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Abstract: The development of new technologies generates intelligent, complex, and collabora-
tive production systems. Several research works want to improve the production performances
while improving the comfort of the human operator. However, it is not obvious to define optimal
strategies of operations planning and control that consider the unexpected and variable character
of human operators. It is necessary to understand and model human behavior to develop
predictive and dynamic actions. Even if some generic behaviors have been well integrated into
classical quasi-deterministic models, there is still a need to develop stochastic models even closer
to human behavior to allow more dynamic and anticipatory decision-making, especially at the
operational level. In this work, we propose to model human behavior by a Markov chain and
to evaluate the effect of the different behavior types on the production system performance. A
heterogeneous set of human operators, with different behavioral patterns, were generated and
tested through simulation. Earlier results demonstrate that there is a direct link between the
behavior of human operators and the performance of the production system. It demonstrates also
how to integrate such models in a dynamic decision-making process concerning, the assignment
of workers to workstations.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Human behavior is one of the most important factors
affecting the business processes of organizations in many
fields, including industrial goods and services companies.
Indeed, despite the development of modern technologies
replacing Human in many tasks, such as the use of robots
in many industrial sectors, the human remains an element
of prime importance in nowadays production processes
of most sectors, especially for strategic decision-making
and/or in a highly disturbed and uncertain environment.
Moreover, human is often at least one of the external
elements interacting with the system.

In the industrial sector, robots and production machines
are used in many activities, most of which are repet-
itive, accurate, and resource/power-consuming. This is
confirmed by (Chen et al., 2022), who proposed a system-
theoretic approach to analyze the performance of collab-
orative robots in assembly system. Dolgui et al. (2022)
argued that despite the potential benefits of Industry 4.0
technologies, especially for assembly systems, they need
to be well integrated by involving different heterogeneous
factors, such as human workers, smart machines and new
technologies. Different approaches have been proposed to
make humans and machines cohabit safely in the service
of productivity. In such a context, human behavior and

the way people interact with these robots and machines is
an important aspect that must be modeled and taken into
account when operating such a heterogeneous system to
ensure its effectiveness.

This is why a lot of research groups are currently focusing
on human behavior modeling and simulation to anticipate
its effects. For example, in addition to the problems related
to the management of robot fleets (Sahnoun et al., 2019),
the management of the safety of operators and their inter-
actions with robots makes these problems very complex
(Garrido-Hidalgo et al., 2018; Canbay and Demircioglu,
2021). (Lin et al., 2022) proposed a hidden semi-Markov
model (HSMM) for a human behavior modeling in the
production system. A framework that incorporates human
factors into production and logistic systems is proposed in
(Vijayakumar et al., 2022). (Elkosantini and Gien, 2009)
developed a workers’ behavior model considering inter-
worker social relations that can influence the individual
performance.

Industry 4.0 has caused a revolution in the way the man-
ufacturing industry operates, from the creation of the
product concept to the development of high-tech auto-
mated factories that manufacture and recycle these prod-
ucts (Messaadia et al., 2016). This revolution is based on
data collection, analysis, and intelligent decision-making
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approaches thanks to a set of technologies such as big
data, sensors, cloud computing, and cyber-physical sys-
tems (Brik et al., 2022). Tt allows getting more knowledge
about production tools, processes, and their interaction
with human operators. In any industry, accurate knowl-
edge of human behavior provides a significant advantage
in predicting future system states and optimizing decision-
making at the strategic, tactical, and operational levels
(Bailly et al., 2020).

Nowadays, Industry 5.0 is advertised as the next important
revolution in the industrial sector, where high level techno-
logical systems like robots, smart building and highly in-
terconnected organizational systems will handle facilitate
the task performed by human operators. In such situation,
tasks inducing creativity and perception-based skills will
be mostly performed by humans, whereas repetitive and
hard tasks will be left to robots. It is therefore a kind
of partnership, even communion, between humans and
intelligent technology to achieve efficient and sustainable
production systems. This is why human behavior modeling
will play a central role in Industry 5.0 and will continue
to attract the interest of researchers in the social sciences
and humanities, as well as in industrial engineering.

Different approaches of modeling human behavior can be
found in the literature in several domains: ergonomics,
human reliability, learning, vehicle driving, crowd move-
ment, resistance to change, customer behavior, etc. Chang
and Yuan (2008) used a Markov chain model to predict
customers behavior and combines the notions of collabo-
rative prototyping and Existence, Relatedness and Growth
(ERG) theory. The authors justify that the Markov chain
within ERG theory would generate good performance in
behavior prediction. Tarokh and EsmaeiliGookeh (2017)
also utilized the Markov chain model to forecast the future
behavior of customers. The model has been validated us-
ing customer demographic data and historical transaction
data from a composite manufacturing firm in Iran.

