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Abstract  

Industry is increasingly turning to predictive maintenance by using digital twins (DTs) to follow and predict 

evolution of mechanical system. This article presents, compares and discusses two DTs to diagnose wear of bush 

bearings under dynamic loads. The first DT is driven by a model based on data analysis using statistical process 

control (SPC). The second DT is based on physical laws: Boussinesq’s and Archard’s equations. Both DTs are fed 

by data recorded on a test bench instrumented with sensors of temperature, acceleration and displacement. Rules for 

fault detection were identified, explained and applied to the two DTs implemented. The two implemented DTs 

detected abnormal wear behaviours. The data-based DT using the SPC is easier to implement and it detects change 

in wear behaviour earlier. In contrast, the physic-based DT has the advantage of being predictive, so it can be used 

when only the operating conditions of the system are known. This work is a contribution for new wear diagnostic 

tools. 
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Highlights 

• Implementation of a digital twin to monitor wear of a bush bearing system. 

• Wear monitored through statistical process control and specific numerical model. 

• Comparison of digital twin architecture. 

• Design and use of a test bench instrumented with sensors. 
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1. Introduction  

Wear is a critical phenomenon in dynamic systems 

of helicopters. Currently, wear monitoring is done by 

preventive maintenance at regular intervals. However, 

this type of maintenance is expensive [1]. Nowadays, 

industries are increasingly turning to predictive 

maintenance by using, for example, digital twins 

(DTs).  

A DT is a virtual replica of a physical system and 

both exchange data and information throughout the 

whole life cycle of the physical system [2]. The DT 

perceives its environment through sensors [3] and the 

data flow between the virtual replica and the physical 

system can be either unidirectional or bidirectional [4]. 

In mechanical engineering, DTs have the 

advantage reducing maintenance costs because they 

allow to mirror systems where direct inspection is not 

easy [1]. In consequence, it allows increasing safety by 

detecting problems earlier [5,6].  They can be used to 

facilitate the lifecycle management [5,7], to support 

manufacturing processes [8–10] and to monitor or 

predict mechanical damages [11–16]. 

DTs are supported by models based on data 

analysis or on physical laws.  

Data-based models are created from the analysis of 

data recorded by the studied system sensors. The 

analysis of recorded data can be done through different 

approaches. Neural network and machine learning 

have been used to analyse the degradation performance 

of rolling bearing and to predict the remaining useful 

life of rolling bearing [14,16]. In [13], the authors 

predicted the wear of a circular blade from historic data 

collected with a SCADA system. In [17], a 

probabilistic Gaussian mixture model is used to 

develop a specific strategy for bearing fault detection.  

Physic-based models use physical laws to describe 

the behaviour of the system studied. One way to 

implement physic-based models is by means of the 

finite element method (FEM). In [15], the authors used 

FEM in a DT to simulate automotive brake pad wear. 

FEM with mesh updating was used to predict fretting 

wear of spline couplings [18] and to predict wear on 

classic bush bearings [19] and bio-inspired bush 

bearings [20]. Specific numerical models are another 

way to develop physic-based model. Specific 

numerical models have been developed to predict wear 

of bearings under dynamic loads [21], revolute joint in 

4-bar mechanisms [22,23], gears [24] and crossed steel 

wires [25]. Specific numerical models have the 

advantage of being less time consuming than FEM 

[21,22]. However, in the case of wear monitoring, 

FEM is well adapted to complex contact geometries. 

In this work, two DTs (a data-based and a physic-

based) are developed, implemented and compared.  

This with aim of monitoring wear of a bush bearing 

system mounted on a test bench. The first DT relies on 

a data-based model using the statistical process control 

(SPC). The SPC allows to continuously monitor the 

evolution of wear rate of the bearings. The second DT 

uses the specific numerical model developed by [21]. 

Rules of fault detection were defined to monitor a 

variable with linear evolution such as wear. These rules 

were applied on both DTs implemented.  

The objective of this article is to monitor wear of a 

bush bearing system by means of DTs. Two DTs are 

implemented and compared in terms of 

implementation time, execution time and detection 

capability. This with the aim of identifying the 

advantages of each type of DT in the case of wear 

monitoring. 

