active-set is updated Wk+1 = {xk+1} (line 6
in Alg. 3).

In practice, discarding previously computed supports when
updating the active set is inefficient and causes the zig-
zagging phenomenon observed in the FW algorithm [40]. In
the optimization literature, a rich and wide variety of variants
of the FW algorithm have been introduced to efficiently cope
with the active set in order to improve the convergence rate
of the FW method [34], [36], [37], [45], [46]. However,
these variants remain too generic and are not suited for the
specific problem of collision detection. In the following, we
propose instead incorporating the active-set strategy used in
GJK within the Frank-Wolfe setting.
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Connection between GJK and Frank-Wolfe. In the case
of collision detection, [12] developed an efficient strategy to
handle the active set at a minimal cost. To represent the current
estimate xk and the optimal solution x∗, GJK exploits the
concept of simplexes in R3. A simplex in Rn corresponds to
a set containing at most n+ 1 vectors of Rn, and the rank r
of a simplex is the number of vectors it contains (0 < r ≤
n+1). For 3-dimensional spaces, a simplex corresponds either
to a point (r = 1), a segment (r = 2), a triangle (r = 3),
or a tetrahedron (r = 4). Similarly to the simplex methods
for Linear Programming [47], the Carathéodory theorem [48]
motivates the use of simplexes. Let Y be a set of N ≥ n
vectors in Rn, Y = {yi ∈ Rn}0≤i≤N . The Carathéodory
theorem states that any vector x ∈ conv(Y) can be expressed
as the convex combination of at most n+ 1 vectors of Y:

x =

r∑
j=0

λjyj , with yj ∈ Y, λj > 0,

r∑
i=0

λj = 1. (21)

Hence, any vector in D, and particularly the optimal so-
lution x∗ ∈ D = conv(D) of the distance computation
problem (4), can be identified as a convex combination of
the vectors composing a simplex W . Relying on simplexes
is attractive as there is no need to run any algorithm to
compute the convex hull of a simplex as they are convex
by construction. Frank-Wolf algorithms may operate on more
complex active sets, which might become hard to tackle from
a computational point of view [38], [40]. In other words, the
problem of finding the optimal solution x∗ can be reformulated
as the problem of identifying the optimal simplex W ∗ on
which x∗ can be decomposed into a convex combination. This
is precisely the approach followed by GJK that we now detail
as well as illustrate in Fig. 5.

At iteration k of GJK, the current iterate xk is a convex
combination of the vectors composing the simplex Wk of
rank rk ≤ n. This corresponds to Fig. 5a. To update xk

and Wk, the following procedure is applied:
• After computing support vector sk (line 2 in Alg. 3,

illustrated in Fig. 5b), we add sk to Wk to ob-
tain W̃k+1 = Wk ∪ {sk} (line 4 in Alg. 3). The set W̃k+1

is now a simplex of rank r̃k+1 ≤ n+ 1, as shown in
Fig. 5c.

• We then minimize function f(x) = ∥x∥2 on W̃k+1

to obtain xk+1, corresponding to projecting 0C
onto W̃k+1: xk+1 = projconv(W̃k+1)

(0C)
1 (line 5 in

Alg. 3). This projection is illustrated in figures 5c and 5d.
• We then have two cases, summarized in Alg 4:

1) If xk+1 = 0C , the algorithm is stopped. Thus, we
have x∗ = 0C and d1,2 = 0 in (4) (line 1 in Alg. 4).

2) Otherwise, we construct Wk+1 from W̃k+1. To do
so, we retain only the minimal number of vectors
in W̃k+1 needed to express xk+1 as a convex com-
bination (line 2 in Alg. 4). Indeed, as 0C /∈ W̃k+1,
the projection xk+1 of 0C on W̃k+1 necessarily
lies on a face of W̃k+1, and can be expressed as

1The efficient projection onto simplexes in R3, named the distance sub-
algorithm by [12], is thoroughly covered in [7], [21] and its robustness is
improved in [30].

Dxkxxx

0C000

Wk

(a)

Dxkxxx

0C000

Wk

sksss
(b)

Dxkxxx

0C000

W̃k+1

sksss
(c)

D
xk+1xxx

0C000
Wk+1

(d)
Fig. 5. Illustration of the GJK simplex strategy in 2D: (a) beginning of
the kth iteration, (b) support point computation, (c) simplex augmentation,
(d) simplex update.

Algorithm 4 Fully-corrective FW using simplexes, applied
to the distance computation problem (4). This algorithm is
identical to GJK [12]
In Alg. 3, let W0 = ∅ and replace line 6 by:

1: If xk+1 = 0C , return 0
If the algorithm has not terminated, update W̃k+1 to
retain only the smallest number of vectors needed to
express xk+1:

2: Wk+1 = {s1, ..., sr} where s1, ..., sr are the smallest
number of vectors in W̃k+1 such that xk+1 is a convex
combination of s1, ..., sr.

a convex combination of the vectors composing
this face. This ensures that Wk+1 is necessarily of
rank rk+1 < r̃k+1 ≤ n + 1. For example, Fig. 5d
shows the result of the simplex update obtained in
Fig. 5c.

Through this discussion, it is clear that GJK is a particular
case of Frank-Wolfe. More specifically, it is a sub-case of the
fully-corrective Frank-Wolfe algorithm analyzed by [40]. The
strategy used by GJK to handle the active set has proved to
be very efficient in practice and renders the GJK algorithm
state-of-the-art for collision detection. In the next section,
we propose to leverage the formulation of collision detection
as a Frank-Wolfe sub-case to accelerate its convergence fol-
lowing the well-established Polyak and Nesterov acceleration
paradigm [41].

III. ACCELERATING COLLISION DETECTION

Gradient descent (GD) is the backbone of many convex
optimization methods and relies solely on the gradient of
the objective function. Second-order methods [44], such as
Newton methods, have faster convergence rates than GD at
the price of requiring the computation and the inversion of
Hessian quantities. Momentum methods have thus been intro-
duced in the optimization literature to provide gradient-based
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methods with improved convergence rates without requiring
costly Hessian evaluation. In this section, we use recent
work linking the Polyak and Nesterov accelerations of GD
to the FW algorithm [13], [14] to globally accelerate collision
detection. These global accelerations of collision detection are
experimentally evaluated in Sec. IV on several benchmarks.

