
HAL Id: hal-04069842
https://hal.science/hal-04069842

Preprint submitted on 14 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Methods for Autonomous Ordinary
Differential Equations

Maxime Bouchereau, Philippe Chartier, Mohammed Lemou, Florian Méhats

To cite this version:
Maxime Bouchereau, Philippe Chartier, Mohammed Lemou, Florian Méhats. Machine Learning Meth-
ods for Autonomous Ordinary Differential Equations. 2023. �hal-04069842�

https://hal.science/hal-04069842
https://hal.archives-ouvertes.fr

Machine Learning Methods for Autonomous
Ordinary Differential Equations

Maxime Bouchereau1 Philippe Chartier3 Mohammed Lemou2

Florian Méhats4

1Université de Rennes
2Ravel technologies, on leave from INRIA

3Ravel technologies, on leave from Centre National de la recherche Scientifique (CNRS)
4Ravel technologies, on leave from Université de Rennes

April 14, 2023

Abstract

Ordinary Differential Equations are generally too complex to be solved analytically. Approxi-
mations thereof can be obtained by general purpose numerical methods. However, even though
accurate schemes have been developed, they remain computationally expensive: In this paper,
we resort to the theory of modified equations in order to obtain "on the fly" cheap numerical
approximations. The recipe consists in approximating, prior to that, the modified field asso-
ciated to the modified equation by neural networks. Elementary convergence results are then
established and the efficiency of the technique is demonstrated on experiments.

Keywords: modified equation, ordinary differential equation, neural network, numerical method,
convergence analysis.

1 Introduction
Ordinary Differential Equations are ubiquitous in the modelling of systems in domains of science
as diverse as biology, dynamics, fluid mechanics, quantum mechanics, thermodynamics or weather
forecasting. In most situations, these differential equations can not be solved analytically and
necessitate the use of numerical methods so as to compute accurate approximations [14, 15].

Generally speaking, the aforementioned methods are the result of a trade-off between accuracy
and computational cost. In simple words, a small approximation error requires long computations.
Of course, there are various ways in which one may soften the computational constraints, e.g. by

1

raising the order, taking into account the structure of the problem or optimising the coefficients of
the method. Excellent numerical methods are abundant in the literature and we refer to reference
books [3, 5, 6, 14, 15, 19] for them.

In this paper, we choose to derive as much as possible prior information from the knowledge
of the vector field of the equation in order to accelerate the solving of the equation. This is thus a
two-step process: (i) first, generate data that will be used during the effective computation of the
approximate solution; (ii) second, compute, from an initial value, an approximation of the solution
"on the fly" as accurately as possible by using available pre-computed values. As such, the process
remains too vague to become practical: this is where the crucial ingredient of the technique comes
into play, that is to say modified equations.

The theory of modified equations has emerged in the context of ordinary differential equations
as a powerful tool (referred to as backward error analysis) to explain the excellent behaviour of
structure-preserving numerical methods [14]. More recently, modified fields have also been used
in a dual manner, as a technique to raise the order of any existing numerical method by twisting
appropriately the original vector field [3]. The idea is that, by adding ad-hoc perturbation terms to
the vector field and then solving the associated differential equation, one may compute higher-order
approximations. It can be indeed proved that, at least at a formal level, for any numerical method,
there exists a modified equation whose solution by the aforementioned method coincides with the
exact solution. The perturbation terms to be added may be obtained in analytical form as elementary
differentials involving various derivatives of the original vector field. Complete expansions are for
instance available with the help of representations by trees (known as B-series). However, computing
the corresponding expressions analytically would be an extremely tedious process and this is the
reason why the technique has remained confined to specific situations [8, 14, 16] of limited practical
interest.

The main idea of this work is thus to combine the theory of modified equations with machine
learning techniques and more precisely neural networks. Given a differential equation and a numer-
ical method, the ad-hoc perturbations of the vector field are first learnt by extensive simulations and
then approximated by inference from a neural network. Once this representation of the modified
vector field has been obtained, it is used to solve the original equation with the same numerical
method for any initial value prescribed in a learnt domain from the phase-space. The combined
computational work ids by far greater than for any usual reasonable numerical method. Neverthe-
less, if one omits the time spend to learn the perturbation, an accurate solution can be obtained very
cheaply as compared to well-established schemes such as those of Dormand & Prince [23].

1.1 Scope of the paper
The article is divided into two main sections: Section 2 is devoted to the exposition of the tech-
nique and its convergence analysis, while Section 3 presents numerical experiments illustrating the
performances and properties of the schemes we analysed.

Subsection 2.1 exposes the general strategy which is adopted. A specific structure of the neural
network is selected, in agreement with the structure of the modified field. Moreover, the details
of the machine leaning method for the learning of the modified field are given here, concerning
in particular the choice of the training data set and the calibration of the parameters of the neural
network (approximating the modified field via loss-minimization).

