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GJK++: Leveraging Acceleration Methods for
Faster Collision Detection

Louis Montaut, Quentin Le Lidec, Vladimir Petrik, Josef Sivic and Justin Carpentier

Abstract—Collision detection is a fundamental problem in1

various domains, such as robotics, computational physics, and2

computer graphics. In general, collision detection is tackled as3

a computational geometry problem, with the so-called Gilbert,4

Johnson, and Keerthi (GJK) algorithm being the most adopted5

solution nowadays. While introduced in 1988, GJK remains the6

most effective solution to compute the distance or the collision7

between two 3D convex geometries. Over the years, it was8

shown to be efficient, scalable, and generic, operating on a9

broad class of convex shapes, ranging from simple primitives10

(sphere, ellipsoid, box, cone, capsule, etc.) to complex meshes11

involving thousands of vertices. In this article, we introduce12

several contributions to accelerate collision detection and distance13

computation between convex geometries by leveraging the fact14

that these two problems are fundamentally optimization prob-15

lems. Notably, we establish that the GJK algorithm is a specific16

sub-case of the well-established Frank-Wolfe (FW) algorithm in17

convex optimization. By adapting recent works linking Polyak18

and Nesterov accelerations to Frank-Wolfe methods, we also19

propose two accelerated extensions of the classic GJK algorithm.20

Through an extensive benchmark over millions of collision pairs21

involving objects of daily life, we show that these two accelerated22

GJK extensions significantly reduce the overall computational23

burden of collision detection, leading to computation times that24

are up to two times faster. Finally, we hope this work will25

significantly reduce the computational cost of modern robotic26

simulators, allowing the speed-up of modern robotic applications27

that heavily rely on simulation, such as reinforcement learning28

or trajectory optimization.29

Index Terms—Convex Optimization, Collision Detection, Com-30

putational Geometry, Computer Graphics, Simulation, Trajec-31

tory Optimization, Motion Planning32

I. INTRODUCTION33

PHYSICS engines designed to simulate rigid bodies are an34

essential tool used in a wide variety of applications, no-35

tably in robotics, video games, and computer graphics [1]–[3].36

Collision detection, a crucial feature of any physics engine or37

robot motion planer [4]–[6], consists of finding which objects38

are colliding or not, i.e. are sharing at least one common point39

or if there exists a separating hyper-plane between both. As40

simulation often needs to deal with multiple objects and run in41

real-time (i.e., in video games) or at very high frequencies (i.e.,42
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Fig. 1. Two distinct collision problems using shapes from the YCB
dataset: in (a) the shapes A1 (in green) and A2 (in red) are not in
collision (dist(A1,A2) > 0) whereas in (b) the shapes are in collision
(dist(A1,A2) = 0). In the left column, the oriented bounding boxes (OBB)
of the objects are represented in light colors. In the right column, the light
colors represent the convex hull of each object. In both collision problems,
(a) and (b), the broad phase finds a collision between the object’s OBBs; the
narrow phase must thus be called to confirm or infirm the collision. The right
column corresponds to the narrow phase in which the GJK algorithm is called
on the objects’ convex hulls. In this paper, we propose the Polyak-accelerated
GJK and Nesterov-accelerated GJK algorithms in order to accelerate collision
detection.

in robotics), collision detection must be carried out as fast as 1

possible. To reduce computational times, collision detection is 2

usually decomposed into two phases thoroughly covered in [7]. 3

The first phase is the so-called broad phase which consists 4

in identifying which pair of simulated objects are potentially 5

colliding. The broad phase relies on the simulated objects’ 6

bounding volumes, as shown in Fig. 1, allowing to quickly 7

assess if the objects are not in collision. The second phase is 8

the so-called narrow phase in which each pair identified in 9

the broad phase is tested to check whether a collision is truly 10

occurring. Collision detection during the narrow phase is the 11

focus of this paper. 12

Problem formulation. We consider two convex shapes A1 13

and A2 in Rn (with n = 2 or 3 in common applications). 14

If the shapes are not convex, we use their respective convex 15

hulls or decompose them into a collection of convex sub- 16

shapes [8]. The separation distance between A1 and A2, 17

denoted by dist(A1,A2) ∈ R+, can be formulated as a 18
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minimization problem of the form:1

d1,2 = min
x1∈A1,x2∈A2

∥x1 − x2∥2

and dist(A1,A2) =
√
d1,2 ,

(1)

where x1 ∈ A1 and x2 ∈ A2 are both vectors in Rn, d1,22

is the optimal value of (1) and ∥·∥ is the Euclidian norm3

of Rn. If A1 and A2 intersect (i.e., they are in collision),4

we necessarily have dist(A1,A2) = 0. If the two shapes do5

not intersect, we have dist(A1,A2) > 0. These two cases are6

illustrated in Fig. 1.7

Problem (1) allows us to consider both the distance com-8

putation problem and the computationally cheaper Boolean9

collision check as one single convex optimization problem. In10

the distance computation problem, we aim at computing the11

separation distance between A1 and A2, denoted dist(A1,A2),12

i.e. the distance between their closest points. This distance13

is helpful in some applications such as collision-free path14

planning [9], [10], especially for pairs of objects entering the15

narrow phase. If the broad phase has not selected a pair of16

objects, a cheap estimate of dist(A1,A2) is usually enough [7].17

In the Boolean collision check, we only aim at determin-18

ing if A1 and A2 intersect, and computing dist(A1,A2) is19

unnecessary. However, we will later see that the Boolean20

collision check is a sub-problem of the distance computation21

problem: solving (1) can be early-stopped once a separating22

plane between A1 and A2 has been found. In the rest of this23

paper, we will use the generic term “collision detection” to24

refer to distance computation and Boolean collision checking25

altogether. We will specify when the distinction is needed.26

Contributions and paper outline. Our work builds on the27

seminal works by [11] and [12] as well as on the work of [13],28

[14] to globally accelerate distance computation and collision29

checking algorithms between convex shapes. We make the30

following contributions:31

↪→ In Sec. II, we provide an in-depth tutorial on the state-of-32

the-art Gilbert-Johnson-Keerthi (GJK) algorithm used to33

solve collision detection problems. Although it is often34

presented and discussed as a computational geometry35

algorithm, we show that GJK is, in fact, a sub-case of the36

much older fully-corrective Frank-Wolfe (FW) algorithm;37

↪→ In Sec. III, we adapt recent works on Polyak and38

Nesterov-accelerated FW to accelerate both the distance39

computation and the Boolean collision check problems;40

↪→ In Sec. IV, we empirically analyze the convergence of41

our proposed approach on two large shape benchmarks.42

Results show a faster convergence of our approach lead-43

ing to a computational time up to two times faster than44

the state-of-the-art GJK algorithm on both distance com-45

putation and Boolean collision checking. We also provide46

a benchmark against other collision detection algorithms47

from the libCCD [15], FCL [16] and BulletCollision [17]48

collision detection librairies which are used in physics49

simulators like Drake [18], MuJoCo [3], ODE [19] and50

Bullet [1].51

↪→ We empirically show that GJK-like algorithms, which our52

proposed methods belong to, are superior by orders of53

magnitude to generic quadratic programming solvers on 1

collision detection problems; 2

↪→ Finally, we show that our methods can be used in any 3

physics simulator by benchmarking them on trajectories 4

generated by the Bullet simulator. Like GJK, our methods 5

can benefit from being warm-started using the previous 6

simulation time steps, enabling temporal coherence for 7

our proposed accelerated collision detection algorithms. 8

This article is an extended version of a previously published 9

paper [20] which presented the Nesterov-accelerated GJK 10

algorithm. To expand on our previous work, we introduce the 11

Polyak-accelerated GJK algorithm, provide additional bench- 12

marks, notably against existing collision detection librairies, 13

and show that our proposed methods can be used in the context 14

of physics simulation by benefiting from being warm-started 15

using previous simulation steps. 16

In the rest of this section, we first formulate the problem of 17

collision detection and then provide an overview of collision 18

detection related works. 19

Related work. The so-called Gilbert-Johnson-Keerthi algo- 20

rithm (GJK) [12] is the most well-known algorithm for colli- 21

sion detection between two convex shapes. It can handle the 22

distance computation and the Boolean collision check [21]. 23

The expanding polytope algorithm (EPA) [22], an extension 24

to GJK, can compute the penetration depth i.e. the norm of the 25

separation vector, when shapes are in collision. The separation 26

vector is the vector of smallest norm needed to translate one of 27

the two shapes such that the two shapes do not intersect. The 28

EPA solves a non-convex and more complex problem than (1), 29

which is not the focus of this paper. 30

Most alternatives to GJK in the literature focus on com- 31

puting collisions between convex polyhedra, such as the Lin- 32

Canny algorithm [23] or the V-Clip [24] algorithm. Although 33

GJK is equivalent in performance to these algorithms [25], 34

it is not restricted to convex polyhedra. The strength of 35

GJK is formulating the collision detection problem on the 36

Minkowski difference. The properties of the Minkowski dif- 37

ference are used to cleverly compute support vectors on 38

the Minkowski difference (these notions are introduced and 39

detailed in Sec. II). GJK can thus handle collision detection, 40

and distance computation for many different shapes such as 41

convex polyhedra and basic primitives (i.e., spheres, ellipsoids, 42

cylinders, capsules etc.) [7], [21], [26]. The Minkowski Portal 43

Refinement (MPR) [27] is a variant of the GJK algorithm 44

which is slightly simpler to implement; however, MPR can 45

only perform boolean collision checks as it cannot be used 46

to perform distance computation between non-overlapping 47

shapes. Overall, the generality of GJK, efficiency, good preci- 48

sion, and ease of implementation make it the state-of-the-art 49

algorithm for collision detection between two convex shapes. 50

Collision detection has been casted into a convex opti- 51

mization problem for many years [12], [28], [29]. However, 52

collision detection is traditionally presented and considered 53

mainly as a computational geometry problem [7], [21], [24], 54

[25], [30], [31]. Over the years, this computational geometric 55

perspective allowed enhancing the computational efficiency of 56

GJK, thanks to improvements to its internal sub-routines [21], 57
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[30]. However, we argue that this view has also limited1