In the field of collaborative robotics, Zanchettin et al.
(2018) proposed a technique for predicting human activity
patterns to quickly deduce when a particular collaborative
operation will be requested by the human, and allow a
robot to perform other autonomous functions at the same
time. The prediction algorithm is based on a higher-order
(with memory) Markov Chains and has been tested in a
scenario including a dual-arm robot used in a small part
collaborative assembly task. In (Zhang et al., 2021), the
authors examine task scheduling for a robotic collaborative
assembly cell to achieve a trade-off between work cycle
and human fatigue. For a more complete overview of the
most important recent research works on human-robot
interactions in industry, the reader can refer to (Hjorth
and Chrysostomou, 2022; Liu et al., 2022; Vicentini, 2021;
Hentout et al., 2019)

Therefore, accurate behavioral models of production re-
sources seem essential to optimize the production system
and minimize its operating cost. Indeed, these models can
be very useful in static and dynamic production plan-
ning and scheduling to anticipate and reduce the effect
of operational hazards caused by the fortuitous behavior
of these resources, which is the case with human operators.
Furthermore, such models are also essential to predict
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the behavior of the system and its ability to adapt and
overcome external disturbances.

The objective of this work is to illustrate, through simu-
lation, the effect of human behavior on the productivity
of a production system and, more importantly, to show
the interest of integrating a model of human behaviors in
a dynamic assignment of resources to reduce the impact
of potential performance degrading events resulting from
these behaviors.

The rest of the article is composed of 3 sections. Section 2
contains the proposed approach to model and simulate
human behavior and its impact on the productivity of a
flow shop production system. Simulation results and their
discussions are provided in Section 3. Finally, we draw in
sectiond the main conclusions and perspectives.

2. PROPOSED APPROACH

We consider a flow-shop production system composed of
six workstations (WS) denoted by WS;,i = 1,2,..,6.
Each workstation corresponds to a machine that needs
the presence of a worker while processing a task. Each
job (product) is transferred automatically, once it finishes
being processed, until completing all the needed processing
steps. Let PT be the vector representing the process times
of all workstations: PT = [PTy,..,PT;,..,PTg] and Let
AP be the vector representing the assigned worker profiles
of all workstations: AP = [AP, .., AP;, .., AFg].

We also define a set of zones where a worker can move and
therefore leaves his workstation inactive until he returns
to it. That is why they are called “No-productive” zones
(NPZ). We model workers behavior as a classical Markov
process whose states are defined by J + 1 possible states
(locations) belonging to two classes: i) 1 among the T
“Productive” states, corresponding to the workstation to
which the worker is assigned, and ii) J “Non-productive”
states corresponding to the J non-productive zones (see
Fig. 1).

Non productive states (Zones)

Productive states (Workstations)

Fig. 1. Productive and non-productive states of the
Markovian-based human behavior model

We suppose that each worker is assigned to a unique
workstation WS;,4 € {1,2,..,1}, and can move only back
and forth between it and the set of non-productive zones
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NPZ;,j € {1,2,..,J}. The transition probabilities be-
tween each workstation and the non-productive zones are
defined by the transition matrix P* relative to the k-th
generic profile of workers behaviors.

E ok Lk k k
p]ii plicl P}iz Plij Pfcj
P}Ci pl1€1 P]1€2 P}Cj p}'cJ
P2; P21 P22 -+ P2j --- Pig

Pk

Il
—~

—_
~—

Kook ok k k
Dj; P31 P32 - -- pij - Dig

Py P31 P32 ---Pjj - PjJg
As shown in equation ( 1), pfj,Vj = 1,2,..,J represents
the probability that a worker with profile & moves from
WS; to NPZ;, p?i represents the probability to move from
NPZ; to WS;, and p¥ ;. ,Vji, jo = 1,2.., J3 represents the
probability to move from NPZ; to NPZj,.

To find out and measure the effect of human behavior on
the productivity of production systems, we developed a
multi-agent-based simulation, composed of a set of differ-
ent types of autonomous agents interacting together. We
divided the system into four interconnected autonomous
agents: “Worker”, “Job”,“Zone”, and “Workstation”. The
considered agents and their interrelations are represented
in Fig. 2. The composition and role of each agent are
defined as follows:

e Worker: The “Worker” agent interacts with all other
agents because he executes a job when he is on his
Workstation and moves between Zones (productive
or non-productive). This agent is characterized by a
set of parameters as follows:

- Last_zone: it is the last zone visited by the worker
before updating his location

- Profile: it is represented by the probability tran-
sition matrix. It defines the probabilities that
a worker moves between each pair of zone. It
corresponds to one of a set of predefined profiles
and may differ from one worker to another.