A. Background on acceleration methods in convex optimiza-
tion

Polyak acceleration for unconstrained optimization. We
initially consider the following unconstrained minimization
problem:

f(x∗) = min
x∈Rn

f(x), (22)

where f : Rn → R is a convex and differentiable function. The
vanilla gradient-descent algorithm follows the slope of f given
by its gradient ∇f . The following scheme is applied iteratively
until a given convergence criterion is met (e.g., ∥∇f(xk)∥ <
ϵ, with ϵ being the desired precision):

xk+1 = xk + αk∇f(xk), (23)

where xk ∈ Rn is the current iterate and αk ∈ R is
the gradient step. This standard setting leads to a simple
implementation with linear convergence rate (O(1/k)).

To go beyond this linear convergence regime, acceleration
techniques have been devised in the optimization community
to provide quadratic convergence rate (O(1/k2)) or more [35],
by relying on relatively cheap gradient evaluations. Among
these gradient-descent acceleration techniques, the Polyak (or
Heavy-Ball) [49] and Nesterov acceleration [41] are two of
the better-studied and most popular in practice [35]. These
techniques are based on accumulating previously computed
gradients in a momentum term dk and using this momen-
tum dk to update the current iterate xk. The Polyak update
scheme for unconstrained gradient descent is illustrated in
Fig. 6a and goes as follows:

dk = δkdk−1 + αk∇f(xk) (24a)
xk+1 = xk + dk, (24b)

where schemes δk ∈ R is the momentum parameter. The
role of momentum dk is to smooth the trajectory of iterates
converging towards the optimum by geometrically averaging
previously computed gradients. The δk momentum parameter
is selected to prevent damping or overshooting of the iterate
trajectory when going towards the optimal solution x∗.

Nesterov acceleration for unconstrained optimization. The
Nesterov update scheme is the second most well-known
method for accelerating unconstrained gradient descent and it
is only a slight modification on top of the Polyak scheme. Con-
trary to the Polyak case, in the Nesterov acceleration scheme
the current iterate xk is extrapolated using the momentum
term dk to compute the intermediate vector yk = xk + δkdk.
The gradient is then computed at the vector yk. The Nesterov

xk

∇f(xk) dk−1

xk+1
x*x xxx

xx
xx

dd

(a)

xk

∇f(xk + δkdk−1)
dk−1

xk+1

x*xx
xx

xx
dd

xx dd

(b)
Fig. 6. (a) Polyak and (b) Nesterov acceleration schemes for unconstrained
gradient descent. The gradient descent algorithm aims at finding the opti-
mum x∗ by following the slope given by the gradient of function f , ∇f . The
vector dk−1 is the momentum accumulated over the optimization trajectory.
The two schemes differ in where the gradient is computed at iteration k; the
Nesterov scheme introduces an intermediary point yk = xk + δkdk−1 to
compute the gradient.

update scheme for unconstrained gradient descent is illustrated
in Fig. 6b and goes as:

yk = xk + δkdk−1 (25a)
dk = δkdk−1 + αk∇f(yk) (25b)
xk+1 = xk + dk (25c)

where δk is the momentum parameter as in the Polyak scheme,
and yk ∈ Rn is an intermediate quantity. Computing the
term yk leads to an anticipatory behavior in similar spirit to
extra-gradient methods [35].

Accelerating the Frank-Wolfe algorithm with Polyak and
Nesterov. Recent works of [13], [14] have proposed to adapt
the Polyak and Nesterov accelerations to the FW setting. We
propose to leverage and adapt this FW acceleration scheme
to the context of collision detection, by notably extending the
FW formulation of collision detection previously developed in
Sec. II.

In the original FW algorithm, the support vector at itera-
tion k, sk, is computed in the direction of the gradient ∇f(xk)
(line 1 in Alg. 1). In the Polyak acceleration of FW proposed
by [13], the direction of support for computing sk is instead
defined by:

dk = δkdk−1 + (1− δk)∇f(xk) (26a)
sk = SD(dk), (26b)

where δk = k+1
k+3 ∈ [0, 1] is the momentum parameter and SD

is the support function as defined in (8). In the Nesterov
acceleration of FW proposed by [14], the direction of sup-
port for computing sk is slightly different from the Polyak
scheme (26) as it introduces yk, an intermediary vector as
in the GD Nesterov scheme (25) in order to evaluate the
gradient ∇f(yk):

yk = δkxk + (1− δk)sk−1 (27a)
dk = δkdk−1 + (1− δk)∇f(yk) (27b)
sk = SD(dk), (27c)

where sk−1 is the support vector computed at the previous
iteration. To ensure yk stays in D, it is a convex combination
of xk and sk−1, both vectors of D. The direction of support is
then obtained by taking a convex combination of the previous
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Algorithm 5 Polyak-accelerated and Nesterov-accelerated
Frank-Wolfe [13], [14]
In Alg. 1 and Alg. 3, let d−1 = s−1 = x0, δk = k+1

k+3 and
replace line 1 by:

1: yk =

{
xk Polyak
δkxk + (1− δk)sk−1 Nesterov

2: dk = δkdk−1 + (1− δk)∇f(yk)

support direction dk−1 and the gradient ∇f(yk). Both the
Polyak and Nesterov accelerations of Frank-Wolfe are summed
up in Alg. 5.

The works [13], [14] have experimentally shown that these
accelerations strategies lead to a better convergence rate of the
FW algorithm when compared to the original FW algorithm.
In the following, we explain how to adapt the Polyak and
Nesterov accelerations of FW to collision detection.