collision detection improvement. Instead, we propose to tackle2

collision from the perspective of convex optimization. This3

correlates with some observations raised in the original GJK4

papers. Indeed, as briefly mentioned already in their 19885

paper [12] and brought up again by [29], [32], the ideas6

developed by Gilbert, Johnson, and Keerthi are rooted in7

convex optimization, notably in the works of [33] and [34]8

for solving Minimum-Norm Point (MNP) problems. This arti-9

cle proposes exploiting the Frank-Wolfe convex optimization10

setting to tackle collision detection. In particular, by leveraging11

recent progresses in acceleration methods in convex optimiza-12

tion [35], we show how to accelerate collision detection by13

directly lowering the number of iterations needed to solve14

a collision problem instance compared to the vanilla GJK15

algorithm.16

The Frank-Wolfe algorithm (FW) dates back to 1956 and17

is one of the first convex optimization algorithms. It has18

been heavily studied over the years by the optimization19

community. This algorithm iterates over the computation20

of support points to approach the optimal solution. The21

undesired zig-zagging behavior of FW, already identified by22

its authors, has been addressed by introducing corrections23

to the original FW method [33], [34], [36]–[40]. In [38]24

and [40], widely used corrections of the FW algorithm are25

analyzed, and their convergence properties. In this work, we26

notably show in Sec. II that the GJK algorithm is an instance27

of the fully-corrective Frank-Wolfe algorithm, covered in [40],28

applied to solving a MNP problem. Finally, recent works29

have also tried accelerating the FW algorithm by applying the30

so-called Nesterov acceleration [41], a classic acceleration31

technique in unconstrained optimization. Nesterov momentum32

has been successfully added by [14] to accelerate FW.33

34

II. COLLISION DETECTION FROM A FRANK-WOLFE35

PERSPECTIVE36

In this section, we highlight the natural connection between37

computing the distance between convex shapes and convex38

optimization, particularly within the frame of the Frank-Wolfe39

(FW) setting. The first part of this section is a tutorial on40

collision detection, starting with FW and gradually working41

towards GJK. We then show that the GJK algorithm can42

be seen as a variant of the FW algorithm that leverages43

properties of convex 3D shapes to lower the computational44

complexity drastically.45

46

Distance computation and Boolean collision checking. As47

recalled in Sec. I, collision detection is a sub-case of distance48

computation: dist(A1,A2) > 0 means that the two shapes do49

not overlap while dist(A1,A2) = 0 means that the shapes50

are in collision. In the case of dist(A1,A2) > 0, finding a51

strictly positive lower bound on d1,2 to solve the collision52

problem is sufficient. In the context of convex shapes,53

this is often simpler than computing the distance between54

the two shapes [10] and can be done by finding a plane55

separating A1 from A2. In the rest of the paper, we focus on56

the generic problem of computing the distance between A1 1

and A2, as it encapsulates the more straightforward Boolean 2

collision check covered later in this section. Results for the 3

particular Boolean collision checking case are analyzed in the 4

experimental section IV. 5

6

Collision detection from the perspective of quadratic pro- 7

gramming. From the perspective of numerical optimization, 8

the first idea is to look at problem (1) through the lens of 9

quadratic programming. In the case of meshes, which are 10

shapes represented by soups of 3D points and which faces 11

represented as triangles, we can use the implicit description 12

of a convex mesh as a linear inequality of the form Ax ≤ b. 13

The collision detection problem between two meshes can thus 14

be cast as a quadratic programming (QP) problem: 15

d1,2 = min
x1,x2∈R3

∥x1 − x2∥2

s.t A1x1 ≤ b1

A2x2 ≤ b2.

(2)

While many off-the-shelf solvers exist to solve QP problems, 16

their performances scale poorly with respect to the number 17

of constraints [42]. This is especially true in the presence 18

of complex meshes composed of hundreds or thousands of 19

vertices, for which QP solvers can take a few milliseconds to 20

assess a collision, as we experimentally highlight in Sec. IV-C. 21

Having established that solving collision detection requires 22

dedicated methods, we turn our attention to solutions such 23

as GJK, which has been shown to operate on a large class 24

of shapes, ranging from simple primitives to very complex 25

meshes. 26

Recasting the distance computation problem onto the 27

Minkowski difference. The first important idea of 1988’s 28

paper by Gilbert, Johnson, and Keerthi [12] is to recast the dis- 29

tance computation problem onto the Minkowski difference D 30

of the shapes and defined as follows: 31

D = A1 −A2 = {x = x1 − x2 | x1 ∈ A1,x2 ∈ A2} ⊂ C ,
(3)

where C = Rn is the so-called collision space. The shapes A1 32

and A2 lie in the shape space and the Minkowski difference D 33

lies in the collision space. 34

Although both the shape space and the collision space 35

are isomorphic to Rn, we distinguish between the two to 36

highlight the change in perspective. In Fig. 2, we illustrate 37

the link between a pair of two convex shapes and their corre- 38

sponding Minkowski difference. We stress that the Minkowski 39

difference D is specific to shapes A1 and A2. If the relative 40

position or relative orientation between A1 and A2 changes, 41

their Minkowski difference changes accordingly. 42

The following properties, illustrated in Fig. 2, hold for the 43

Minkowski difference D: 44

1) Since A1 and A2 are convex sets, D is also convex. 45

2) If A1 and A2 are intersecting, the origin of C, de- 46

noted as 0C , lies inside the Minkowski difference D, 47

i.e. 0C = x1 − x2 for some x1 ∈ A1 and x2 ∈ A2. 48

3) If A1 and A2 are not intersecting, the projection of 0C 49

onto D, x∗ = projD(0C), corresponds to two vectors 50
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(a)

(b)
Fig. 2. (a) Distant vs. (b) overlapping pairs of shapes and their respective
Minkowski difference. Left column: two convex shapes in 2D. Right column:
the Minkowski difference D of A1 and A2. Since A1 and A2 are convex, D
is also convex. In (a), the shapes are not in collision hence the origin of the
configuration space C, 0C (in red) lies outside the Minkowski difference, 0C ̸∈
D. The vector x∗ = x∗

1 −x∗
2 separates A1 from A2. It is also equal to the

projection of 0C onto the Minkowski difference D, x∗ = projD(0C). In (b),
the shapes overlap, thus 0C ∈ D. In this case, we have x∗ = projD(0C) =
0C .

x∗
1 ∈ A1 and x∗

2 ∈ A2, also called witness vectors in the1

computational geometry literature [7]. Contrary to x∗,2

these vectors x∗
1 and x∗

2 are not necessarily unique, as3

is the case for non-strictly convex shapes such as two4

parallel boxes.5

4) Finally, we always have ∥x∗∥ = dist(A1,A2).6

This final remark allows us to recast the distance computation7

problem (1) onto the Minkowski difference as follows:8

d1,2 = min
x∈D

∥x− 0C∥2 = min
x∈D

∥x∥2 . (4)

The convex optimization problem (4) is equivalent to (1)9

and is known as a Minimum-Norm Point problem in the10

optimization literature [34], [40], [43]. In our case, 0C ∈11

C = Rn is the null vector i.e. the origin of the collision12

space. We thus aim at finding the point in D with the lowest13

norm. This vector x∗ is the optimal solution to (4), given14

by d1,2 = ∥x∗∥2 = dist(A1,A2)
2.15

Directly computing the Minkowski difference D is neither16

analytically tractable nor computationally efficient. Most of17

the first and second-order methods for constrained convex18

optimization problems, such as projected gradient descent or19

interior point methods [44], are thus sub-optimal choices.20

However, computing support vectors of the Minkowski differ-21

ence D, a notion defined hereinafter in this section, is relatively22

simple and largely demonstrated by [12]. As we discuss next,23

solving convex optimization problems by computing support24

vectors is the strengh of the Frank-Wolfe algorithm and its25

variants [38].26

Distance computation using the Frank-Wolfe algorithm.27

The Frank-Wolfe algorithm (FW) [11] is one of the oldest28

Algorithm 1 Frank-Wolfe algorithm with linesearch [38]
Let x0 ∈ D, ϵ > 0
For k=0, 1, ... do

1: dk = ∇f(xk) ▷ Direction of support
2: sk ∈ argmins∈D⟨dk, s⟩(= SD(dk)) ▷ Support (8)
3: If gFW (xk) ≤ ϵ , return f(xk) ▷ Duality gap (16)
4: γk = argminγ∈[0,1] f(γxk + (1− γ)sk) ▷ Linesearch
5: xk+1 = γkxk + (1− γk)sk ▷ Update iterate

In the case of the distance computation problem (4),
where f(x) = ∥x∥2, line 4-5 correspond to projecting 0C
on the segment [xk, sk]:

6: xk+1 = proj[xk,sk]
(0C) ▷ Project 0C on [xk, sk]

Fig. 3. Computing a support vector sk in direction ∇f(xk) on convex
set D. We illustrate with the example of distance computation. On the left, we
draw the Minkowski difference D of which point of minimum norm (MNP)
is x∗ i.e. x∗ is the projection of 0C onto D, x∗ = projD(0C). The iterate
at iteration k of the FW algorithm is xk . In purple we draw the level sets
of the function f(x) = ∥x∥2. On the right, we draw in purple the level
sets of the linearization of f at iterate xk , hk . The first step of the FW
algorithm is to compute support vector sk in the direction of ∇f(xk) (green
arrow), sk ∈ SD(∇f(xk)). In the second step of the FW algorithm, we
compute xk+1 as a convex combination of xk and sk i.e. xk+1 is a point
on the segment [xk, sk].

convex optimization methods and solves the following con- 1

strained optimization problem: 2

f(x∗) = min
x∈D

f(x), (5)

where f : Rn → R is a convex and differentiable function and 3

D is a compact convex set. For our distance computation 4

problem (4), we use f(x) = ∥x∥2 and the Minkowski 5

difference D as convex constraint set. As a side note, the 6

following discussed algorithms all require an initial starting 7

point x0 ∈ D. Shapes used in physics engines are usually 8

attached to a frame to keep track of their position and 9

orientation in space. We denote c1 ∈ A1 and c2 ∈ A2 the 10

origins of the frames attached to A1 and A2, respectively. In 11

the rest of this paper, we take x0 = c1 − c2. 12

The FW algorithm, summarized in Alg. 1, is a gradient- 13

descent method. It consists in iteratively applying two steps in 14

order to converge towards the optimal solution x∗ of (5). If 15

we denote by xk the estimate of x∗ at iteration k, these two 16

steps correspond to: 17

1) First, we compute a support vector sk in the direction 18

of ∇f(xk), by solving a linear optimization problem 19

on D. 20

2) Second, we update our current iterate xk to obtain xk+1, 21

by taking a convex combination of the current iterate xk 22

and the computed support vector sk. 23
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In the following, we detail these steps in the context of1

distance computation. At iteration k, the current iterate xk2

is the estimate of the optimal solution x∗ and f(xk) is the3

estimate of the optimal value of (5), f(x∗), at iteration k. We4

write the linearization of the function f at xk and denote it5

as hk:6

hk(s) = f(xk) + ⟨∇f(xk), s− xk⟩ (6)

where s is a vector of Rn, ∇f(xk) is the gradient of f at xk7

and ⟨·, ·⟩ denotes the dot product between two vectors of Rn.8

↪→ Step 1. The first step of the FW algorithm at iteration k9

consists of finding a minimizer sk ∈ D of hk on the convex10

set D (line 2 in Alg. 1). Such a vector sk is called a support11

vector of D or simply a support and is defined as follows:12

sk ∈ argmin
s∈D

hk(s) = argmin
s∈D

⟨∇f(xk), s⟩ . (7)