- Next_zone: it is the following zone to be visited
by the worker.

e Zone: The “Zone” agent is a reactive agent where
WSs and NPZs are located in different position in
the workshop. Each “Zone” agent is characterized by
the following parameters :

- Status: it gives the status of the zone, which may
be free or occupied

- Type: it classifies the zone as productive or non
productive

e Workstation: The ”Workstation” agent is also a re-
active agent where the different production steps of
a product are executed, only during the presence of
the worker that is responsible of the execution of the
task, and obviously, the presence of the product. It is
characterized by:

- Status: it gives the status of the workstation,
which may be free or occupied

- Type: it classifies the workstation as productive
or non productive
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e Job: The “Job” agent represents the products that
need to be processed by the workers as each product
passes through all the workstations on the production
floor. Each job is characterized by the following
parameters :

- Index : Determines the current or the last work-
station where the job is present

- PT: it is a vector that represents the time it
takes at each workstation to process the product,
provided the worker is present.

Executes @ Moves to

Is processed in @ Is located in

Fig. 2. Multi-agent model’s agents and their interactions

Works on

In order to evaluate the impact of workers profiles on
the productivity of the system, we perform the simulation
over a predefined time horizon and evaluate the number of
finished products. The simulation algorithm is detailed in
Algorithm 1. At each simulation tick (chosen time unit),
the MAS updates: i) workers’ locations, ii) workstations’
status, iii) jobs’ actual processing times and locations,
and iv) buffers’ status. A job moves to the downstream
workstation in the process if its actual processing time in
the current workstation (APTjy) is equal to the required
processing time (PTj). The actual processing time is
incremented only if the worker assigned to the workstation
is present. Once a job is completed on the last workstation,
it is transferred to the output buffer of finished jobs and
the number of finished products is incremented. Jobs are
generated at the first workstation each time it becomes
unoccupied.

3. SIMULATION RESULTS AND DISCUSSION

We developed the multi-agent based simulator using Net-
Logo 6.2.1. software, which has its own programming
language for multi-agent programmable modeling environ-
ment (see Fig.3).

We run our simulations with a flow-shop production sys-
tem in which six productive and 3 non-productive zones.
The productive zones represent workstations, where a
worker is assigned to perform a specific production task
using the equipment associated with the workstation.
Whereas, the Non-productive zones represent the areas
where a worker is in a kind of non-activity situation, such
as a smoking break, personal call, or lunch, or simply an
unjustified absence from the workstation.

Looking to the chosen representation of human behav-
ior, and intending to show the effect of different types
of human behaviors on the productivity of the manu-
facturing system, we performed several simulations with
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Algorithm 1: Simulation algorithm

Data:
WK = {WK;, WK, ..,
WS = {WS;, WSa, ..,

WK }: Set of workers;
WSk }: Set of workstations;

J =1{1,..,J}: Set of jobs indices;
K ={1,.., K}: Set of workers’ (workstations) indices;
PT = (PTji : j € J,k € K): Processing times;

InB = (InBy, : k € K): Workstations’ input buffers
OutB: Output buffer of finished jobs;
Horizon: Simulation horizon;
Result:
NFJ: Number of finished jobs ;
Productivity: Productivity rate ;
begin
Initialization: tick = 0, NFJ =0
APT;, =0Vje JVke{l,. . ,K};
while tick < Horizon do
tick < tick + 1;
Update workers’ locations;
for Fach WS, € WS do
if (WSy is occupied by j € J AND WKy, is
present) OR (WS, NOT occupied AND
3j € J in InBy,) then
APTjk — EPTjk +1;
if APT]k = PTjk then
if k = K then
Transfer job j to OutB ;
NFJ < NFJ +1;
else
Transfer job j to InBg41;
if k=1 then
| Generate a new job at WS

Productivity < £

L Horizon?’

different scenarios. Each worker has his own task al-
location defined by his workstation and his behavior.
Six generic profiles of workers’ behavior are defined and
represented by 6 Markov chains with different transi-
tion matrices that translate different worker profiles. We
defined six generic profiles of workers behaviors repre-
sented by the following probability transition matrices:

1000 0.95 0.05 0 0
. [1000 . (09500500
PP=11000 PP=1"1 "0 00

1000 1 0 00
0.9 01 00 0.7 03 00

pr_ [09500500) Lo [09500500

=11 0 00 =11 0 00
1 000 1 0 00
070300 0802 0 0

pi_ [ 070300 ps_ [ 06020101

=11 000 =1 0 030403
1 000 0 030304

We run the simulations using the following inputs:

e Simulation horizon: 1 week of 5 working days, 8 hours
per day
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Fig. 3. Overview of the simulation environment.