 

2. Material and Methods  

The global architecture of both bush bearing DTs 

implemented in this work is presented in Fig. 1. This 

architecture can be divided into four components.  

The first component (green box in in Fig. 1) is the 

physical system. In this work, it is a test bench of a 

bush bearing instrumented with temperature, 

acceleration and displacement sensors to monitor wear 

effects.  

The second component (black box in in Fig. 1) 

corresponds to the transmission of data collected on the 

physical system to the DTs model. Data collected by 

the optical displacement sensor was used to identify the 

operating configuration (rotational speed and force 

loading) and to monitor wear effects over time. The 

other sensors were employed to control the stability of 

the temperature and vibrations during experiments. 

The third component (blue box in in Fig. 1) is the 

DT to follow wear of the bush bearings. Two models 

were implemented in this work: one model based on 

data analysis using Statistical Process Control (SPC) 

and one model based on physic laws using a specific 

numerical model [21]. 

The last component (red box in in Fig. 1) apply the 

rules of fault detection. 

In this section, each component of the architecture 

of the DTs is detailed. 

 

 
Fig. 1. Global architecture of DTs implemented. 

 

2.1. Physical system  

2.1.1. Experimental test bench  

The test bench of the bush bearing system is 

illustrated in Fig. 2. It is composed of a steel shaft 

OTMT 81001300 (item n°6 in Fig. 2) guided by two 

bronze bearings SINT A50 (item n°7 in Fig. 2). The 
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material properties of the shaft and the bearings are 

summarized in Table 1. For the tests considered in this 

work, no lubrication was used, only dry contact to 

consider the worst operating case. The initial clearance 

on diameter between the shaft and the bearings was 

0.144 mm. An unbalanced mass (50 or 75 g) fixed at 

the end of the shaft (item n°1 in Fig. 2) was used to 

create a dynamic load. A double universal joint was 

used (item n°4 in Fig. 2) to connect the shaft to the 

motor (item n°5 in Fig. 2) and reduce parasitic dynamic 

loads due to misalignment between the shaft and the 

electric motor shaft. The frame (item n°3 in Fig. 2) of 

the test bench was made of aluminium alloy to diffuse 

the temperature generated by the friction. Before each 

trial, the test bench was heated to the operating 

temperature (38-40°C) by using an external heat 

source. The rotational speed was constant and equal to 

1000 rpm. The two unbalanced masses were 

alternatively used during tests. Table 2 presents the 

details about the operating conditions (OC) through 

time.  

 

 
Fig. 2. Experimental test bench: (a) test bench photo; (b) test 

bench. (1) unbalanced mass; (2) accelerometers; (3) frame; (4) 

double universal joint; (5) motor; (6) shaft; (7) bearings; (8) 

thermal sensors; (9) displacement sensor. 

 

 Shaft Bearing 

Material Steel 115Cr2 Bronze CuSn10 

Young’s modulus 206 GPa 65 GPa 

Roughness (Ra) 0.3 – 0.6 0.3 

Hardness 54 – 56 HRC 25 HB 

Table 1. Material properties of the shaft and the bearings. 

 
 OC 1 OC 2 OC 3 OC 4 

Start time 0h 5h30 8h20 10h 

End time 5h30 8h20 10h 13h 

Unbalanced mass 50 g 75 g 50 g 75 g 

Table 2. Operating conditions (OC) of the experiments. 

 

The test bench was instrumented with several 

sensors. Two temperature sensors (IEC type K silicone 

rubber patch thermocouple) were fixed on the frame 

(item n°8 in Fig. 2). Two accelerometers (Model 

603C01 - PCB Piezotronics) were used to monitor the 

stability of the experiment (item n°2 in Fig. 2): one was 

positioned to detect vertical vibrations and the other for 

horizontal vibrations. A confocal chromatic 

displacement sensor (Micro-Epsilon IFS2405-10) was 

mounted perpendicular to the shaft axis to measure its 

displacement (run-out) (item n°9 in Fig. 2). During the 

experiments, data was collected every 10 minutes for 2 

seconds with a NI data acquisition card. The 

acquisition frequencies and the monitored parameters 

are presented in Table 3. 
 