B. Acceleration of collision detection and distance computa-
tion

Adapting Nesterov and Polyak fully-corrective Frank-
Wolfe to distance computation. Preserving GJK’s simplex
strategy is crucial for collision detection as it greatly speeds
up the vanilla FW algorithm. Therefore, we adapt (26) and (27)
accordingly as:

yk =

{
xk if Polyak
δkxk + (1− δk)sk−1 if Nesterov

(28a)

dk = δkdk−1 + (1− δk)∇f(yk) (28b)
sk = SD(dk), (28c)

W̃k+1 = Wk ∪ {sk}, (28d)
xk+1 = projconv(W̃k+1)

(0C). (28e)

These steps are also summarized in Alg. 6. The update of sim-
plex Wk+1 from W̃k+1 is then identical to the one described
in Alg. 4. The original duality gap defined in Sec. II (Eq. 16)
can no longer be used as a convergence criterion. Indeed, the
following inequality:

∥xk − x∗∥2 ≤ gFW(xk) = 2⟨xk,xk − sk⟩, sk ∈ SD(xk),

is no longer valid because the support vector sk is no longer
computed in the direction of the gradient ∇f(xk) = 2xk.
Next we will show that the original stopping criterion devised
in Sec. II cannot be used and we need to derive a new one.

Stopping criterion. As the number of iteration k in-
creases, δk →

k→∞
1 in (28). Therefore, dk tends to be equal

to dk−1 (28b) and thus sk = sk−1 (28c). As a consequence,
augmenting Wk with sk to construct W̃k+1 (see (28d)) and
then projecting 0C onto W̃k+1 (28e) will not result in any
progress. Therefore, xk+1 = xk: the algorithm reaches a fixed
point and is stuck on constant support direction d.

In order to cope with this issue, we use the following
strategy. Suppose xk ̸= 0C . Since xk = projconv(Wk)

(0C) we
have:

∀si ∈ Wk, ⟨xk,xk − si⟩ = 0. (29)

Algorithm 6 Polyak and Nesterov-accelerated GJK
Let x0 ∈ D, W0 = ∅, d−1 = s−1 = x0, ϵ > 0
For k=0, 1, ... do

1: δk = k+1
k+3 ▷ Momentum parameter value

2: yk =

{
xk Polyak
δkxk + (1− δk)sk−1 Nesterov

▷ Intermediary

point (28a)
3: dk = δkdk−1 + (1− δk)∇f(yk) ▷ Support dir. (28b)
4: sk ∈ SD(dk) ▷ Support (8)
5: if g(xk) ≤ ϵ then ▷ Fixed-point condition (32)
6: If dk = xk , return f(xk) ▷ Algorithm terminates
7: sk ∈ SD(∇f(xk)) ▷ Compute sk in dir. ∇f(xk)

Replace line 3 by: dk = xk until termination.
8: W̃k+1 = Wk ∪ {sk} ▷ Augment active-set
9: xk+1 = projconv(W̃k+1)

(0C) ▷ Project 0C on conv(W̃k+1)
10: If xk+1 = 0C , return 0
11: Wk+1 = {s1, ..., sr} where s1, ..., sr are the smallest

number of vectors in W̃k+1 such that xk+1 is a convex
combination of s1, ..., sr.

After computing sk ∈ SD(dk), if we have:

⟨xk,xk − sk⟩ ≠ 0, (30)

then sk is not a linear combination of vectors in Wk.
Therefore, augmenting Wk with sk to obtain W̃k+1 and
projecting 0C onto conv(W̃k+1) to obtain xk+1 will result in
the algorithm progressing toward the optimum x∗. Suppose
on the contrary that:

⟨xk,xk − sk⟩ = 0, (31)

then sk is a linear combination of vectors in Wk. Adding sk
to Wk will thus not result in any progress towards the
optimum. As a consequence, Eq. (31) encompasses two cases:

• If the support direction dk is aligned with ∇f(xk),
Eq. (31), corresponding to gFW(xk) = 0, matches the
termination criterion of the distance computation problem
and therefore we have reached the optimum i.e xk = x∗.

• Otherwise, if dk is not aligned with ∇f(xk), the al-
gorithm cannot stop as a null duality gap is not met.
The algorithm thus enters a cycle where it iterates until
Eq. (31) does not hold. To cope with this undesired
behavior we simply stop the Polyak or the Nesterov
acceleration as soon as Eq. (31) is met and switch back
to the non-accelerated version Alg. 4.

We thus define the function g such that for any sk ∈ D:

g(xk) = 2⟨xk,xk − sk⟩, (32)

g is used in Alg. 6 as an optimality criterion ( g ≤ ϵ)
either for stopping the Polyak and Nesterov accelerations in
order to continue with the vanilla GJK, or as stopping criteria
qualifying an optimal solution, in which case g = gFW and (18)
holds. The entire algorithm is summarized in Alg. 6.

Nesterov acceleration for non-strictly convex shapes. Let us
explain the effect of the Nesterov acceleration on the support



IEEE TRANSACTIONS ON ROBOTICS, ACCEPTED MARCH 2024 10

Algorithm 7 Normalize direction for non-strictly convex
shapes in Nesterov-accelerated GJK
Replace line 3 in Alg. 6 by:

1: dk = δk
dk−1

∥dk−1∥ + (1− δk)
∇f(yk)

∥∇f(yk)∥

direction update (28b) and distinguish between strictly convex
and non-strictly convex D:

• If D is strictly convex, any vector s belonging to the
surface of D has a unique corresponding direction d such
that s = SD(d). Here, we stress the fact that the support
function SD returns only one vector. Consequently, we
have dk ̸= dk−1 and therefore sk ̸= sk−1. The fixed
point condition (31) is thus not met unless δk = 1
and Nesterov acceleration continues to be applied in
Alg. 6. In practice, the algorithm runs until δk gets close
to 1 or xk gets close to 0C . The condition (31) is then
satisfied as the algorithm starts to cycle. The Nesterov
acceleration is thus removed and the algorithm runs until
the convergence criteria is satisfied, guaranteed by the
Frank-Wolfe algorithm.

• Otherwise, if D is non-strictly convex, multiple support
directions {d1, ...,dm, ...} can yield the same support
vector s ∈ SD(d

1) = ... = SD(d
m) = ... etc. Conse-

quently, it is possible to have dk−1 ̸= dk and sk = sk−1.
Therefore, even though δk is not close to 1, the fixed point
condition (31) can be verified. The Nesterov acceleration
is stopped, possibly prematurely.