e Workstations’ processing times:
PT =[1,4,2,4,1, 3] for the workstations WSy, WSa,
WSs, WSy, WSsW, WS respectively.
e Workers’ profiles: P° (Ideal), P*, P2, P3 P*and P®
e Scenarios: we simulated 36 scenarios, representing
different combinations of workers’ profiles assigned to
workstations.
— Global scenarios:
G0: AP =[0,0,0,0,0,0] (Perfect)
Gk: AP = [k k ok k kK], k=1,2,..,5
— Mized scenarios: Yk = 1,2
Mk1:
Mk2:
Mks3:
Mk4:
Mkb: AP =
Mk6: AP

Table. 1 shows the simulation results and gives the level
of productivity achieved by each scenario. We can see
that there are 13 scenarios among 35 that perform as
the perfect scenario (all workers with ideal profile). This
implies that each worker profile can have different impacts
on productivity, depending on the workstation to which it
is assigned. For instance, We can see that productivity
is significantly decreased when profiles #3 and #4 are
assigned to bottleneck workstations WSy and W .Sy.

Fig. 4 draws for each profile the percentage productivity
decrease in the cases of global and mixed scenarios (in
average). For example, when profile #2 is assigned to all
workstations (global scenario), it causes 6% decrease of
the productivity compared to the perfect scenario, which
drop to an average of 4% in the mixed scenario. The
largest average slowdown in productivity is 13%, which
is caused by profile #4, in which the probability to stay
at workstation is only 0.7.

Table 2 gives for each worker profile the ranking of the
best workstations assignments. Obviously, the ideal worker
profile is ranked the first for all workstations. For example,
with the profile #1, it is better to assign the worker to
WSy, WSs, or WS, and then to WS3, WS, and W Sy.
We can see that profiles #3 and #4 are best ranked with
workstation having the lowest processing time, namely
WS; and W Ss.
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Table 1. Results of all tested scenarios
Scenarios Operator profiles assignment Productivity
# ID |WS; WSy WS3 WSy WSs WSe | (units/week)
1 GO 0 0 0 0 0 0 597
2 Gl 1 1 1 1 1 1 564
3 G2 2 2 2 2 2 2 562
4 G3 3 3 3 3 3 3 533
5 G4 4 4 4 4 4 4 526
6 G5 5 5 5 5 5 5 560
7 M1l 1 0 0 0 0 0 597
8 Mil5 0 1 0 0 0 0 571
9 Ml4 0 0 1 0 0 0 596
10 M16 0 0 0 1 0 0 567
11 M12 0 0 0 0 1 0 597
12 M13 0 0 0 0 0 1 597
13 M21 2 0 0 0 0 0 597
14 M26 0 2 0 0 0 0 531
15 M24 0 0 2 0 0 0 596
16 M25 0 0 0 2 0 0 538
17 M22 0 0 0 0 2 0 597
18 M23 0 0 0 0 0 2 597
19 M35 3 0 0 0 0 0 597
20 M3l 0 3 0 0 0 0 411
21 M34 0 0 3 0 0 0 594
22 Ma32 0 0 0 3 0 0 420
23 M36 0 0 0 0 3 0 597
24 M33 0 0 0 0 0 3 560
25 M4l 4 0 0 0 0 0 597
26 M46 0 4 0 0 0 0 405
27 M43 0 0 4 0 0 0 595
28 M45 0 0 0 4 0 0 417
29 M42 0 0 0 0 4 0 597
30 M44 0 0 0 0 0 4 550
31 Ms51 5 0 0 0 0 0 597
32 M56 0 5 0 0 0 0 478
33 Mb4 0 0 5 0 0 0 596
34 M55 0 0 0 5 0 0 482
35 M52 0 0 0 0 5 0 597
36 M53 0 0 0 0 0 5 597
0% W L L J  J o ]
A
D
w»
5
< . u p
g
=
§ @ Perfect
g -10% B Global
;E A Mixed ! ]
=
-15%
0 1 2 3 4 5
Profile ID

Fig. 4. Effects of profile assignment strategies on produc-
tivity

4. CONCLUSION AND FUTURE WORK

This work presents a novel approach for the modeling
and simulation of human behavior’s impact on production
throughput. The results show that human behavior has an
important influence on the productivity of the production
system. The next step is to apply this approach in a
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Table 2. Ranking of the best workstations
assignments as function of worker profiles

Profile rank 1 rank 2 rank 3 rank 4 rank 5

0 12,..6 - - N

1 1,56 3 2 4 -
2 1,56 3 4 2 -
3 15 3 6 4 2
4 1,5 3 6 4 2
5 1,56 3 4 2 .

near real case study and collect real data to clustering
different profiles and estimating accurately their transition
matrices of the associated Markov Chains. This will allow
predicting dynamically the states of workers and integrate
that information in an adaptive decision-making process
for workers assignment and production tasks scheduling.
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