Fig. 3 gives a graphical understanding of support sk. The13

vector sk belongs to D and is in the most opposite direction14

w.r.t. ∇f(xk). In order to highlight the importance of the15

direction in which a support sk is computed, we now introduce16

the notion of support direction and support function. Given a17

support direction d ∈ Rn, the support function SD returns a18

set of D and is defined as:19

SD(d) = argmin
s∈D

⟨d, s⟩ ⊂ D . (8)

The support function SD may return a set with more than one20

vector. We only need to use one vector of this set. Thinking21

in terms of the direction of support allows us to understand22

that this direction can be rescaled while preserving the output23

of the support function:24

∀d ∈ Rn, ∀α > 0, SD(αd) = SD(d). (9)

A support sk ∈ D at iteration k is thus computed in the25

direction dk = ∇f(xk) and belongs to SD(∇f(xk)), sk ∈26

SD(∇f(xk)).27

We now explain how to compute the support vector sk in28

the case of the distance computation problem (4) where we29

minimize f(x) = ∥x∥2 on the Minkowski difference D of A130

and A2. First, we have ∇f(x) = 2x. Therefore, in the case31

of problem (4), it follows that:32

sk ∈ SD(xk) = argmin
s∈D

⟨xk, s⟩ . (10)

As demonstrated by [12], any vector s ∈ SD(d) related to the33

Minkowski difference can be decomposed as the difference be-34

tween two support vectors sA1 ∈ SA1(d) and sA2 ∈ SA2(−d)35

over the two individual shapes, leading to the following36

relation:37

s = sA1
− sA2

∈ SD(d). (11)

Equation (11) shows that we can construct a support of the38

Minkowski difference from the supports of the original shapes.39

This property highlights the powerful change of perspective40

of working on the Minkowski difference. Indeed, there exists41

a large number of shapes for which computing supports42

is simple: spheres, ellipsoids, cylinders, capsules, polytopes43

etc. [7], [21], [26]. Fig. 4 illustrates the construction of a44

support of the Minkowski difference D using the supports of45

the original shapes A1 and A2.46

Fig. 4. Computing a support vector on the Minkowski difference using
support vectors (represented by star shapes in the drawing) on the individual
shapes. The vector sA1

is a support vector of shape A1 in direction d. The
vector sA2 is a support vector of shape A2 in direction −d. The constructed
vector s = sA1

− sA2
is a support vector of the Minkowski difference D

in the direction d.

↪→ Step 2. Once a support vector sk ∈ SD(xk) has been 1

computed, we update the iterate xk to obtain xk+1 by taking 2

a convex combination between sk and xk. The original FW 3

algorithm uses a parameter-free update: 4

xk+1 = γkxk + (1− γk)sk , (12)

where γk = k+1
k+2 ∈ [0, 1] controls the step size. Alternatively, 5

a line search can be carried out to find a better iterate xk+1 6

(line 4 in Alg. 1): 7

γk = argmin
γ∈[0,1]

f(γxk + (1− γ)sk)

xk+1 = γkxk + (1− γk)sk.
(13)

In the distance computation case where f(x) = ∥x∥2, this 8

linesearch (13) is equivalent to projecting 0C onto the seg- 9

ment [xk, sk], xk = proj[xk,sk]
(0C) (line 4 in Alg. 1). Since D 10

is convex, both (12) and (13) updates are guaranteed to remain 11

in D. 12

Stopping criteria. As Frank-Wolfe deals with convex prob- 13

lems, the duality gap associated with problem (5) can be used 14

as a stopping criterion. Due to its convexity, the function f is 15

always above its linearization. Otherwise said, for any x ∈ Rn
16

and any s ∈ Rn: 17

f(s) ≥ f(x) + ⟨∇f(x), s− x⟩ . (14)

Reworking this inequality and applying the min operator en- 18

ables us to compute the Frank-Wolfe duality gap gFW(x) ∈ R+ 19

which gives an upper-bound on the difference f(x)− f(x∗): 20

f(x)− f(x∗) ≤ −min
s∈D

⟨∇f(x), s− x⟩ = gFW(x) . (15)

In particular, at iteration k of the FW algorithm, we have: 21

f(xk)− f(x∗) ≤ gFW(xk) = ⟨∇f(xk),xk − sk⟩ , (16)

where sk ∈ SD(∇f(xk)) is the support vector computed at it- 22

eration k in the direction of ∇f(xk). The duality-gap gFW(xk) 23

serves as a convergence criterion for the Frank-Wolfe method 24

and is cheap to compute. Applied to the distance computation 25

problem (4), the duality gap at iteration k, gFW(xk), guarantees 26

that: 27

∥xk∥2 − ∥x∗∥2 ≤ gFW(xk) = 2⟨xk,xk − sk⟩. (17)
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Algorithm 2 Boolean collision checking: separating plane
condition
Insert after line 2 in Alg. 1:

1: If max(0, ⟨dk/ ∥dk∥ , sk⟩) > ϵcol , return False
If after termination d1,2 ≤ ϵcol, return True, otherwise
return False.

Using the triangular inequality of the Euclidian norm and the1

convexity of the Minkowski difference D, we can show that:2

∥xk − x∗∥2 ≤ ∥xk∥2 − ∥x∗∥2 ≤ gFW(xk) . (18)

Inequality (18) is useful in practice as it allows the fine3

control of the desired tolerance on the distance to the optimal4

solution x∗ (line 3 in Alg. 1). Indeed, if ones wants to compute5

an estimate x of the optimal solution x∗ at precision ϵ,6

meaning that ∥x− x∗∥ ≤ √
ϵ, it is sufficient to check that7

gFW(x) ≤ ϵ.8

Boolean collision checking. As mentioned earlier, the prob-9

lem of distance computation encompasses the problem of10

collision checking. Indeed, in collision checking, we are only11

interested in finding a separating plane between A1 and A2,12

if it exists. This is equivalent to finding a separating plane13

between D and 0C . For any support direction d, if we have:14

⟨d, s⟩ > 0, s ∈ SD(d), (19)

then the plane supported by the vector d separates D15

from 0C [21]. This also means that, in the case where the16

two shapes intersect, collision checking has the same com-17

putational complexity as distance computation. In general, at18

iteration k, the value max(0, ⟨dk/ ∥dk∥ , sk⟩) is a lower bound19

on the distance between the shapes, dist(A1,A2), and it can20

be used as a stopping criterion in the boolean collision check.21

As soon as the lower bound on dist(A1,A2) is guaranteed22

to be positive, the algorithm can be stopped. Otherwise, the23

algorithm continues until the stopping criterion defined by (18)24

is met. As shown in Alg. 2, we add this separating plane25

condition before line 2 in Alg. 1. The condition on the lower26

bound of dist(A1,A2) is met relative to a threshold ϵcol. This27

threshold sets at what distance the shapes are considered to28

be in collision and depends on the application. In practice,29

since we use double-precision floats in our benchmarks (see30

Sec. IV), the test on the lower bound of dist(A1,A2) can be31

computed down to machine precision. This means the distance32

computation threshold ϵ can take values down to 10−12 in (18).33

This corresponds to a precision on the distance between shapes34

on the order of micro-meters (
√
ϵ = 10−6m). In robotics35

applications where the entire pipeline is no more precise than36

millimeters, it is often sufficient to consider that below a37

threshold of 10−4m (i.e ϵ = 10−8) the shapes are in collision;38

above that threshold the shapes are not in collision. In our39

applications, we use ϵcol =
√
ϵ.40

41

Computing support vector on meshes. While the support42

vector of basic primitives (sphere, ellipsoid, box, etc.) presents43

closed-form solutions, this is not the case for meshes. In the44

case of convex meshes, an efficient approach for computing the45

Algorithm 3 Frank-Wolfe algorithm with line-search (see
Alg. 1) rewritten with active-sets and applied to the distance
computation problem (4)
Let x0 ∈ D, W0 = {x0}, ϵ > 0
For k=0, 1, ... do

1: dk = xk ▷ Direction of support
2: sk ∈ SD(dk) ▷ Support (8)
3: If gFW (xk) ≤ ϵ , return f(xk) ▷ Duality gap (16)
4: W̃k+1 = Wk ∪ {sk} ▷ Augment active-set
5: xk+1 = projconv(W̃k+1)

(0C) ▷ Project 0C on conv(W̃k+1)

6: Wk+1 = {xk+1} ▷ Update active-set

support direction of meshes is the hill-climbing algorithm [26], 1

which allows retrieving the supporting vertex or face of the 2

meshes thanks to a simple neighbor-descent procedure. Yet, 3

this procedure is sensitive to the initial-guess solution. By 4

leveraging Nesterov and Polyak acceleration schemes intro- 5

duced in Sec. III, which both tend to reduce the oscillations 6

hindered by gradient-descent type algorithms, we show in 7

Sec. IV that this helps the hill-climbing algorithm to perform 8

less iterations in practice, leading to faster computation times. 9

The Frank-Wolfe active-set. As with many gradient-descent 10

algorithms, the FW method tends to zig-zag towards the 11

optimal solution [40], slowing down the convergence to the 12

optimum. This behavior is undesired and amplified if the 13

optimal solution x∗ lies close to the boundary of the constraint 14

set D. In collision detection, this corresponds to the case 15

where the two shapes are not intersecting. This zig-zagging 16

behavior is due to the way that Frank-Wolfe approaches the 17

set of active constraints [40], also called active-set in the 18

optimization literature [44]. In the FW setting, the active set 19

at iteration k, denoted Wk = {s0, ..., sr} ⊂ D, is the set 20

of vectors in D used by the algorithm to maintain a convex 21

combination of the iterate xk: 22

xk =

r∑
i=0

λisi,

r∑
i=0

λi = 1with si ∈ Wk ⊂ D and λi > 0.