 Frequency Monitored parameters 

Thermal sensor 50 Hz 
Mean value of the 

recorded signal 

Accelerometer 1000 Hz 
Amplitude of the recorded 

signal 

Displacement sensor 1000 Hz 
Mean of the peak-to-peak 

of the recorded signal 

Table 3. Acquisition parameters of the used sensors. 

 

In addition, the wear depth of the shaft and the 

bearings was measured after disassembly. To allow the 

disassembly of the bearings, the frame was designed in 

two parts and assembled using 4 screws (ISO screw 

M6). The screws were tightened each time they were 

assembled using a torque wrench in order to guarantee 

an identical tightening torque at each reassembly. The 

tightening torque was set to 5 Nm. Fig. 3 illustrates the 

worn shaft and bearings. For the shaft, the mean wear 

depth was obtained by measuring profiles of 50 mm 

long on the wear zones (blue line in Fig. 3a) with a 

micromesure station (STIL Marposs, Micromesure 2). 

For the bearings, the inner surface was acquired with a 

coordinate-measuring machine (Messwelk, MM 1004 

E Trimesures). One circular path at each end of the 

bearings was measured (blue lines in Fig. 3b). Each 

circular path was composed of 36 points uniformly 

distributed. The wear depth of the bearing was 

assumed to be the diameter variation between the 

initial and the final circular paths.  

 

 
Fig. 3. Picture of (a) worn shaft and (b) worn bearing with the 

measurement paths. 
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2.1.2. Identification of operating configurations 

In this work, it is assumed that the loading to which 

the system is subjected is not known during the 

operation of the system. 

In order to launch the digital twin, the operating 

conditions of the monitored system are automatically 

identified from experimental data. The general 

workflow of this procedure is represented in Fig. 4a. 

The features of the shaft displacement signal (Fig. 4b) 

and its Fast Fourier Transformation (FFT) (Fig. 4c) 

were used to do so. The loading was deduced from the 

amplitude of the first peak of the FFT of the signal. The 

signal processing toolbox of Matlab, and more 

precisely, the classification learner tool was used. A 

feed forward network with a single internal layer was 

trained with sets of data where the unbalanced mass 

was known. 

 

 
Fig. 4. Detection of the operating configurations using neural 

network of Matlab: (a) flow chart used to identify operating 

configurations; (b) shaft displacement signal; (c) Fast Fourier 

Transformation (FFT) of the shaft displacement signal. 

 

2.2. Digital twins 

 In this section, the implementation of the DTs to 

diagnose wear of bush bearings under dynamic loads is 

described. DT models can be based on data or on 

physic laws. This article presents one example of each 

model. The data-based model was developed using 

SPC of the data recorded by the sensors. The physic-

based model corresponds to a specific numerical model 

that predict the wear evolution of bearing under 

dynamic loading. All results presented in this article 

are for the stable wear stage.  

 

2.2.1. Controlled variables 

The aim of the DTs developed in this work is to 

control wear through time. The controlled variables are 

the wear depth and the wear rate. The wear depth is 

deduced from the peak-to-peak value of the shaft 

displacement signal (Fig. 5). From the displacement 

sensor measure d1 and by geometric relations, the 

displacement d0 at the end of the bearing can be 

calculated. This distance d0 corresponds to the sum of 

the wear depths of the two bearings and the clearance 

on the diameter. The wear depth equation is defined in 

Fig. 5. The wear rate is defined as the wear depth per 

time unit (µm/h). 

 

 
Fig. 5. Wear depth from displacement sensor measurement. 

 

2.2.2. Data-based model 

SPC was used to control the mean and the standard 

deviation of the wear rate to study its trend and 

variation. Both, the mean and the standard deviation of 

the wear rate, were deduced from the measured 

displacements. As this work is focused on the stable 

wear stage, the wear depth is supposed to evolve 

linearly through time. A linear regression of the wear 

depth through the time was done to determine the mean 

wear rate which corresponds to the slope of the 

regression. This regression was carried out using both 

the least squares and the Moore-Penrose inverse 

methods [26,27]. This allowed to determine the mean 

and the standard deviation of the wear rate.  