The latter case is especially problematic when shapes A1

and A2 are in close-proximity, which is ultimately the type
of collision problems commonly encountered in simulation or
motion planning with contacts. In (28b), this is due to the
norm of ∇f(yk) being predominant over the norm of dk−1

as k increases, ∥dk−1∥ ≪ ∥∇f(yk)∥. As a consequence, the
Nesterov acceleration enters a cycle: the support direction dk

does not change enough compared to dk−1, hence the support
point sk is identical to sk−1 and therefore the intermediary
point yk does not change and the cycle repeats. As a conse-
quence, the criterion (31) is met and the Nesterov acceleration
is stopped to escape the cycle, possibly prematurely. To
prevent this phenomenon observed on non-strictly convex D,
we propose to replace (28b) by a simple heuristic which
normalizes the gradient and momentum directions as follows:

dk = δk
dk−1

∥dk−1∥
+ (1− δk)

∇f(yk)

∥∇f(yk)∥
, (33)

summarized in Alg. 7. In Sec. IV, we experimentally prove
this heuristic to significantly reduce the number of steps for
distance computations for non-strictly convex shapes. We also
show that this heuristic does not need to be applied to the
Polyak acceleration, as, contrary to the Nesterov acceleration,
the Polyak acceleration does not compute an intermediary
point yk.

IV. EXPERIMENTS

In this section, we study the performance of both Polyak
and Nesterov-accelerated GJK (Alg. 6) against the vanilla GJK
(Alg. 4) algorithm.

In sections IV-A and IV-B, we benchmark our proposed
Polyak-accelerated and Nesterov-accelerated GJK algorithms
against the vanilla GJK algorithm on these two distinct bench-
marks. The benchmark made of strictly-convex shapes repre-
sents a worst-case scenario regarding the number of iterations
for all variants of GJK. The benchmark of non-strictly convex
shapes represents shapes typically used in robotic or computer
graphics applications. In Sec. IV-C, we benchmark GJK and
our proposed accelerated gradients against the state-of-the-art
quadratic programming solver ProxQP [50]. We show that
GJK and our proposed accelerated variants vastly outperform
generic quadratic programming (QP) solvers, making these QP
solvers prohibitive for collision detection. Then, in Sec. IV-D,
we compare our methods and our implementation of vanilla
GJK against different collision detection solvers of various col-
lision detection libraries. Finally, in Sec. IV-E, we benchmark
vanilla, Polyak-accelerated, and Nesterov-accelerated GJK on
a dataset of trajectories obtained using a physics simulator.
We show that, similarly to vanilla GJK, our accelerated GJK
algorithms can benefit from being warm-started with previ-
ous simulation time steps, outperforming the vanilla GJK in
physics simulation scenarios.

Implementation. We leverage the HPP-FCL C++ library [28],
[51], an extension of the original FCL library [28]. Unlike
FCL, HPP-FCL provides its own implementation of GJK,
which we have extended by implementing the Polyak and
Nesterov-accelerated GJK algorithms (Alg. 6). The open-
source code of the HPP-FCL library is publicly available
at https://github.com/humanoid-path-planner/hpp-fcl under the
BSD-3 license. The benchmark code is publicly available
at https://github.com/lmontaut/colbench under the GNU AGP
License.

Shapes datasets. To distinguish between pairs of strictly con-
vex and non-strictly convex shapes, we build a first benchmark
only composed of pairs of ellipsoids (strictly convex shapes)
and a second benchmark using pairs of standard meshes
(represented by their convex hulls) which are taken from the
commonly-used YCB dataset [52].
Ellipsoids. In the ellipsoids benchmark, the ellipsoids are
randomly generated by sampling positive-definite matrices. In
total, we generate 1000 random pairs of ellipsoids. Given a
pair of ellipsoids, we randomly sample relative poses between
the shapes, using a uniform distribution for the relative rotation
between the shapes. Regarding the translation part of the
random poses, the directions are selected at random, but the
norms are chosen so that we control the distance dist(A1,A2)
between the objects. This enables us to measure the influ-
ence of the separation distance on the performance of the
studied algorithms. The values used for dist(A1,A2) range
from −0.1m to 1m. Negative values correspond to scenarios
where the shapes intersect, with dist(A1,A2) corresponding
to the separating vector’s norm. The separating vector is the
vector of the smallest norm needed to translate one of the two
shapes such that the two shapes do not intersect. Therefore, for
each pair of ellipsoids, 100 random relative poses are sampled,
so the shapes do not intersect. We translate the shapes along
the axis given by their closest points for each relative pose to

https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/lmontaut/colbench
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study the impact of dist(A1,A2). We then set dist(A1,A2) to
fixed values between −0.1m to 1m.
YCB meshes. On the other hand, the YCB mesh dataset
contains about 60 shapes commonly used for robotic ma-
nipulation tasks (kitchen appliances, tools, toys, etc.). Each
object has three different resolution levels corresponding to
the number of points representing the mesh. For each object,
we take the lowest resolution, i.e., the google-16k versions of
the meshes, as it is resolute enough for any robotic task. As
GJK-like algorithms work on convex shapes, we pre-compute
the convex hulls of each object in the YCB dataset. This
procedure needs only to be done once; if more precision is
required for a certain robotic task, it is common to decompose
a non-convex object into a set of convex sub-objects. For
the sake of simplicity, we will not decompose YCB objects
into sub-objects, as the results presented in this section would
essentially be the same. In the rest of this section, when we
mention a shape, we refer to its convex hull unless explicitly
stated otherwise. The resulting meshes extracted from the YCB
dataset contain between 100 and 8000 vertices. About 50%
of meshes contain between 100 and 1000 vertices. As in the
ellipsoids benchmark, 100 random relative poses are sampled
for each pair such that the shapes do not intersect and then
set dist(A1,A2) to fixed values between −0.1m and 1m.