(20)
In Alg. 3, we rewrite the FW algorithm with line search 23

(Alg. 1) in order to highlight the notion of active set: 24

• At iteration k, the active-set is only composed 25

of xk, Wk = {xk}. 26

• The active-set Wk is then augmented by computing a 27

support sk (line 2 in Alg. 3) to obtain W̃k+1 = {xk, sk} 28

(line 4 in Alg. 3). 29

• We then minimize function f on the convex-hull 30

of W̃k+1, conv(W̃k+1), which is simply the seg- 31

ment [xk, sk]. For the distance computation problem (4), 32

this linesearch operation is equivalent to projecting 0C 33

onto the segment [xk, sk] (line 5 in Alg. 3). 34

• Finally, the active-set is updated Wk+1 = {xk+1} (line 6 35

in Alg. 3). 36

In practice, discarding previously computed supports when 37

updating the active set is inefficient and causes the zig- 38

zagging phenomenon observed in the FW algorithm [40]. In 39

the optimization literature, a rich and wide variety of variants 40
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of the FW algorithm have been introduced to efficiently cope1

with the active set in order to improve the convergence rate2

of the FW method [34], [36], [37], [45], [46]. However,3

these variants remain too generic and are not suited for the4

specific problem of collision detection. In the following, we5

propose instead incorporating the active-set strategy used in6

GJK within the Frank-Wolfe setting.7

Connection between GJK and Frank-Wolfe. In the case8

of collision detection, [12] developed an efficient strategy to9

handle the active set at a minimal cost. To represent the current10

estimate xk and the optimal solution x∗, GJK exploits the11

concept of simplexes in R3. A simplex in Rn corresponds to12

a set containing at most n+ 1 vectors of Rn, and the rank r13

of a simplex is the number of vectors it contains (0 < r ≤14

n+1). For 3-dimensional spaces, a simplex corresponds either15

to a point (r = 1), a segment (r = 2), a triangle (r = 3),16

or a tetrahedron (r = 4). Similarly to the simplex methods17

for Linear Programming [47], the Carathéodory theorem [48]18

motivates the use of simplexes. Let Y be a set of N ≥ n19

vectors in Rn, Y = {yi ∈ Rn}0≤i≤N . The Carathéodory20

theorem states that any vector x ∈ conv(Y) can be expressed21

as the convex combination of at most n+ 1 vectors of Y:22

x =

r∑
j=0

λjyj , with yj ∈ Y, λj > 0,

r∑
i=0

λj = 1. (21)

Hence, any vector in D, and particularly the optimal so-23

lution x∗ ∈ D = conv(D) of the distance computation24

problem (4), can be identified as a convex combination of25

the vectors composing a simplex W . Relying on simplexes26

is attractive as there is no need to run any algorithm to27

compute the convex hull of a simplex as they are convex28

by construction. Frank-Wolf algorithms may operate on more29

complex active sets, which might become hard to tackle from30

a computational point of view [38], [40]. In other words, the31

problem of finding the optimal solution x∗ can be reformulated32

as the problem of identifying the optimal simplex W ∗ on33

which x∗ can be decomposed into a convex combination. This34

is precisely the approach followed by GJK that we now detail35

as well as illustrate in Fig. 5.36

At iteration k of GJK, the current iterate xk is a convex37

combination of the vectors composing the simplex Wk of38

rank rk ≤ n. This corresponds to Fig. 5a. To update xk39

and Wk, the following procedure is applied:40

• After computing support vector sk (line 2 in Alg. 3,41

illustrated in Fig. 5b), we add sk to Wk to ob-42

tain W̃k+1 = Wk ∪ {sk} (line 4 in Alg. 3). The set W̃k+143

is now a simplex of rank r̃k+1 ≤ n+ 1, as shown in44

Fig. 5c.45

• We then minimize function f(x) = ∥x∥2 on W̃k+146

to obtain xk+1, corresponding to projecting 0C47

onto W̃k+1: xk+1 = projconv(W̃k+1)
(0C)

1 (line 5 in48

Alg. 3). This projection is illustrated in figures 5c and 5d.49

• We then have two cases, summarized in Alg 4:50

1The efficient projection onto simplexes in R3, named the distance sub-
algorithm by [12], is thoroughly covered in [7], [21] and its robustness is
improved in [30].

Dxkxxx

0C000

Wk

(a)

Dxkxxx

0C000

Wk

sksss
(b)

Dxkxxx

0C000

W̃k+1

sksss
(c)

D
xk+1xxx

0C000
Wk+1

(d)
Fig. 5. Illustration of the GJK simplex strategy in 2D: (a) beginning of
the kth iteration, (b) support point computation, (c) simplex augmentation,
(d) simplex update.

1) If xk+1 = 0C , the algorithm is stopped. Thus, we 1

have x∗ = 0C and d1,2 = 0 in (4) (line 1 in Alg. 4). 2

2) Otherwise, we construct Wk+1 from W̃k+1. To do 3

so, we retain only the minimal number of vectors 4

in W̃k+1 needed to express xk+1 as a convex com- 5

bination (line 2 in Alg. 4). Indeed, as 0C /∈ W̃k+1, 6

the projection xk+1 of 0C on W̃k+1 necessarily 7

lies on a face of W̃k+1, and can be expressed as 8

a convex combination of the vectors composing 9

this face. This ensures that Wk+1 is necessarily of 10

rank rk+1 < r̃k+1 ≤ n + 1. For example, Fig. 5d 11

shows the result of the simplex update obtained in 12

Fig. 5c. 13

Through this discussion, it is clear that GJK is a particular 14

case of Frank-Wolfe. More specifically, it is a sub-case of the 15

fully-corrective Frank-Wolfe algorithm analyzed by [40]. The 16

strategy used by GJK to handle the active set has proved to 17

be very efficient in practice and renders the GJK algorithm 18

state-of-the-art for collision detection. In the next section, 19

we propose to leverage the formulation of collision detection 20

as a Frank-Wolfe sub-case to accelerate its convergence fol- 21

lowing the well-established Polyak and Nesterov acceleration 22

paradigm [41]. 23

III. ACCELERATING COLLISION DETECTION 24

Gradient descent (GD) is the backbone of many convex 25

optimization methods and relies solely on the gradient of 26

the objective function. Second-order methods [44], such as 27

Newton methods, have faster convergence rates than GD at 28

the price of requiring the computation and the inversion of 29

Hessian quantities. Momentum methods have thus been intro- 30

duced in the optimization literature to provide gradient-based 31

methods with improved convergence rates without requiring 32
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Algorithm 4 Fully-corrective FW using simplexes, applied
to the distance computation problem (4). This algorithm is
identical to GJK [12]
In Alg. 3, let W0 = ∅ and replace line 6 by:

1: If xk+1 = 0C , return 0
If the algorithm has not terminated, update W̃k+1 to
retain only the smallest number of vectors needed to
express xk+1:

2: Wk+1 = {s1, ..., sr} where s1, ..., sr are the smallest
number of vectors in W̃k+1 such that xk+1 is a convex
combination of s1, ..., sr.

costly Hessian evaluation. In this section, we use recent1

work linking the Polyak and Nesterov accelerations of GD2

to the FW algorithm [13], [14] to globally accelerate collision3

detection. These global accelerations of collision detection are4

experimentally evaluated in Sec. IV on several benchmarks.5

A. Background on acceleration methods in convex optimiza-6

tion7

Polyak acceleration for unconstrained optimization. We8

initially consider the following unconstrained minimization9

problem:10

f(x∗) = min
x∈Rn

f(x), (22)

where f : Rn → R is a convex and differentiable function. The11

vanilla gradient-descent algorithm follows the slope of f given12

by its gradient ∇f . The following scheme is applied iteratively13

until a given convergence criterion is met (e.g., ∥∇f(xk)∥ <14

ϵ, with ϵ being the desired precision):15

xk+1 = xk + αk∇f(xk), (23)

where xk ∈ Rn is the current iterate and αk ∈ R is16

the gradient step. This standard setting leads to a simple17

implementation with linear convergence rate (O(1/k)).18

To go beyond this linear convergence regime, acceleration
techniques have been devised in the optimization community
to provide quadratic convergence rate (O(1/k2)) or more [35],
by relying on relatively cheap gradient evaluations. Among
these gradient-descent acceleration techniques, the Polyak (or
Heavy-Ball) [49] and Nesterov acceleration [41] are two of
the better-studied and most popular in practice [35]. These
techniques are based on accumulating previously computed
gradients in a momentum term dk and using this momen-
tum dk to update the current iterate xk. The Polyak update
scheme for unconstrained gradient descent is illustrated in
Fig. 6a and goes as follows:

dk = δkdk−1 + αk∇f(xk) (24a)
xk+1 = xk + dk, (24b)

where schemes δk ∈ R is the momentum parameter. The19

role of momentum dk is to smooth the trajectory of iterates20

converging towards the optimum by geometrically averaging21

previously computed gradients. The δk momentum parameter22

is selected to prevent damping or overshooting of the iterate23

trajectory when going towards the optimal solution x∗.24

xk

∇f(xk) dk−1

xk+1
x*x xxx

xx
xx

dd

(a)

xk

∇f(xk + δkdk−1)
dk−1

xk+1

x*xx
xx

xx
dd

xx dd

(b)
Fig. 6. (a) Polyak and (b) Nesterov acceleration schemes for unconstrained
gradient descent. The gradient descent algorithm aims at finding the opti-
mum x∗ by following the slope given by the gradient of function f , ∇f . The
vector dk−1 is the momentum accumulated over the optimization trajectory.
The two schemes differ in where the gradient is computed at iteration k; the
Nesterov scheme introduces an intermediary point yk = xk + δkdk−1 to
compute the gradient.