The data controlled were supposed to follow 

normal distribution. The upper control limit (UCL) and 

the lower control limit (LCL) for the mean wear rate, 

respectively UCLµ and LCLµ, and the upper control 

limit of the standard deviation of the wear rate, UCLσ, 

are calculated as follows [28]: 

 

𝑈𝐶𝐿𝜇 = 𝜇 +
𝑡 𝜎

√𝑛
 (1) 

  

𝐿𝐶𝐿𝜇 = 𝜇 −
𝑡 𝜎

√𝑛
 (2) 

  

𝑈𝐶𝐿𝜎 = 𝐵4 𝜎 (3) 

 

where n is the size of the sample, µ the mean wear rate 

target (see Table 4 for numerical values), σ the standard 

deviation target of the wear rate (see Table 4 for 

numerical values), t the coverage factor determined by 

the inverse of Student’s law with a risk of 0.25% and 

B4 the coefficient for the calculation of the control limit 

from [28]. The mean target µ and the standard 

deviation target σ were obtained from calibration tests. 
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 µ (µm/h) σ (µm/h) 

m = 50 g 0.933 0.320 

m = 75 g 1.412 0.389 

Table 4. Target values for the mean and the standard deviation of 

the wear rate for unbalanced mass of 50 g and 75 g. 

 

2.2.3. Physic-based model 

The numerical model to predict wear of bush 

bearings under off-centred dynamic loads is 

summarized hereafter. The algorithm behind this 

model is presented in Fig. 6. For more details readers 

can refer to [21].  

 

 
Fig. 6. Pseudo algorithm of the wear numerical model. 

 

Several input parameters are necessary to run the 

model. The time is initialized to t0. The rotational speed 

of the shaft ω, the unbalanced mass m and the wear 

coefficients K are required. The contact pressure 

distribution field P(x,z) and the wear distribution field 

h(x,z) are supposed to be sinusoidal [29] in the plane 

with normal x (Fig. 7a) and linear in the plane with 

normal z (Fig. 7b). The boundary of the fields on the 

shaft corresponds to the contact area and is assumed to 

be parabolic (Fig. 7c). 

 

 
Fig. 7. Details of the wear distribution and the contact pressure 

field between the shaft and the bearings: (a) Plane with normal x; 

(b) Plane with normal z; (b) Plane with normal y. 

 

The force balance between the bearings and the 

shaft is made following these assumptions: bodies are 

supposed rigid and the effects of the clearance and 

friction are neglected. The contact reaction forces are 

obtained by solving the force balance in the fixed 

frame considering the weight of shaft, the weight of the 

unbalanced mass and the centrifugal force generated 

by the unbalanced mass fixed at the end of the rotating 

shaft. 

Then, a recursive approach is used to calculate the 

cumulative wear though time. In each iteration the 

contact pressure and area, the wear volume, the wear 

depth and the cumulative wear are computed. 

To calculate the contact pressure and area, the 

contacts are supposed frictionless and under normal 

pressure only. The following Boussinesq’s equation is 

used:  

 

𝛿𝑚𝑎𝑥 =
1−𝜈

2𝜋𝐺𝑒𝑞
∬

𝑃(𝑥,𝑧)

√𝑥2+𝑧²
 𝑑𝑥 𝑑𝑧  (4) 

 

where δmax is the maximum elastic strain, ν the 

Poisson’s ratio and Geq equivalent shear modulus. The 

contact pressure and area are obtained by solving by 

dichotomy the system of equations. This numerical 

resolution is used because of the non-linearities of the 

equations. 

The wear volume ΔV is calculated using the 

Archard’s law:  

 

𝛥𝑉 = 𝐾 𝑅 𝛥𝑑  (5) 

 

where K is the wear coefficient, R the magnitude of 

normal reaction force between the shaft and the 

bearings and Δd is the sliding distance.  