In both benchmarks (ellipsoids and YCB meshes), the
characteristic sizes of the shapes range from a few centimeters
up to a meter. Finally, for the distance computation problem,
we select a convergence tolerance of ϵ = 10−8.
Initialization strategy. Apart from Sec. IV-E, the GJK al-
gorithm and our proposed accelerated GJK algorithms are
initialized with the centers of the shapes’ bounding boxes. The
bounding box of a shape fully encapsulates it, as is shown in
Fig. 1. Hence, if we denote c1 and c2 the geometric centers of
the bounding boxes of A1 and A2, then we initialize vanilla
GJK, Polyak-accelerated GJK and Nesterov-accelerated GJK
to x0 = c1 − c2.
Metrics. To measure the performances of Poylak-accelerated
GJK, Nesterov-accelerated GJK, and the vanilla GJK algo-
rithms, we measure the number of iterations Nk to solve a
given collision problem. For the mesh benchmark, we also
measure the execution time Tµ of both methods. We solve
each generated collision problem 100 times to cope with CPU
throttling. We then report the average of the 90% lowest
computation times. All the benchmarks in this paper were run
on an Apple M1 Max CPU.

A. Worst case scenario: strictly convex shapes - ellipsoids

We first focus on the ellipsoid benchmark to get a statistical
understanding of the performance of Polyak and Nesterov-
accelerated GJK against vanilla GJK. In the following, we
explain why these shapes are interesting to study experimen-
tally, as they represent the worst-case scenario that GJK-
like algorithms can be confronted with. First, as previously
explained, GJK-like algorithms look for the optimal active set
of the solution x∗. Otherwise said, GJK-like methods find
a set of support points W ∗ = {s1, s2, ...} such that the
optimal solution x∗ is a convex combination of the points
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Fig. 7. Comparison of Polyak-accelerated GJK, Nesterov-accelerated GJK,
and vanilla GJK on the ellipsoid benchmark for (a) distance computation
and (b) Boolean collision checking. The graphs show the number of it-
erations (y-axis) vs. the signed distance between the two shapes (x-axis).
The curve shows the mean value over 100,000 random trials. The shaded
region corresponds to the standard deviation. The Nesterov-accelerated GJK
algorithm requires fewer iterations when the shapes are in close proximity. The
Polyak-accelerated GJK algorithm is more robust when shapes are strongly
overlapping or distant.

of W ∗, where si are support points computed while running
GJK or our proposed accelerations. Then, contrary to non
strictly-convex shapes, strictly-convex shapes have an infinite
amount of support points. As explained at the end of Sec. III,
each normalized support direction d corresponds to a unique
support point SD(d). Therefore, it is fundamentally harder
to identify the optimal active set when considering strictly-
convex shapes, as there is an infinite amount of potential
support points to consider. In contrast, there is a finite amount
of support points to consider when using non strictly-convex
shapes.

In Fig. 7, we show the performance of the vanilla, the
Polyak-accelerated, and the Nesterov-accelerated GJK algo-
rithms on the ellipsoids benchmark. Fig. 7a and Fig. 7b
show the mean and standard deviation of the number of
iterations Nk of each method for the distance computation and
the Boolean collision checking problems, respectively. When
the shapes are shallowly intersecting, Polyak and Nesterov-
accelerated GJK converge with the same or even fewer number
of iterations than vanilla GJK. However, the shallower the
penetration, the more Polyak and Nesterov accelerate over
vanilla GJK, with Nesterov providing the most acceleration.
The irregularity in standard deviation at −0.01m is a crit-
ical zone for the Nesterov momentum where the variance
increases. When shapes are in close proximity, the Nesterov
acceleration of GJK significantly reduces the number of
iterations compared to vanilla GJK and Polyak-accelerated
GJK. Finally, when shapes are distant, 1m ≤ dist(A1,A2),
the Nesterov acceleration is detrimental to convergence on
the distance computation problem while Polyak-accelerated
GJK remains competitive against vanilla GJK. This indicates
that the Polyak acceleration is generally more robust than
the Nesterov acceleration. However, it offers less acceleration
over vanilla GJK when the shapes are in close-proximity
or shallowly overlapping. A similar pattern of speed-ups of
Polyak and Nesterov-accelerated GJK over vanilla GJK is
shown for the collision detection problem in Fig. 7b.

B. Non-strictly convex shapes: meshes

Effect of support direction normalization. For meshes, the
importance of normalizing the support direction (see Eq. (33))
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Fig. 8. Impact of support direction normalization in Polyak and Nesterov-
accelerated GJK on the YCB benchmark. The graph shows the computation
time Tµ (lower is better) for vanilla GJK, Polyak-accelerated GJK, and
Nesterov-accelerated GJK with and without support direction normalization.
Here, the two shapes are in close-proximity: 0m < dist(A1,A2) ≤ 0.1m.
Normalizing the support direction benefits Nesterov-accelerated GJK, reduc-
ing the overall number of iterations compared to GJK and non-normalized
Nesterov-accelerated GJK.
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Fig. 9. Distance computation on the YCB benchmark. The graphs show
the number of iterations Nk (a) and the execution time Tµ (b) for Polyak-
accelerated GJK, Nesterov-accelerated GJK (with normalization) and vanilla
GJK for a range of distances (x-axis) between the shapes. For both metrics,
lower is better.

in the Nesterov-accelerated GJK is highlighted in Fig. 8. For
both the distance computation and Boolean collision checking
problems, the normalization heuristic prevents the Nesterov
acceleration from reaching a fixed point too early, and con-
sequently, it reduces the overall amount of iterations needed
to converge. This is, however, not the case for the Polyak-
accelerated GJK algorithm, which does not benefit from sup-
port normalization. As explained at the end of Sec. III, the
Polyak acceleration does not compute an intermediary point,
unlike the Nesterov acceleration scheme. In the following, we
thus focus only on Polyak-accelerated GJK without support
normalization and Nesterov-accelerated GJK with support
normalization. We compare the performances of these two
algorithms against the vanilla GJK algorithm.