Nesterov acceleration for unconstrained optimization. The
Nesterov update scheme is the second most well-known
method for accelerating unconstrained gradient descent and it
is only a slight modification on top of the Polyak scheme. Con-
trary to the Polyak case, in the Nesterov acceleration scheme
the current iterate xk is extrapolated using the momentum
term dk to compute the intermediate vector yk = xk + δkdk.
The gradient is then computed at the vector yk. The Nesterov
update scheme for unconstrained gradient descent is illustrated
in Fig. 6b and goes as:

yk = xk + δkdk−1 (25a)
dk = δkdk−1 + αk∇f(yk) (25b)
xk+1 = xk + dk (25c)

where δk is the momentum parameter as in the Polyak scheme, 1

and yk ∈ Rn is an intermediate quantity. Computing the 2

term yk leads to an anticipatory behavior in similar spirit to 3

extra-gradient methods [35]. 4

Accelerating the Frank-Wolfe algorithm with Polyak and 5

Nesterov. Recent works of [13], [14] have proposed to adapt 6

the Polyak and Nesterov accelerations to the FW setting. We 7

propose to leverage and adapt this FW acceleration scheme 8

to the context of collision detection, by notably extending the 9

FW formulation of collision detection previously developed in 10

Sec. II. 11

In the original FW algorithm, the support vector at itera-
tion k, sk, is computed in the direction of the gradient ∇f(xk)
(line 1 in Alg. 1). In the Polyak acceleration of FW proposed
by [13], the direction of support for computing sk is instead
defined by:

dk = δkdk−1 + (1− δk)∇f(xk) (26a)
sk = SD(dk), (26b)

where δk = k+1
k+3 ∈ [0, 1] is the momentum parameter and SD

is the support function as defined in (8). In the Nesterov
acceleration of FW proposed by [14], the direction of sup-
port for computing sk is slightly different from the Polyak
scheme (26) as it introduces yk, an intermediary vector as
in the GD Nesterov scheme (25) in order to evaluate the
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Algorithm 5 Polyak-accelerated and Nesterov-accelerated
Frank-Wolfe [13], [14]
In Alg. 1 and Alg. 3, let d−1 = s−1 = x0, δk = k+1

k+3 and
replace line 1 by:

1: yk =

{
xk Polyak
δkxk + (1− δk)sk−1 Nesterov

2: dk = δkdk−1 + (1− δk)∇f(yk)

gradient ∇f(yk):

yk = δkxk + (1− δk)sk−1 (27a)
dk = δkdk−1 + (1− δk)∇f(yk) (27b)
sk = SD(dk), (27c)

where sk−1 is the support vector computed at the previous1

iteration. To ensure yk stays in D, it is a convex combination2

of xk and sk−1, both vectors of D. The direction of support is3

then obtained by taking a convex combination of the previous4

support direction dk−1 and the gradient ∇f(yk). Both the5

Polyak and Nesterov accelerations of Frank-Wolfe are summed6

up in Alg. 5.7

The works [13], [14] have experimentally shown that these8

accelerations strategies lead to a better convergence rate of the9

FW algorithm when compared to the original FW algorithm.10

In the following, we explain how to adapt the Polyak and11

Nesterov accelerations of FW to collision detection.12

B. Acceleration of collision detection and distance computa-13

tion14

Adapting Nesterov and Polyak fully-corrective Frank-
Wolfe to distance computation. Preserving GJK’s simplex
strategy is crucial for collision detection as it greatly speeds
up the vanilla FW algorithm. Therefore, we adapt (26) and (27)
accordingly as:

yk =

{
xk if Polyak
δkxk + (1− δk)sk−1 if Nesterov

(28a)

dk = δkdk−1 + (1− δk)∇f(yk) (28b)
sk = SD(dk), (28c)

W̃k+1 = Wk ∪ {sk}, (28d)
xk+1 = projconv(W̃k+1)

(0C). (28e)

These steps are also summarized in Alg. 6. The update of sim-
plex Wk+1 from W̃k+1 is then identical to the one described
in Alg. 4. The original duality gap defined in Sec. II (Eq. 16)
can no longer be used as a convergence criterion. Indeed, the
following inequality:

∥xk − x∗∥2 ≤ gFW(xk) = 2⟨xk,xk − sk⟩, sk ∈ SD(xk),

is no longer valid because the support vector sk is no longer15

computed in the direction of the gradient ∇f(xk) = 2xk.16

Next we will show that the original stopping criterion devised17

in Sec. II cannot be used and we need to derive a new one.18

Algorithm 6 Polyak and Nesterov-accelerated GJK
Let x0 ∈ D, W0 = ∅, d−1 = s−1 = x0, ϵ > 0
For k=0, 1, ... do

1: δk = k+1
k+3 ▷ Momentum parameter value

2: yk =

{
xk Polyak
δkxk + (1− δk)sk−1 Nesterov

▷ Intermediary

point (28a)
3: dk = δkdk−1 + (1− δk)∇f(yk) ▷ Support dir. (28b)
4: sk ∈ SD(dk) ▷ Support (8)
5: if g(xk) ≤ ϵ then ▷ Fixed-point condition (32)
6: If dk = xk , return f(xk) ▷ Algorithm terminates
7: sk ∈ SD(∇f(xk)) ▷ Compute sk in dir. ∇f(xk)

Replace line 3 by: dk = xk until termination.
8: W̃k+1 = Wk ∪ {sk} ▷ Augment active-set
9: xk+1 = projconv(W̃k+1)

(0C) ▷ Project 0C on conv(W̃k+1)
10: If xk+1 = 0C , return 0
11: Wk+1 = {s1, ..., sr} where s1, ..., sr are the smallest

number of vectors in W̃k+1 such that xk+1 is a convex
combination of s1, ..., sr.

Stopping criterion. As the number of iteration k in- 1

creases, δk →
k→∞

1 in (28). Therefore, dk tends to be equal 2

to dk−1 (28b) and thus sk = sk−1 (28c). As a consequence, 3

augmenting Wk with sk to construct W̃k+1 (see (28d)) and 4

then projecting 0C onto W̃k+1 (28e) will not result in any 5

progress. Therefore, xk+1 = xk: the algorithm reaches a fixed 6

point and is stuck on constant support direction d. 7

In order to cope with this issue, we use the following 8

strategy. Suppose xk ̸= 0C . Since xk = projconv(Wk)
(0C) we 9

have: 10

∀si ∈ Wk, ⟨xk,xk − si⟩ = 0. (29)

After computing sk ∈ SD(dk), if we have: 11

⟨xk,xk − sk⟩ ≠ 0, (30)

then sk is not a linear combination of vectors in Wk. 12

Therefore, augmenting Wk with sk to obtain W̃k+1 and 13

projecting 0C onto conv(W̃k+1) to obtain xk+1 will result in 14

the algorithm progressing toward the optimum x∗. Suppose 15

on the contrary that: 16

⟨xk,xk − sk⟩ = 0, (31)

then sk is a linear combination of vectors in Wk. Adding sk 17

to Wk will thus not result in any progress towards the 18

optimum. As a consequence, Eq. (31) encompasses two cases: 19

• If the support direction dk is aligned with ∇f(xk), 20

Eq. (31), corresponding to gFW(xk) = 0, matches the 21

termination criterion of the distance computation problem 22

and therefore we have reached the optimum i.e xk = x∗. 23

• Otherwise, if dk is not aligned with ∇f(xk), the al- 24

gorithm cannot stop as a null duality gap is not met. 25

The algorithm thus enters a cycle where it iterates until 26

Eq. (31) does not hold. To cope with this undesired 27

behavior we simply stop the Polyak or the Nesterov 28

acceleration as soon as Eq. (31) is met and switch back 29

to the non-accelerated version Alg. 4. 30
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We thus define the function g such that for any sk ∈ D:1

g(xk) = 2⟨xk,xk − sk⟩, (32)

g is used in Alg. 6 as an optimality criterion ( g ≤ ϵ)2

either for stopping the Polyak and Nesterov accelerations in3

order to continue with the vanilla GJK, or as stopping criteria4

qualifying an optimal solution, in which case g = gFW and (18)5

holds. The entire algorithm is summarized in Alg. 6.6

Nesterov acceleration for non-strictly convex shapes. Let us7

explain the effect of the Nesterov acceleration on the support8

direction update (28b) and distinguish between strictly convex9

and non-strictly convex D:10

• If D is strictly convex, any vector s belonging to the11

surface of D has a unique corresponding direction d such12

that s = SD(d). Here, we stress the fact that the support13

function SD returns only one vector. Consequently, we14

have dk ̸= dk−1 and therefore sk ̸= sk−1. The fixed15

point condition (31) is thus not met unless δk = 116

and Nesterov acceleration continues to be applied in17

Alg. 6. In practice, the algorithm runs until δk gets close18

to 1 or xk gets close to 0C . The condition (31) is then19

satisfied as the algorithm starts to cycle. The Nesterov20

acceleration is thus removed and the algorithm runs until21

the convergence criteria is satisfied, guaranteed by the22

Frank-Wolfe algorithm.23

• Otherwise, if D is non-strictly convex, multiple support24

directions {d1, ...,dm, ...} can yield the same support25

vector s ∈ SD(d
1) = ... = SD(d

m) = ... etc. Conse-26

quently, it is possible to have dk−1 ̸= dk and sk = sk−1.27

Therefore, even though δk is not close to 1, the fixed point28

condition (31) can be verified. The Nesterov acceleration29

is stopped, possibly prematurely.30

The latter case is especially problematic when shapes A131

and A2 are in close-proximity, which is ultimately the type32

of collision problems commonly encountered in simulation or33

motion planning with contacts. In (28b), this is due to the34

norm of ∇f(yk) being predominant over the norm of dk−135

as k increases, ∥dk−1∥ ≪ ∥∇f(yk)∥. As a consequence, the36

Nesterov acceleration enters a cycle: the support direction dk37

does not change enough compared to dk−1, hence the support38

point sk is identical to sk−1 and therefore the intermediary39

point yk does not change and the cycle repeats. As a conse-40

quence, the criterion (31) is met and the Nesterov acceleration41

is stopped to escape the cycle, possibly prematurely. To42

prevent this phenomenon observed on non-strictly convex D,43

we propose to replace (28b) by a simple heuristic which44

normalizes the gradient and momentum directions as follows:45

dk = δk
dk−1

∥dk−1∥
+ (1− δk)

∇f(yk)