The wear depth for one revolution is computed 

from the wear distribution field h(x,z) (represented in 

red in Fig. 7): 

 

ℎ(𝑥, 𝑧) = ℎ𝑚𝑎𝑥 (1 −
𝑥

𝐿𝑐
) cos (

𝜋 𝑧

2𝑟𝑒𝑞𝜑(𝑥)
)  (6) 

  

𝜑(𝑥) = ± sin−1 (√1 −
𝑥

𝐿𝑐
 sin(𝜑0))  (7) 

 

where hmax is the maximum wear depth, Lc the contact 

length, req the equivalent radius, φ(x) the half aperture 

angle of the contact surface and φ0 the maximum half 

aperture angle. By double integrating Eq. (6) and 

knowing the wear volume, the maximum wear depth 

hmax can be computed.  

To obtain the cumulative wear depth 

corresponding to each time step ti, the wear depth for 

one revolution is multiplied by the number of 

revolutions done during the time step. 

Finally, the geometry is updated to take into 

account the evolution of the contact area and the 

evolution of the clearance between the shaft and the 

bearings that increases with wear.  
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For the stable wear stage, the wear coefficient was 

supposed constant as done in other works [19,21]. 

Calibration tests were carried out to determine the wear 

coefficient according to the operating conditions used 

in this work. The mean value of the wear coefficients 

of the calibration tests was then used. The obtained 

value was equal to 9.955 E-11 mm²/N. By using the 

calibrated model, the wear depth can be predicted for a 

given operating condition.  

The variability of the input parameters (unbalanced 

mass, rotational speed, position of the mass, wear 

coefficient) was taken into account in uncertainty 

analysis. This was done using the Monte Carlo’s 

method and allowed to derive the confidence intervals 

of the predicted wear depth. The assumed variations of 

the input parameters used for Monte Carlo’s method 

are the same as those in [21].  

 

2.3. Digital twin fault diagnosis  

The aim of the implemented DTs is to detect an 

unexpected behaviour of the wear in stable stage. An 

unexpected behaviour is detected when control limits 

are exceeded. In this work, the fault diagnosis monitors 

the wear depth and its rate of change. For each DT, the 

scenarios of detection were identified and explained. 

 

2.3.1. Fault diagnosis rules for data-based DT 

 For the DT using the data-based model, the wear 

depth, the mean wear rate and the standard deviation of 

the wear rate are followed. The wear depth is 

systematically compared against a fixed threshold. The 

mean and the standard deviation of the wear rate are 

compared against the UCL and the LCL defined by the 

SPC. The DT detects a change of behaviour when at 

least one of these three parameters exceeds the control 

limits. In this work, a fault scenario is defined as the 

excess of one or more control limits.  

In order to identify all possible scenarios, a cross-

tabulation matrix was build (Table 5). For example, if 

the wear depth threshold and the control limits of the 

mean wear rate are exceeded, it corresponds to the 

scenario D2. A detailed description of these scenarios 

and the risk of incident that they occur are presented in 

Table 6. The level of risk that an incident appears is 

proposed from the authors’ appreciation.  

 

  

Wear 

depth 

threshold 

Limits of 

the mean 

wear rate  

Limits of the 

standard 

deviation of 

the wear rate 

All 

Wear depth 

threshold 
D1 D2 D3 NA 

Limits of 

the mean 

wear rate 

D2 D4a, D4b D5a, D5b  NA 

Limits of 

the standard 

deviation of 

D3 D5a, D5b D6  NA 

the wear 

rate 

All  NA NA NA D7 

Table 5. Scenarios of detection for the data-based DT. 

 

  
Control limit 

exceeded 
Description 

Risk of 

incident 

D1 Wear depth threshold 
Normal ageing, 

end of life 
*** (2/3) 

D2 

- Wear depth threshold 

- Limits of the mean 

wear rate 

Wear acceleration 

and end of life 
*** (3/3) 

D3 

- Wear depth threshold  

- Limits of the 

standard deviation of 

the wear rate 

High dispersion 

of the rate of 

change and end 

of life 

*** (3/3) 

D4a 
Upper limit of the 

mean wear rate 
Wear acceleration *** (2/3) 

D4b 
Lower limit of the 

mean wear rate 

Wear 

deceleration 
*** (1/3) 

D5a 

- Upper limit of the 

mean wear rate 

- Limits of standard 

deviation of the wear 

rate 

High dispersion 

of the wear rate 

and wear 

acceleration  

*** (2/3) 

D5b 

- Lower limit of the 

mean wear rate 

- Limits of the 

standard deviation of 

the wear rate 

Instability and 

wear deceleration  
*** (1/3) 

D6 

Limits of the standard 

deviation of the wear 

rate 

Instability but 

stable speed 
*** (2/3) 

D7 All Unlikely situation  *** (3/3) 

Table 6. Details of scenarios of detection for the data-based DT. 