Statistical validation over the YCB dataset. In Fig. 9 and
Fig. 10, we report the number of iterations Nk and execution
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Fig. 10. Boolean collision check on the YCB benchmark. The graphs show
the number of iterations Nk (a) and the execution time Tµ (b) for the Polyak-
accelerated GJK, Nesterov-accelerated GJK (with normalization), and vanilla
GJK algorithms for a range of distances (x-axis) between the shapes. For both
metrics, lower is better.
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Fig. 11. Speed-ups of Polyak and Nesterov-accelerated GJK over vanilla GJK
on the YCB benchmark. The plots show ratios of the number of execution
times for (a) distance computation and (b) boolean collision checking of
Polyak-accelerated GJK and Nesterov-accelerated GJK (with normalization)
against vanilla GJK. Ratios over 1.0 show speed-ups of accelerated GJK over
vanilla GJK. For both metrics, higher is better.
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TABLE I
COMPUTATION TIMES (µs) FOR DISTANCE COMPUTATION (TµD ) AND BOOLEAN COLLISION CHECKING (TµC ) ON THE YCB BENCHMARK FOR

CLOSE-PROXIMITY OR SHALLOWLY INTERSECTING SHAPES. n DENOTES THE NUMBER OF VERTICES FOR EACH MESH.

N = 240 N = 1811 N = 3585

GJK Polyak Nesterov GJK Polyak Nesterov GJK Polyak Nesterov

TµD 1.1± 0.3 0.9± 0.3 0.9± 0.3 1.9± 0.5 1.5± 0.5 1.4± 0.5 3.2± 0.8 2.3± 0.7 2.4± 0.7

TµC 0.9± 0.4 0.7± 0.4 0.8± 0.4 1.5± 0.6 1.2± 0.6 1.1± 0.6 2.5± 0.9 1.7± 0.8 1.9± 1.0

TµD 2.7± 0.8 2.1± 0.7 1.9± 0.6 4.0± 1.0 2.9± 0.9 2.9± 1.0

TµC 2.3± 0.8 1.6± 0.8 1.5± 0.8 3.1± 1.2 2.1± 1.0 2.2± 1.3

TµD 4.4± 1.3 2.9± 1.0 3.0± 0.9

TµC 3.0± 1.9 2.1± 1.4 2.1± 1.4

time Tµ for Polyak-accelerated GJK, Nesterov-accelerated
GJK and vanilla GJK. In Fig. 11, we report relative accel-
erations Tµ

GJK/T
µ
polyak and Tµ

GJK/T
µ
Nesterov of Polyak-accelerated

compared to GJK. These relative accelerations are computed
on a given collision problem, and Fig. 11 reports their sta-
tistical distributions. These relative measures allow analyzing
the effects of the studied algorithms on the same collision
problems, which are not captured when using absolute values.
Overall, Polyak and Nesterov-accelerated GJK significantly
reduce the execution time when compared to GJK in cases
where shapes are shallowly intersecting or in close-proximity.
It is worth recalling, at this stage, that when two shapes are
relatively far from each other, any broadphase algorithm will
automatically discard such a pair. Only in a small percentage
of cases, Polyak-accelerated GJK and Nesterov-accelerated
GJK are slower than GJK. When measuring the absolute
performance of the two proposed methods, Polyak-accelerated
GJK provides less acceleration than Nesterov-accelerated GJK
in critical cases with close proximity and shallowly overlap-
ping collision problems. However, Polyak-accelerated GJK is
more robust than Nesterov-accelerated GJK as it is almost
always better than vanilla GJK, even when the shapes are
distant or overlap.

In Table. I, we select three meshes with an increasing
number of vertices to highlight the benefits of the Polyak
and Nesterov accelerations. For each pair, we report the
mean and the standard deviation of the execution time
for distance computation and Boolean collision checking.
We consider the challenging set-up of close-by or shal-
lowly intersecting shapes in the range of separation distances
−0.01m ≤ dist(A1,A2) ≤ 0.01m. The lower mean and stan-
dard deviation show that Polyak and Nesterov-accelerated GJK
are faster than the vanilla GJK and reduce the spread of
computation times across the different collision problems in

this setting.
From this benchmark involving shapes from the YCB

dataset, we can distinguish two use cases in which one would
prefer using Polyak-accelerated GJK compared to Nesterov-
accelerated and vice-versa. In tasks where the exact distance
between the shapes needs to be computed and where this
distance separating the shapes can take any value, due to
its robustness, the Polyak-accelerated GJK algorithm is better
suited than its Nesterov counterpart. However, in a situation
involving shapes interacting at close proximity, like in a
contact physics simulation, it is preferable to choose the
Nesterov-accelerated GJK. Before studying the performance
of GJK and our proposed accelerations for physics simulation,
we first show the benefits of using GJK-based algorithms for
collision detection instead of standard off-the-shelf optimiza-
tion solvers and provide a comparison of the implementations
of our methods against baselines from other collision detection
librairies.

C. GJK-like algorithms vs. generic quadratic programming
solvers

As explained in Sec. II, in the case of two convex meshes,
the collision problem can be formulated as a Quadratic Pro-
gram (2) (QP), which can be solved using any generic QP
solver [50], [53]–[56]. In Table II, we compare the perfor-
mance of GJK and our proposed accelerations against the
state-of-the-art ProxQP solver [50]. We report the computation
timings in micro-seconds for pairs of identical shapes with
an increasing number of vertices (Nv) and faces (Nf ). The
results are staggering: for very simple convex meshes like
a cube, GJK, and its accelerated variants are already more
than 10 times faster than the QP solver. When the complexity
of the meshes increases, GJK and its variants are thousands to
tens of thousands of times faster than the QP solver, making
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TABLE II
COMPUTATION TIME IN MICRO-SECONDS OF GJK-LIKE SOLVERS VS.

SOTA QUADRATIC PROGRAMMING PROXQP SOLVER.

Nv = 8 Nv = 250 Nv = 940
Nf = 6 Nf = 496 Nf = 1876

ProxQP 5.3± 2.7 µs (2± 0.6) · 103 µs (20± 14) · 103 µs
GJK 0.2± 0.03 µs 0.8± 0.3 µs 2.1± 0.5 µs

Nesterov 0.2± 0.05 µs 0.7± 0.2 µs 1.4± 0.3 µs
Polyak 0.2± 0.05 µs 0.6± 0.2 µs 1.4± 0.4 µs

generic QP solvers prohibitive for collision detection in real-
time applications like robotics or computer graphics. Although
these results are not surprising, they clearly showcase why
dedicated solvers such as GJK-like methods are crucial for
collision detection.