∥∇f(yk)∥
, (33)

summarized in Alg. 7. In Sec. IV, we experimentally prove46

this heuristic to significantly reduce the number of steps for47

distance computations for non-strictly convex shapes. We also48

show that this heuristic does not need to be applied to the49

Polyak acceleration, as, contrary to the Nesterov acceleration,50

the Polyak acceleration does not compute an intermediary51

point yk.52

Algorithm 7 Normalize direction for non-strictly convex
shapes in Nesterov-accelerated GJK
Replace line 3 in Alg. 6 by:

1: dk = δk
dk−1

∥dk−1∥ + (1− δk)
∇f(yk)

∥∇f(yk)∥

IV. EXPERIMENTS 1

In this section, we study the performance of both Polyak 2

and Nesterov-accelerated GJK (Alg. 6) against the vanilla GJK 3

(Alg. 4) algorithm. 4

In sections IV-A and IV-B, we benchmark our proposed 5

Polyak-accelerated and Nesterov-accelerated GJK algorithms 6

against the vanilla GJK algorithm on these two distinct bench- 7

marks. The benchmark made of strictly-convex shapes repre- 8

sents a worst-case scenario regarding the number of iterations 9

for all variants of GJK. The benchmark of non-strictly convex 10

shapes represents shapes typically used in robotic or computer 11

graphics applications. In Sec. IV-C, we benchmark GJK and 12

our proposed accelerated gradients against the state-of-the-art 13

quadratic programming solver ProxQP [50]. We show that 14

GJK and our proposed accelerated variants vastly outperform 15

generic quadratic programming (QP) solvers, making these QP 16

solvers prohibitive for collision detection. Then, in Sec. IV-D, 17

we compare our methods and our implementation of vanilla 18

GJK against different collision detection solvers of various col- 19

lision detection libraries. Finally, in Sec. IV-E, we benchmark 20

vanilla, Polyak-accelerated, and Nesterov-accelerated GJK on 21

a dataset of trajectories obtained using a physics simulator. 22

We show that, similarly to vanilla GJK, our accelerated GJK 23

algorithms can benefit from being warm-started with previ- 24

ous simulation time steps, outperforming the vanilla GJK in 25

physics simulation scenarios. 26

Implementation. We leverage the HPP-FCL C++ library [28], 27

[51], an extension of the original FCL library [28]. Unlike 28

FCL, HPP-FCL provides its own implementation of GJK, 29

which we have extended by implementing the Polyak and 30

Nesterov-accelerated GJK algorithms (Alg. 6). The open- 31

source code of the HPP-FCL library is publicly available 32

at https://github.com/humanoid-path-planner/hpp-fcl under the 33

BSD-3 license. The benchmark code is publicly available 34

at https://github.com/lmontaut/colbench under the GNU AGP 35

License. 36

Shapes datasets. To distinguish between pairs of strictly con- 37

vex and non-strictly convex shapes, we build a first benchmark 38

only composed of pairs of ellipsoids (strictly convex shapes) 39

and a second benchmark using pairs of standard meshes 40

(represented by their convex hulls) which are taken from the 41

commonly-used YCB dataset [52]. 42

Ellipsoids. In the ellipsoids benchmark, the ellipsoids are 43

randomly generated by sampling positive-definite matrices. In 44

total, we generate 1000 random pairs of ellipsoids. Given a 45

pair of ellipsoids, we randomly sample relative poses between 46

the shapes, using a uniform distribution for the relative rotation 47

between the shapes. Regarding the translation part of the 48

random poses, the directions are selected at random, but the 49

norms are chosen so that we control the distance dist(A1,A2) 50

https://github.com/humanoid-path-planner/hpp-fcl
https://github.com/lmontaut/colbench
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between the objects. This enables us to measure the influ-1

ence of the separation distance on the performance of the2

studied algorithms. The values used for dist(A1,A2) range3

from −0.1m to 1m. Negative values correspond to scenarios4

where the shapes intersect, with dist(A1,A2) corresponding5

to the separating vector’s norm. The separating vector is the6

vector of the smallest norm needed to translate one of the two7

shapes such that the two shapes do not intersect. Therefore, for8

each pair of ellipsoids, 100 random relative poses are sampled,9

so the shapes do not intersect. We translate the shapes along10

the axis given by their closest points for each relative pose to11

study the impact of dist(A1,A2). We then set dist(A1,A2) to12

fixed values between −0.1m to 1m.13

YCB meshes. On the other hand, the YCB mesh dataset14

contains about 60 shapes commonly used for robotic ma-15

nipulation tasks (kitchen appliances, tools, toys, etc.). Each16

object has three different resolution levels corresponding to17

the number of points representing the mesh. For each object,18

we take the lowest resolution, i.e., the google-16k versions of19

the meshes, as it is resolute enough for any robotic task. As20

GJK-like algorithms work on convex shapes, we pre-compute21

the convex hulls of each object in the YCB dataset. This22

procedure needs only to be done once; if more precision is23

required for a certain robotic task, it is common to decompose24

a non-convex object into a set of convex sub-objects. For25

the sake of simplicity, we will not decompose YCB objects26

into sub-objects, as the results presented in this section would27

essentially be the same. In the rest of this section, when we28

mention a shape, we refer to its convex hull unless explicitly29

stated otherwise. The resulting meshes extracted from the YCB30

dataset contain between 100 and 8000 vertices. About 50%31

of meshes contain between 100 and 1000 vertices. As in the32

ellipsoids benchmark, 100 random relative poses are sampled33

for each pair such that the shapes do not intersect and then34

set dist(A1,A2) to fixed values between −0.1m and 1m.35

In both benchmarks (ellipsoids and YCB meshes), the36

characteristic sizes of the shapes range from a few centimeters37

up to a meter. Finally, for the distance computation problem,38

we select a convergence tolerance of ϵ = 10−8.39

Initialization strategy. Apart from Sec. IV-E, the GJK al-40

gorithm and our proposed accelerated GJK algorithms are41

initialized with the centers of the shapes’ bounding boxes. The42

bounding box of a shape fully encapsulates it, as is shown in43

Fig. 1. Hence, if we denote c1 and c2 the geometric centers of44

the bounding boxes of A1 and A2, then we initialize vanilla45

GJK, Polyak-accelerated GJK and Nesterov-accelerated GJK46

to x0 = c1 − c2.47

Metrics. To measure the performances of Poylak-accelerated48

GJK, Nesterov-accelerated GJK, and the vanilla GJK algo-49

rithms, we measure the number of iterations Nk to solve a50

given collision problem. For the mesh benchmark, we also51

measure the execution time Tµ of both methods. We solve52

each generated collision problem 100 times to cope with CPU53

throttling. We then report the average of the 90% lowest54

computation times. All the benchmarks in this paper were run55

on an Apple M1 Max CPU.56
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Fig. 7. Comparison of Polyak-accelerated GJK, Nesterov-accelerated GJK,
and vanilla GJK on the ellipsoid benchmark for (a) distance computation
and (b) Boolean collision checking. The graphs show the number of it-
erations (y-axis) vs. the signed distance between the two shapes (x-axis).
The curve shows the mean value over 100,000 random trials. The shaded
region corresponds to the standard deviation. The Nesterov-accelerated GJK
algorithm requires fewer iterations when the shapes are in close proximity. The
Polyak-accelerated GJK algorithm is more robust when shapes are strongly
overlapping or distant.

A. Worst case scenario: strictly convex shapes - ellipsoids 1

We first focus on the ellipsoid benchmark to get a statistical 2

understanding of the performance of Polyak and Nesterov- 3

accelerated GJK against vanilla GJK. In the following, we 4

explain why these shapes are interesting to study experimen- 5

tally, as they represent the worst-case scenario that GJK- 6

like algorithms can be confronted with. First, as previously 7

explained, GJK-like algorithms look for the optimal active set 8

of the solution x∗. Otherwise said, GJK-like methods find 9

a set of support points W ∗ = {s1, s2, ...} such that the 10

optimal solution x∗ is a convex combination of the points 11

of W ∗, where si are support points computed while running 12

GJK or our proposed accelerations. Then, contrary to non 13

strictly-convex shapes, strictly-convex shapes have an infinite 14

amount of support points. As explained at the end of Sec. III, 15

each normalized support direction d corresponds to a unique 16

support point SD(d). Therefore, it is fundamentally harder 17

to identify the optimal active set when considering strictly- 18

convex shapes, as there is an infinite amount of potential 19

support points to consider. In contrast, there is a finite amount 20

of support points to consider when using non strictly-convex 21

shapes. 22

In Fig. 7, we show the performance of the vanilla, the 23

Polyak-accelerated, and the Nesterov-accelerated GJK algo- 24

rithms on the ellipsoids benchmark. Fig. 7a and Fig. 7b 25

show the mean and standard deviation of the number of 26

iterations Nk of each method for the distance computation and 27

the Boolean collision checking problems, respectively. When 28

the shapes are shallowly intersecting, Polyak and Nesterov- 29

accelerated GJK converge with the same or even fewer number 30

of iterations than vanilla GJK. However, the shallower the 31

penetration, the more Polyak and Nesterov accelerate over 32

vanilla GJK, with Nesterov providing the most acceleration. 33

The irregularity in standard deviation at −0.01m is a crit- 34

ical zone for the Nesterov momentum where the variance 35

increases. When shapes are in close proximity, the Nesterov 36

acceleration of GJK significantly reduces the number of 37

iterations compared to vanilla GJK and Polyak-accelerated 38

GJK. Finally, when shapes are distant, 1m ≤ dist(A1,A2), 39

the Nesterov acceleration is detrimental to convergence on 40

the distance computation problem while Polyak-accelerated 41
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GJK Polyak Polyak +
normalization

Nesterov Nesterov +
normalization
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,
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s]

Close-proximity - Distance computation

Fig. 8. Impact of support direction normalization in Polyak and Nesterov-
accelerated GJK on the YCB benchmark. The graph shows the computation
time Tµ (lower is better) for vanilla GJK, Polyak-accelerated GJK, and
Nesterov-accelerated GJK with and without support direction normalization.
Here, the two shapes are in close-proximity: 0m < dist(A1,A2) ≤ 0.1m.
Normalizing the support direction benefits Nesterov-accelerated GJK, reduc-
ing the overall number of iterations compared to GJK and non-normalized
Nesterov-accelerated GJK.