The risk of incident is noted from 1 star (low risk) to 3 stars (high 

risk). 

 

2.3.2. Fault diagnosis rules for physic-based 

DT 

For the DT using the physic-based model, the wear 

depth and the mean wear rate are monitored. The wear 

depth is compared against a threshold and to 

confidence interval. The mean wear rate is compared 

against to confidence interval too. The confidence 

intervals were calculated from the numerical model. 

The DT detects a change of behaviour when at least 

one of the control limits is exceeded. Possible 

scenarios are listed in Table 7. A detailed description 

of these scenarios and the risk of incident that they 

occur are presented in Table 8.  

 

  

Wear 

depth 

threshold 

Wear depth 

confidence 

interval 

Confidence 

interval of 

the mean 

wear rate 

All 

Wear depth 

threshold 
P1 P2 P3  NA 
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Wear depth 

confidence 

interval 

P2 
P4a, P4b, 

P4c 
P5 NA 

Confidence 

interval of 

the mean 

wear rate 

P3 P5 P6   NA 

All NA NA NA  P7 

Table 7. Scenarios of detection for the physic-based DT. 

 

  
Control limit 

exceeded 
Description 

Risk of 

incident 

P1 Wear depth threshold  
Normal ageing,  

end of life 
*** (2/3) 

P2 
- Wear depth threshold  

- Wear depth 

confidence interval 

Early end of life *** (3/3) 

P3 
- Wear depth threshold  

- Confidence interval 

of the mean wear rate 

Wear acceleration 

near the end of 

life of the system 

*** (3/3) 

P4a 
Upper limit of the 

wear depth confidence 

interval 

Higher wear 

depth than 

predicted 

*** (2/3) 

P4b 
Lower limit of the 

wear depth confidence 

interval  

Lower wear depth 

than predicted 
*** (1/3) 

P4c 

Wear depth 

confidence interval 

(lower and upper 

limits) 

High dispersion 

of the wear depth 
*** (2/3) 

P5 

- Confidence interval 

of the wear depth  

- Confidence interval 

of the mean wear rate 

Higher wear 

depth than 

predicted and 

wear acceleration  

*** (2/3) 

P6 
Confidence interval of 

the mean wear rate 
Wear acceleration  *** (2/3) 

P7 All Unlikely situation *** (3/3) 

Table 8. Details of scenarios of detection for the physic-based 

DT. The risk of incident is noted from 1 star (low risk) to 3 stars 

(high risk). 

 

2.3.3. Fault diagnosis test cases 

The rules for fault detection described previously 

were tested in both DT under two situations: normal 

and abnormal conditions of wear. The aim is to 

highlight the capacity of the two DTs to detect a change 

in behaviour that could affect the integrity of the 

monitored mechanical system.  

The normal conditions of wear represent the 

evolution of the system under the operating conditions 

described in Section 2.1.1. An unexpected change of 

behaviour, was designed to obtain the abnormal 

conditions of wear. In this work, this situation was 

simulated by altering the wear rate.  

In this article, the wear depth threshold was fixed 

to 10 µm for both models. In abnormal conditions of 

wear, the wear rate was accelerated by adding 6 µm/h 

after 6h20 of use to the measured displacement. This 

acceleration represents an increase loadings of about 3 

times the current loads or a deterioration of the contact 

conditions (i.e. presence of a third body, increase of the 

wear coefficient). 

  

3. Results  

3.1.  Data-based DT 

Fig. 8 shows the results of the wear evolution 

monitoring and the fault diagnosis with the DT using 

the SPC.  

The evolution of the wear under normal conditions 

is presented in Fig. 8a-c. The mean (Fig. 8b) and the 

standard deviation (Fig. 8c) of the wear rate stay inside 

the control limits. The threshold of the wear depth (red 

line in Fig. 8a) is exceeded after 10h of use. This 

situation correspond to scenario D1 explained in 

Section 2.3.1.  