D. Comparison against other collision detection librairies

In this sub-section, we compare our implementations of
vanilla, Nesterov-accelerated and Polyak-accelerated GJK
against the following baselines from other collision detection
librairies: CCD’s MPR and GJK implementations [15], FCL’s
GJK implementation [16] and Bullet’s GJK implementation.
These collision detection algorithms are used in physics simu-
lators like Drake [18], MuJoCo [3], ODE [19] and Bullet [1].
Since GJK is the state-of-the-art algorithm for narrow phase
collision detection, it is no surprise that most collision de-
tection libraries implement only this algorithm. In addition
to being a general, robust and computationally fast method,
GJK-like algorithms also have the advantage of producing a
simplex surrounding the origin when shapes are in collision
(see Sec. II). This simplex is then fed to the Expanding
Polytope Algorithm (EPA) in order to estimate the penetration
depth and separation vector [22]; these contact informations
are used in physics simulation to resolve contact constraints.
Just like GJK, the core of EPA consist in computing support
points in order to expand a polytope inside the Minkowski
difference. Therefore, since GJK and EPA are made to work
in succession with one another, it is almost always the case
that physics simulators use GJK to first detect collisions and
then EPA to compute contact features if a collision is detected.
All the libraries listed before are written either in C or in C++.

In Fig. 12, we report the performance of the methods
listed before on the YCB benchmark used in Sec. IV-B.
We measure the execution time of the different collision
detection solvers on the boolean collision check task and
divide the results into three distance categories: when shapes
are distant (dist(A1,A2) ≥ 1m), when shapes are in close-
proximity (0m ≤ dist(A1,A2) ≤ 0.1m) and when shapes
are overlapping (dist(A1,A2) ≤ 0m). The collision problems
corresponding to the distant case would typically be filtered
by the broadphase. We report them to give a clear picture of
the performance of the different implementations. In practice,
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Fig. 12. Computation time in micro-seconds of implementations of differ-
ent collision detection solvers from various C/C++ librairies on the YCB
benchmark for boolean collision checking. The y-axis is a log-scale. We
compare our implementation of vanilla GJK, Nesterov-accelerated GJK and
Polyak-accelerated GJK against FCL’s GJK implementation, CCD’s GJK
implementation and CCD’s MPR implementation. The results are split into
three different categories: (a) when shapes are distant (dist(A1,A2) ≥ 1m),
(b) in close-proximity (0 ≤ dist(A1,A2) ≤ 0.1m) and (c) overlapping
(dist(A1,A2) ≤ 0m). Lower is better.

the close-proximity and overlapping cases correspond to situa-
tions when the different collision detection solvers are actually
called; the broad phase cannot filter such collision problems
and the narrow phase is then called.

The results show our implementation of GJK and our
proposed methods outperform the solvers of the other collision
detection libraries. We find similar results for the distance
computation task. We now turn our attention to the context of
physics simulation and show that our proposed methods, just
like GJK, can be warm-started by using previous simulation
steps.

E. Collision detection for physics simulation

In the previous benchmarks, we have experimentally shown
the improvement of our methods, Polyak-accelerated GJK and
Nesterov-accelerated GJK, over the vanilla GJK algorithm for
collision problems which are important in practice, i.e. when
the broadphase has not filtered collision pairs and are thus
overlapping or in close proximity. So far, the benchmarks
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Fig. 13. Boolean collision checking of YCB objects’ trajectories (see Fig. 14)
for different warm-start strategies for (a) vanilla GJK, (b) Polyak-accelerated
GJK, and (c) Nesterov-accelerated GJK (with normalization). In the three
figures, WS is an abbreviation of warm-start. The No WS strategy signifies
the algorithm is initialized with x0 = (1, 0, 0)T . The OBB WS strategy
uses the objects’ current OBBs centers to compute x0. In both WS prev
and WS T(prev), x0 is computed using GJK or EPA’s previous solution, when
this solution is available (i.e., when the previous collision problem was not
discarded by the broadphase). Contrary to WS prev, WS T(prev) corrects the
previous solution using the relative displacement of the shapes between the
two considered time steps.

have been constructed by randomly selecting poses for our
shapes. However, in robotics applications such as trajectory
optimization, motion planning, or computer graphics, the
successive poses between objects are usually correlated by
time. In this sub-section, we study how vanilla GJK, Polyak-
accelerated GJK, and Nesterov-accelerated GJK can be warm-
started using the previous time instant, as occurring inside
physics simulators.

To do so, we create a dataset of trajectories using pairs of
objects from the YCB dataset used in Sec. IV-B. We randomly
select 1000 pairs of YCB objects and drop them in a funnel
as shown in Fig. 14. At the beginning of the simulation, each
object is given a random pose and random translational and
rotational velocities. The simulation is then run at 120Hz for 1
second. When a collision occurs, the GJK and EPA (expanding
polytope algorithm) algorithms are called to determine the
position of the contact points and the corresponding normal

for the considered pair of objects. The collision is then
resolved using a contact solver based on the Projected Gauss-
Seidel [57] algorithm to account for a second-order cone
representing friction, following the implementation proposed
in [58]. In total, 120k collision problems are generated. For
each collision problem, we extract the YCB shapes and their
poses.

This dataset allows us to evaluate the vanilla, Polyak-
accelerated, and Nesterov-accelerated GJK algorithms on the
same collision problems generated by a physics simulation.
Interestingly, this dataset allows us to study only the collision
problems not filtered by the broadphase of the physics simula-
tor, as explained in Sec. I. During the broad phase, the oriented
bounding boxes of the objects (OBBs, as shown in Fig. 1) are
used to assess if objects are not in collision. Therefore, if the
broad phase does not filter a collision, the GJK algorithm and
our proposed accelerations are called and solve the boolean
collision check problem. Finally, this dataset allows us to test
different strategies to warm-start (WS) the GJK algorithm and
our proposed accelerations. We denote by xt

0 the initial guess
given to vanilla, Polyak-accelerated and Nesterov-accelerated
GJK at time step t of the simulation. We also denote by xt−1

the separation vector found by GJK (accelerated or not) or
EPA at time-step t − 1 of the simulation. We consider four
different warm-start strategies for the vanilla GJK algorithm
and our proposed accelerations:

1) the first strategy is the No WS strategy, where the vanilla,
Polyak, and Nesterov GJK algorithms are initialized
using xt

0 = (1, 0, 0)T . This strategy serves as a baseline
for the other warm-start strategies.