GJK remains competitive against vanilla GJK. This indicates1

that the Polyak acceleration is generally more robust than2

the Nesterov acceleration. However, it offers less acceleration3

over vanilla GJK when the shapes are in close-proximity4

or shallowly overlapping. A similar pattern of speed-ups of5

Polyak and Nesterov-accelerated GJK over vanilla GJK is6

shown for the collision detection problem in Fig. 7b.7

B. Non-strictly convex shapes: meshes8

Effect of support direction normalization. For meshes, the9

importance of normalizing the support direction (see Eq. (33))10

in the Nesterov-accelerated GJK is highlighted in Fig. 8. For11

both the distance computation and Boolean collision checking12

problems, the normalization heuristic prevents the Nesterov13

acceleration from reaching a fixed point too early, and con-14

sequently, it reduces the overall amount of iterations needed15

to converge. This is, however, not the case for the Polyak-16

accelerated GJK algorithm, which does not benefit from sup-17

port normalization. As explained at the end of Sec. III, the18

Polyak acceleration does not compute an intermediary point,19

unlike the Nesterov acceleration scheme. In the following, we20

thus focus only on Polyak-accelerated GJK without support21

normalization and Nesterov-accelerated GJK with support22

normalization. We compare the performances of these two23

algorithms against the vanilla GJK algorithm.24

Statistical validation over the YCB dataset. In Fig. 9 and25

Fig. 10, we report the number of iterations Nk and execution26

time Tµ for Polyak-accelerated GJK, Nesterov-accelerated27

GJK and vanilla GJK. In Fig. 11, we report relative accel-28

erations Tµ
GJK/T

µ
polyak and Tµ

GJK/T
µ
Nesterov of Polyak-accelerated29

compared to GJK. These relative accelerations are computed30

on a given collision problem, and Fig. 11 reports their sta-31

tistical distributions. These relative measures allow analyzing32

the effects of the studied algorithms on the same collision33

problems, which are not captured when using absolute values.34

Overall, Polyak and Nesterov-accelerated GJK significantly35

reduce the execution time when compared to GJK in cases36

where shapes are shallowly intersecting or in close-proximity.37

It is worth recalling, at this stage, that when two shapes are38

relatively far from each other, any broadphase algorithm will39
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Fig. 9. Distance computation on the YCB benchmark. The graphs show
the number of iterations Nk (a) and the execution time Tµ (b) for Polyak-
accelerated GJK, Nesterov-accelerated GJK (with normalization) and vanilla
GJK for a range of distances (x-axis) between the shapes. For both metrics,
lower is better.
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Fig. 10. Boolean collision check on the YCB benchmark. The graphs show
the number of iterations Nk (a) and the execution time Tµ (b) for the Polyak-
accelerated GJK, Nesterov-accelerated GJK (with normalization), and vanilla
GJK algorithms for a range of distances (x-axis) between the shapes. For both
metrics, lower is better.
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TABLE I
COMPUTATION TIMES (µs) FOR DISTANCE COMPUTATION (TµD ) AND BOOLEAN COLLISION CHECKING (TµC ) ON THE YCB BENCHMARK FOR

CLOSE-PROXIMITY OR SHALLOWLY INTERSECTING SHAPES. N DENOTES THE NUMBER OF VERTICES FOR EACH MESH.

N = 240 N = 1811 N = 3585

GJK Polyak Nesterov GJK Polyak Nesterov GJK Polyak Nesterov

TµD 1.1± 0.3 0.9± 0.3 0.9± 0.3 1.9± 0.5 1.5± 0.5 1.4± 0.5 3.2± 0.8 2.3± 0.7 2.4± 0.7

TµC 0.9± 0.4 0.7± 0.4 0.8± 0.4 1.5± 0.6 1.2± 0.6 1.1± 0.6 2.5± 0.9 1.7± 0.8 1.9± 1.0

TµD 2.7± 0.8 2.1± 0.7 1.9± 0.6 4.0± 1.0 2.9± 0.9 2.9± 1.0

TµC 2.3± 0.8 1.6± 0.8 1.5± 0.8 3.1± 1.2 2.1± 1.0 2.2± 1.3

TµD 4.4± 1.3 2.9± 1.0 3.0± 0.9

TµC 3.0± 1.9 2.1± 1.4 2.1± 1.4
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Fig. 11. Speed-ups of Polyak and Nesterov-accelerated GJK over vanilla
GJK on the YCB benchmark. The plots show ratios of the number of execution
times for (a) distance computation and (b) boolean collision checking of
Polyak-accelerated GJK and Nesterov-accelerated GJK (with normalization)
against vanilla GJK. Ratios over 1.0 show speed-ups of accelerated GJK over
vanilla GJK. For both metrics, higher is better.

automatically discard such a pair. Only in a small percentage1

of cases, Polyak-accelerated GJK and Nesterov-accelerated2

GJK are slower than GJK. When measuring the absolute3

performance of the two proposed methods, Polyak-accelerated4

GJK provides less acceleration than Nesterov-accelerated GJK5

in critical cases with close proximity and shallowly overlap-6

ping collision problems. However, Polyak-accelerated GJK is7

more robust than Nesterov-accelerated GJK as it is almost 1

always better than vanilla GJK, even when the shapes are 2

distant or overlap. 3

In Table. I, we select three meshes with an increasing 4

number of vertices to highlight the benefits of the Polyak 5

and Nesterov accelerations. For each pair, we report the 6

mean and the standard deviation of the execution time 7

for distance computation and Boolean collision checking. 8

We consider the challenging set-up of close-by or shal- 9

lowly intersecting shapes in the range of separation distances 10

−0.01m ≤ dist(A1,A2) ≤ 0.01m. The lower mean and stan- 11

dard deviation show that Polyak and Nesterov-accelerated GJK 12

are faster than the vanilla GJK and reduce the spread of 13

computation times across the different collision problems in 14

this setting. 15

From this benchmark involving shapes from the YCB 16

dataset, we can distinguish two use cases in which one would 17

prefer using Polyak-accelerated GJK compared to Nesterov- 18

accelerated and vice-versa. In tasks where the exact distance 19

between the shapes needs to be computed and where this 20

distance separating the shapes can take any value, due to 21

its robustness, the Polyak-accelerated GJK algorithm is better 22

suited than its Nesterov counterpart. However, in a situation 23

involving shapes interacting at close proximity, like in a 24

contact physics simulation, it is preferable to choose the 25

Nesterov-accelerated GJK. Before studying the performance 26

of GJK and our proposed accelerations for physics simulation, 27

we first show the benefits of using GJK-based algorithms for 28

collision detection instead of standard off-the-shelf optimiza- 29

tion solvers and provide a comparison of the implementations 30

of our methods against baselines from other collision detection 31

librairies. 32



IEEE TRANSACTIONS ON ROBOTICS, VOL. [?], NO. [?], MONTH 2023 14

TABLE II
COMPUTATION TIME IN MICRO-SECONDS OF GJK-LIKE SOLVERS VS.

SOTA QUADRATIC PROGRAMMING PROXQP SOLVER.

Nv = 8 Nv = 250 Nv = 940
Nf = 6 Nf = 496 Nf = 1876

ProxQP 5.3± 2.7 µs (2± 0.6) · 103 µs (20± 14) · 103 µs
GJK 0.2± 0.03 µs 0.8± 0.3 µs 2.1± 0.5 µs

Nesterov 0.2± 0.05 µs 0.7± 0.2 µs 1.4± 0.3 µs
Polyak 0.2± 0.05 µs 0.6± 0.2 µs 1.4± 0.4 µs