The evolution of the wear under abnormal 

conditions is presented in Fig. 8d-f. The change of 

behaviour is clearly visible after 6h20 of use in contrast 

with the normal condition of wear. The control chart of 

the mean wear rate (Fig. 8e) is the first to detect the 

fault at about 6h30. This situation corresponds to 

scenario D4a (Section 2.3.1). Then the threshold of the 

wear depth (red line in Fig. 8d) is also exceeded at 

about 7h20. Therefore, at this moment, scenario D4a 

evolves to scenario D2 (Section 2.3.1). On the control 

chart of the standard deviation of the wear rate (Fig. 

8f), a change of behaviour is visible but not sufficient 

to exceed the UCL. 
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Fig. 8. Detection of wear using the data-based DT: left column is the detection in normal use for (a) the wear depth, (b) the mean wear rate 

and (c) the standard deviation of the wear rate; right column is the detection in abnormal use for (d) the wear depth, (e) the mean wear rate 

and (f) the standard deviation (SD) of the wear rate. On each graph, the operating conditions (OC) are marked by vertical dotted grey lines. 

 

 

 

3.2. Physic-based DT 

The results of the wear evolution monitoring and 

the fault diagnosis with the numerical model are 

presented in Fig. 9.  

In normal conditions of wear (Fig. 9a-b), all 

recorded data stay inside the confidence intervals. The 

threshold of the wear depth (red line in Fig. 9a) is 

exceeded after 10h of use. This situation corresponds 

to scenario P1 explained in Section 2.3.2. 

The evolution of the wear under abnormal 

conditions is presented in Fig. 9c-d. The mean of the 

wear rate (Fig. 9d) exceeds the control limits at 7h. 

This situation corresponds to scenario P6 (Section 

2.3.2). Then the wear depth (Fig. 9c) exceeds the 

confidence interval and the threshold simultaneously at 

about 7h20. At this moment, scenario P6 evolves to 

scenario P7 (Section 2.3.2). 
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Fig. 9. Detection of wear using the physic-based DT: left column is the detection in normal conditions for (a) the wear depth and (b) the 

mean wear rate; right column is the detection in abnormal conditions for (c) the wear depth and (d) the mean wear rate. On each graph, the 

operating conditions (OC) are marked by vertical dotted grey lines. 

 

 

4. Discussion 

4.1. Comparison of detection capacity  

Both DTs detect wear in normal and abnormal 

conditions. The monitoring of the wear rate permits to 

detect faults earlier than with only the monitoring of 

the wear depth.  

The data-based DT allows to detect faults earlier 

because the size of the control limits is smaller (except 

at the very beginning) than those of the numerical 

model. In order to illustrate that, an overlapping of both 

control limits for the trial OC 1 (Table 2) is presented 

in Fig. 10. It can be noticed, that at 5h, e2 is 7 times 

larger than e1.  

The SPC technique is well adapted to the 

implementation of DT if the target value of the 

monitored variable is known and if its evolution is 

linear. If the monitored variable is not linear (i.e. 

varying speed), the use of higher order statistical tools 

are necessary. Moreover, to use the SPC a large 

amount of data is necessary compared to the numerical 

model. 

In this work, the monitored variable can be 

estimated experimentally, which is not the general 

case. There exist cases in which only the operating 

conditions are known. In those cases, the data-based 

DT cannot be used; in contrast, the physic-based can 

be, thanks to its predictive capabilities.  

 

 
Fig. 10. Overlapping of control limits of both DTs implemented. 

 

4.2. Comparison with other DTs 

In the literature, several DTs of wear based on data 

analysis or on physical laws were reported. Some of 

these works are summarized in Table 9. They are 

compared regarding the cost of implementation and 

calibration, the computation time, the capability to be 

re-use and the capability to detect and predict wear. For 

the comparison, two data-based DTs and two physic-

based DTs were analysed. The data-based DTs 

analysed rely on machine learning [14] and on SPC (as 

presented in this work). The physic-based DTs 

analysed rely on FEM [30] and on numerical model (as 

presented in this work). 