2) The second strategy is the OBB WS strategy, where xt
0 =

ct1 − ct2 with ct1 and ct2 being the centers of the consid-
ered objects’ oriented bounding boxes. This warm-start
is used in all the previous benchmarks, as explained at
the beginning of this section.

3) The third strategy is the WS prev strategy, where x0 =
xt−1 is initialized using the solution found by GJK or
EPA in the previous simulation time step.

4) The fourth and last strategy is the WS T(prev) strategy.
The difference with the WS prev strategy is that we use
the relative transformation of the shapes between time
steps t and t − 1 to anticipate how xt−1 might move
between these two time steps.

The last two warm-starting strategies might not always be
actionable. Indeed, if at time step t− 1 the broad phase finds
no collision between the two considered shapes, the GJK and
EPA algorithms are not called, and therefore , xt−1 does not
exist. Consequently, if GJK needs to be called at time step t,
it cannot use xt−1. In such a case, these two strategies fall
back to the second strategy, which exploits the objects’ OBBs.

We run vanilla, Polyak-accelerated and Nesterov-
accelerated GJK on the dataset of trajectories described
previously; the results of this benchmark are summed up
in Fig. 13. In this figure, we report the computation time
of the boolean collision check for GJK and our proposed
accelerations. Importantly, this figure only considers the
collision problems which were not filtered by the broad
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(a)

(b)
Fig. 14. Two different trajectories (a) and (b) with two different pairs of objects from the YCB dataset. The objects are dropped with a random initial
velocity for each trajectory in a funnel (the grey walls). At each time step, if the broadphase cannot discriminate if the shapes are in collision or not, we use
the vanilla GJK algorithm or our proposed Polyak and Nesterov-accelerated variants of GJK to determine if a collision occurs between the convex-hulls of
the collision pair.

phase, as GJK or its accelerations would not be called
otherwise. In doing so, we aim to provide the clearest
possible picture of the computation time dedicated to GJK in
a physics computation. Due to the filtering of the broad phase,
the typical distance separating the shapes is less than a few
centimeters; this corresponds to the overlapping and close-
proximity cases described in the previous benchmarks. First,
the results show that for the three studied methods, the No WS
and WS T(prev) warm-start strategies provided a worse initial
guess than the two other warm-start strategies. It appears
that the WS T(prev) strategy is often the worse strategy; this
observation means that the separation vector computed by
GJK and/or EPA moves in a non-trivial manner between time
steps t − 1 and t of the simulation. For vanilla GJK, the
best warm-starting strategy is the WS prev strategy, which
re-uses the separation vector computed by GJK and EPA at
time step t − 1 of the simulation. For Polyak-accelerated
GJK, both the OBB WS and WS prev strategies perform better
than vanilla GJK’s best warm-starting strategy. However,
contrary to GJK, the OBB WS strategy is arguably better than
the WS prev strategy as it greatly reduces the variance of the
computation timings distribution. For Nesterov-accelerated
GJK, the results are even more significant: both the OBB
WS and WS prev strategy significantly outperform GJK with
its best warm-starting strategy. When using the OBB WS
and WS prev strategies, the Nesterov acceleration allows
the median of computation times to reach close to 0.5µs,
compared to a median above 1µs in the case of GJK’s best
warm-starting strategy. Like the Polyak acceleration, the
Nesterov-accelerated GJK algorithm significantly reduces the
spread of the distribution of computation times compared
to GJK. This is especially visible when using the OBB WS
strategy together with the Nesterov acceleration. Finally, this
benchmark shows that physics simulation strongly benefits
from using Nesterov-accelerated GJK warm-started using
the OBB WS strategy.

V. CONCLUSION

In this work, we have first established that the well-known
GJK algorithm can be understood as a variant of the Frank-
Wolfe method, well studied within the convex optimization
community, and more precisely, GJK can be identified as a
sub-case of fully-corrective Frank-Wolfe. Subsequently, this
connection has enabled us to accelerate the GJK algorithm
in the sense of Nesterov acceleration by adapting recent
contributions on applying Polyak and Nesterov acceleration
to the context of Frank-Wolfe. Through extensive bench-
marks, we have shown that this acceleration is beneficial for
both collision detection and distance computation settings for
scenarios where shapes intersect or are close, accelerating
collision detection by up to a factor of two. Interestingly,
these two scenarios notably encompass the generic contexts
of planning and control as well as physical simulation, which
are essential areas of modern robotics. Therefore, although the
proposed accelerations correspond to improvements of GJK’s
execution time on the order of a few microseconds, modern
robotics applications may solve millions to billions of collision
problems when, for instance, learning a policy with RL [59].

The Polyak and Nesterov accelerations for GJK are al-
ready included in the HPP-FCL library [51], notably used by
the HPP framework [4] for motion planning, the Pinocchio
framework [60] dedicated to simulation and modeling, the
Croccodyl [61] and the OSC-2 [62] software dedicated to tra-
jectory optimization, to name a few. In future work, we plan to
leverage these accelerated collision detection algorithms in the
scope of differentiable collision detection [63], differentiable
simulation [64], [65] and constrained optimal control involving
contact interactions [61], [66], [67].

Finally, one can expect this work to be largely adopted in
the current available GJK implementations, as it only requires
minor algorithmic changes. This work should benefit a large
audience within robotics (e.g., simulation, planning, control)
and beyond by addressing issues shared by other communities,
including computer graphics and computational geometry.
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team at Inria and École Normale Supérieure. Prior to
that, he received an engineering degree from Ecole
Polytechnique and an M.Sc. degree in Mathematics,
Computer Vision, and Machine Learning from École
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