C. GJK-like algorithms vs. generic quadratic programming1

solvers2

As explained in Sec. II, in the case of two convex meshes,3

the collision problem can be formulated as a Quadratic Pro-4

gram (2) (QP), which can be solved using any generic QP5

solver [50], [53]–[56]. In Table II, we compare the perfor-6

mance of GJK and our proposed accelerations against the7

state-of-the-art ProxQP solver [50]. We report the computation8

timings in micro-seconds for pairs of identical shapes with9

an increasing number of vertices (Nv) and faces (Nf ). The10

results are staggering: for very simple convex meshes like11

a cube, GJK, and its accelerated variants are already more12

than 10 times faster than the QP solver. When the complexity13

of the meshes increases, GJK and its variants are thousands to14

tens of thousands of times faster than the QP solver, making15

generic QP solvers prohibitive for collision detection in real-16

time applications like robotics or computer graphics. Although17

these results are not surprising, they clearly showcase why18

dedicated solvers such as GJK-like methods are crucial for19

collision detection.20

D. Comparison against other collision detection librairies21

In this sub-section, we compare our implementations of22

vanilla, Nesterov-accelerated and Polyak-accelerated GJK23

against the following baselines from other collision detection24

librairies: CCD’s MPR and GJK implementations [15], FCL’s25

GJK implementation [16] and Bullet’s GJK implementation.26

These collision detection algorithms are used in physics simu-27

lators like Drake [18], MuJoCo [3], ODE [19] and Bullet [1].28

Since GJK is the state-of-the-art algorithm for narrow phase29

collision detection, it is no surprise that most collision de-30

tection libraries implement only this algorithm. In addition31

to being a general, robust and computationally fast method,32

GJK-like algorithms also have the advantage of producing a33

simplex surrounding the origin when shapes are in collision34

(see Sec. II). This simplex is then fed to the Expanding35

Polytope Algorithm (EPA) in order to estimate the penetration36

depth and separation vector [22]; these contact informations37

are used in physics simulation to resolve contact constraints.38

Just like GJK, the core of EPA consist in computing support39

points in order to expand a polytope inside the Minkowski40

difference. Therefore, since GJK and EPA are made to work 1

in succession with one another, it is almost always the case 2

that physics simulators use GJK to first detect collisions and 3

then EPA to compute contact features if a collision is detected. 4

All the libraries listed before are written either in C or in C++. 5

In Fig. 12, we report the performance of the methods 6

listed before on the YCB benchmark used in Sec. IV-B. 7

We measure the execution time of the different collision 8

detection solvers on the boolean collision check task and 9

divide the results into three distance categories: when shapes 10

are distant (dist(A1,A2) ≥ 1m), when shapes are in close- 11

proximity (0m ≤ dist(A1,A2) ≤ 0.1m) and when shapes 12

are overlapping (dist(A1,A2) ≤ 0m). The collision problems 13

corresponding to the distant case would typically be filtered 14

by the broadphase. We report them to give a clear picture of 15

the performance of the different implementations. In practice, 16

the close-proximity and overlapping cases correspond to situa- 17

tions when the different collision detection solvers are actually 18

called; the broad phase cannot filter such collision problems 19

and the narrow phase is then called. 20

The results show our implementation of GJK and our 21

proposed methods outperform the solvers of the other collision 22

detection libraries. We find similar results for the distance 23

computation task. We now turn our attention to the context of 24

physics simulation and show that our proposed methods, just 25

like GJK, can be warm-started by using previous simulation 26

steps. 27

E. Collision detection for physics simulation 28

In the previous benchmarks, we have experimentally shown 29

the improvement of our methods, Polyak-accelerated GJK and 30

Nesterov-accelerated GJK, over the vanilla GJK algorithm for 31

collision problems which are important in practice, i.e. when 32

the broadphase has not filtered collision pairs and are thus 33

overlapping or in close proximity. So far, the benchmarks 34

have been constructed by randomly selecting poses for our 35

shapes. However, in robotics applications such as trajectory 36

optimization, motion planning, or computer graphics, the 37

successive poses between objects are usually correlated by 38

time. In this sub-section, we study how vanilla GJK, Polyak- 39

accelerated GJK, and Nesterov-accelerated GJK can be warm- 40

started using the previous time instant, as occurring inside 41

physics simulators. 42

To do so, we create a dataset of trajectories using pairs of 43

objects from the YCB dataset used in Sec. IV-B. We randomly 44

select 1000 pairs of YCB objects and drop them in a funnel 45

as shown in Fig. 14. At the beginning of the simulation, each 46

object is given a random pose and random translational and 47

rotational velocities. The simulation is then run at 120Hz for 1 48

second. When a collision occurs, the GJK and EPA (expanding 49

polytope algorithm) algorithms are called to determine the 50

position of the contact points and the corresponding normal 51

for the considered pair of objects. The collision is then 52

resolved using a contact solver based on the Projected Gauss- 53

Seidel [57] algorithm to account for a second-order cone 54

representing friction, following the implementation proposed 55

in [58]. In total, 120k collision problems are generated. For 56
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(c)
Fig. 12. Computation time in micro-seconds of implementations of
different collision detection solvers from various C/C++ librairies on the
YCB benchmark for boolean collision checking. The y-axis is a log-scale.
We compare our implementation of vanilla GJK, Nesterov-accelerated GJK
and Polyak-accelerated GJK against FCL’s GJK implementation, CCD’s GJK
implementation and CCD’s MPR implementation. The results are split into
three different categories: (a) when shapes are distant (dist(A1,A2) ≥ 1m),
(b) in close-proximity (0 ≤ dist(A1,A2) ≤ 0.1m) and (c) overlapping
(dist(A1,A2) ≤ 0m). Lower is better.

each collision problem, we extract the YCB shapes and their1

poses.2

This dataset allows us to evaluate the vanilla, Polyak-3

accelerated, and Nesterov-accelerated GJK algorithms on the4

same collision problems generated by a physics simulation.5

Interestingly, this dataset allows us to study only the collision6

problems not filtered by the broadphase of the physics simula-7

tor, as explained in Sec. I. During the broad phase, the oriented8

bounding boxes of the objects (OBBs, as shown in Fig. 1) are9

used to assess if objects are not in collision. Therefore, if the10

broad phase does not filter a collision, the GJK algorithm and11

our proposed accelerations are called and solve the boolean12

collision check problem. Finally, this dataset allows us to test13

different strategies to warm-start (WS) the GJK algorithm and14

our proposed accelerations. We denote by xt
0 the initial guess15

given to vanilla, Polyak-accelerated and Nesterov-accelerated16

GJK at time step t of the simulation. We also denote by xt−1
17

the separation vector found by GJK (accelerated or not) or18

EPA at time-step t − 1 of the simulation. We consider four19

GJK
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(c)
Fig. 13. Boolean collision checking of YCB objects’ trajectories (see Fig. 14)
for different warm-start strategies for (a) vanilla GJK, (b) Polyak-accelerated
GJK, and (c) Nesterov-accelerated GJK (with normalization). In the three
figures, WS is an abbreviation of warm-start. The No WS strategy signifies
the algorithm is initialized with x0 = (1, 0, 0)T . The OBB WS strategy
uses the objects’ current OBBs centers to compute x0. In both WS prev
and WS T(prev), x0 is computed using GJK or EPA’s previous solution, when
this solution is available (i.e., when the previous collision problem was not
discarded by the broadphase). Contrary to WS prev, WS T(prev) corrects the
previous solution using the relative displacement of the shapes between the
two considered time steps.

different warm-start strategies for the vanilla GJK algorithm 1

and our proposed accelerations: 2

1) the first strategy is the No WS strategy, where the vanilla, 3

Polyak, and Nesterov GJK algorithms are initialized 4

using xt
0 = (1, 0, 0)T . This strategy serves as a baseline 5

for the other warm-start strategies. 6

2) The second strategy is the OBB WS strategy, where xt
0 = 7

ct1 − ct2 with ct1 and ct2 being the centers of the consid- 8

ered objects’ oriented bounding boxes. This warm-start 9

is used in all the previous benchmarks, as explained at 10

the beginning of this section. 11

3) The third strategy is the WS prev strategy, where x0 = 12

xt−1 is initialized using the solution found by GJK or 13

EPA in the previous simulation time step. 14

4) The fourth and last strategy is the WS T(prev) strategy. 15

The difference with the WS prev strategy is that we use 16
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(a)

(b)
Fig. 14. Two different trajectories (a) and (b) with two different pairs of objects from the YCB dataset. The objects are dropped with a random initial
velocity for each trajectory in a funnel (the grey walls). At each time step, if the broadphase cannot discriminate if the shapes are in collision or not, we use
the vanilla GJK algorithm or our proposed Polyak and Nesterov-accelerated variants of GJK to determine if a collision occurs between the convex-hulls of
the collision pair.

the relative transformation of the shapes between time1

steps t and t − 1 to anticipate how xt−1 might move2

between these two time steps.3

The last two warm-starting strategies might not always be4

actionable. Indeed, if at time step t− 1 the broad phase finds5

no collision between the two considered shapes, the GJK and6

EPA algorithms are not called, and therefore , xt−1 does not7

exist. Consequently, if GJK needs to be called at time step t,8

it cannot use xt−1. In such a case, these two strategies fall9

back to the second strategy, which exploits the objects’ OBBs.10

We run vanilla, Polyak-accelerated and Nesterov-11

accelerated GJK on the dataset of trajectories described12

previously; the results of this benchmark are summed up13

in Fig. 13. In this figure, we report the computation time14

of the boolean collision check for GJK and our proposed15

accelerations. Importantly, this figure only considers the16

collision problems which were not filtered by the broad17

phase, as GJK or its accelerations would not be called18

otherwise. In doing so, we aim to provide the clearest19

possible picture of the computation time dedicated to GJK in20

a physics computation. Due to the filtering of the broad phase,21

the typical distance separating the shapes is less than a few22

centimeters; this corresponds to the overlapping and close-23

proximity cases described in the previous benchmarks. First,24

the results show that for the three studied methods, the No WS25

and WS T(prev) warm-start strategies provided a worse initial26

guess than the two other warm-start strategies. It appears27

that the WS T(prev) strategy is often the worse strategy; this28

observation means that the separation vector computed by29

GJK and/or EPA moves in a non-trivial manner between time30

steps t − 1 and t of the simulation. For vanilla GJK, the31

best warm-starting strategy is the WS prev strategy, which32

re-uses the separation vector computed by GJK and EPA at33

time step t − 1 of the simulation. For Polyak-accelerated 1

GJK, both the OBB WS and WS prev strategies perform better 2

than vanilla GJK’s best warm-starting strategy. However, 3

contrary to GJK, the OBB WS strategy is arguably better than 4

the WS prev strategy as it greatly reduces the variance of the 5

computation timings distribution. For Nesterov-accelerated 6

GJK, the results are even more significant: both the OBB 7

WS and WS prev strategy significantly outperform GJK with 8

its best warm-starting strategy. When using the OBB WS 9

and WS prev strategies, the Nesterov acceleration allows 10

the median of computation times to reach close to 0.5µs, 11

compared to a median above 1µs in the case of GJK’s best 12

warm-starting strategy. Like the Polyak acceleration, the 13

Nesterov-accelerated GJK algorithm significantly reduces the 14

spread of the distribution of computation times compared 15

to GJK. This is especially visible when using the OBB WS 16

strategy together with the Nesterov acceleration. Finally, this 17

benchmark shows that physics simulation strongly benefits 18

from using Nesterov-accelerated GJK warm-started using 19

the OBB WS strategy. 20

V. CONCLUSION 21

In this work, we have first established that the well-known 22

GJK algorithm can be understood as a variant of the Frank- 23

Wolfe method, well studied within the convex optimization 24

community, and more precisely, GJK can be identified as a 25

sub-case of fully-corrective Frank-Wolfe. Subsequently, this 26

connection has enabled us to accelerate the GJK algorithm 27

in the sense of Nesterov acceleration by adapting recent 28

contributions on applying Polyak and Nesterov acceleration 29

to the context of Frank-Wolfe. Through extensive bench- 30

marks, we have shown that this acceleration is beneficial for 31

both collision detection and distance computation settings for 32
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scenarios where shapes intersect or are close, accelerating1

collision detection by up to a factor of two. Interestingly,2

these two scenarios notably encompass the generic contexts3

of planning and control as well as physical simulation, which4

are essential areas of modern robotics. Therefore, although the5

proposed accelerations correspond to improvements of GJK’s6

execution time on the order of a few microseconds, modern7

robotics applications may solve millions to billions of collision8

problems when, for instance, learning a policy with RL [59].9

The Polyak and Nesterov accelerations for GJK are al-10

ready included in the HPP-FCL library [51], notably used by11

the HPP framework [4] for motion planning, the Pinocchio12

framework [60] dedicated to simulation and modeling, the13

Croccodyl [61] and the OSC-2 [62] software dedicated to tra-14

jectory optimization, to name a few. In future work, we plan to15

leverage these accelerated collision detection algorithms in the16

scope of differentiable collision detection [63], differentiable17

simulation [64], [65] and constrained optimal control involving18

contact interactions [61], [66], [67].19

Finally, one can expect this work to be largely adopted in20

the current available GJK implementations, as it only requires21

minor algorithmic changes. This work should benefit a large22

audience within robotics (e.g., simulation, planning, control)23

and beyond by addressing issues shared by other communities,24

including computer graphics and computational geometry.25
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