From this comparison, it can be concluded that the 

data-based DTs are easier to implement and execute. 
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Physic-based DTs are able to detect and predict wear 

behaviour. If an analytical model is too hard to 

implement, then a finite elements model is an 

alternative. 

 

4.3.  Limitations   

The limitations linked to the choices and 

assumptions to implement the DTs models are 

discussed in this section. 

Only dry contacts were considered in this work to 

represent the worst operating conditions for a bush 

bearing system. Indeed, on helicopters, the loss of 

lubrication leads to run in dry contact conditions that 

alter the mechanical systems. 

In the case studied in this work, the run-out due to 

clearance is very small regarding the length of the 

bearings mounted on the frame so the effect of 

clearance were neglected. About the effects of friction 

not taken into account, another work [31] shows that 

friction influences only the location of wear and not the 

pressure distribution.  

To instrument the test bench, the choice was made 

to use a displacement sensor and a FFT analysis to 

collect data and nourish the DTs model. Another 

possibility was to use speed and force sensors to 

directly have the two input parameters (rotational 

speed and unbalanced mass) of the DT models 

implemented.  

 

5. Conclusion 

In this work, two DTs for monitoring wear were 

developed and compared. The aim of this work was to 

demonstrate the proof of concept of DT implemented 

diagnostic tool for bush bearing wear. The studied 

physical system is a bush bearing mounted on a test 

bench. This test bench was instrumented with 

temperature, acceleration and displacement sensors to 

monitor wear effects. Both DTs are fed by data 

recorded on a test bench to monitor the wear depth, the 

mean wear rate and the standard deviation of the wear 

rate. To detect wear faults, different scenarios of 

detection were identified, explained and applied to the 

two DTs.  

The first DT is a data-based model using SPC and 

the second DT is a physic-based model relying on a 

numerical model. The two implemented DTs detect 

abnormal wear but not in the same delay; the data-

based allows detects abnormal wear faster. The data-

based DT implemented in this work is easier to develop 

but it is limited to monitoring variable with linear 

behaviour. If the monitored variable is not linear, the 

use of higher order statistical tools are necessary (i.e. 

machine learning). The physic-based DT can predict 

wear evolution and detect abnormal behaviour by 

means of confidence intervals. The physic-based DT 

needs more time to be developed and it is adapted only 

to contact surfaces defined by analytical geometries.  

In future work, the models could be completed to 

be more realistic by limiting hypotheses taken to 

implement the model, to predict more variables 

(temperature, shaft displacement, etc.), to work with 

more wear cases (running-in, varying of speed, etc.) or 

even to use more complex input data (vibration signals 

with harmonics). This work is a contribution for new 

wear diagnostic tools. 
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 Data-based models Physic-based models 

 Machine learning SPC (from this work) FEM 
Numerical model (from 

this work) 

Studied case  
Remaining useful 

lifetime of ball bearing-

type contacts [14] 

Wear of bearings under 

dynamic loading 
Wear on an oscillatory 

pin joint [30] 
Wear of bearings under 

dynamic loading [21] 

Costs of 

implementation 

and calibration 

Training time of about 3 

min [14] 

Only need target values 

of the monitored 

variables 

Well adapted for 

complex geometries, 

need to calibrate wear 

coefficient on 

experimental data [30] 

Adapted only for 

analytical geometries, 

need to calibrate wear 

coefficient on 

experimental data [21] 
Computation 

time 
Not reported 

Less than 1 s for 7.8E5 

cycles 
3.4 h for 4.1E5 cycles 

[30] 
22 min for 4.5E6 cycles 

[21] 

Capability to 

be re-used 
Not reported 

Easy to adapt if the target 

values are known 

Need to be the same 

geometry to avoid re-

meshing 

Need to be same kind of 

loadings and geometry 

Capability to 

detect/predict 

wear 

Good prediction of the 

remaining useful life 

(Pearson correlation 

coefficient = 95.3%) [14] 

Early detection of 

abnormal behaviour 
Not reported 

Wear prediction and 

detection of abnormal 

behaviours 

Table 9. Comparison of wear DT models. 
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