Subsection 2.2 establishes a convergence result for the numerical integration resulting from the

2

combined use of neural networks and classical schemes. The essential difference with standard
convergence results is reflected in the multiplicative constant of the local error which turns out to
be smaller than for a direct application to the original vector field. A special focus is put on explicit
Runge-Kutta methods in the same subsection, where more precise estimates are given.

Moreover, two specific schemes are studied in this subsection: the forward Euler method and
a Runge-Kutta method of order 2, which are two simple occurrences of explicit methods. A short
convergence analysis is undertaken for each of them, leading to improved bounds. The same
methods are then used for numerical experiments which illustrate two main contributions of this
work: (i) The modified field can be learnt efficiently through a neural network, as is illustrated in
3.1; (ii) The resulting numerical methods have far greater efficiency, as is illustrated on convergence
curves in Subsection 3.2. A comparison with the well-known DOPRI5 method in Subsection 3.3 is
particularly enlightening with this respect.

1.2 Related work
The link between differential equations and machine learning has been already explored in several
publications. Two approaches are prominent. On the one hand, the ODE vector field can be learnt
by the technique of MSE Loss, which can be applied to both ODEs or PDEs [25]. Let us notice
also a paper of Burton et al. [4] which proposes symbolic regression for the learning of complex
dynamical systems. On the other hand, the ODE vector field can be learnt by statistical methods.
for instance, Expectation-Maximization is used in a paper of Nguyen et al. [21], while a paper of
Raissi et al. [24] proposes Gaussian processes for linear differential equations.

Links with modified equations. Links between machine learning and modified equations have
been established more recently, e.g. in the paper [27] where the theory of modified equation is used
fora rigorous analysis. Offen et al. [22] consider numerical methods for Hamiltonian ODEs. The
methods used therein are statistical methods, namely Gaussian processes.

Structure of Neural Networks. In order to preserve geometric properties, specific neural
networks, adapted to the structure of the differential equations under consideration have been
developed. A first example are Hamiltonian equations for which Hamiltonian neural networks
have been developed (see [10] or [18] where irregular time observed data can be used). A second
example are Poisson systems for which Jin et al. [17] developed Poisson neural networks. Another
example of specific ODEs is studied in another recent paper [28], where VPNets are used to learn
the volume-preserving flows.

ODEs methods for Neural Networks. In the same way as neural networks are used to solve
ODEs, the reciprocal strategy can be pursued: neural networks can indeed be modelled by ODEs and
their properties deduced from the corresponding ODE properties. For instance, Lu et al. [20] have
developed new neural networks which are discretizations of ODEs by various numerical methods
and Haber et al. [13] have developed new structures of neural networks depending on the stability
properties of the ODEs. Finally, Chen et al. [9] have derived new optimization methods of the loss
function from the properties of the corresponding ODEs (the neural network is here again obtained
through the discretization of the ODE).

Approximation by neural networks. In order to properly approximate functions by neural
networks, error estimates have been established. Anastassiou [1] stated rates of convergence for
approximations of functions by networks, according to the number of parameters and the dimension.
By considering neural network spaces as functional spaces, Gribonval et al. [12] have obtained

3

inclusions of theses spaces in Besov or Lebesgue spaces, according to the number of parameters and
a given rate of convergence. In a separate work, Bach [2] has given bounds on the approximation
error in a Hilbertian setting. Finally, a problem of approximation [7] which is underlined is the
curse of dimensionality, where high-dimensional vector fields are approximated with a slower rate
of convergence than low-dimensional vector fields, i.e. for high dimensions, more parameters and
more data will be required in order to get a satisfying learning.

2 Improving the accuracy of numerical methods with machine
learning

Consider an autonomous ordinary differential equation of the form{
¤𝑦(𝑡) = 𝑓 (𝑦(𝑡)) ∈ R𝑑 , 𝑡 ∈ [0, 𝑇]
𝑦(0) = 𝑦0

,

where 𝑓 : R𝑑 → R𝑑 is assumed to be smooth enough. By Cauchy-Lipschitz theorem, we have
existence and uniqueness of a solution for any given initial value 𝑦0 ∈ R𝑑 . We wish to approximate
the solution over [0, 𝑇] at times 𝑡𝑛 = 𝑛ℎ, 0 ⩽ 𝑛 ⩽ 𝑁 , where ℎ = 𝑇

𝑁
is the time-step and 𝑁 is the

number of discretization points.

2.1 General strategy
As explained in the Introduction section, we shall approximate the modified vector field with the
help of a neural network.

2.1.1 Modified field

Let us consider Φ 𝑓

ℎ
(·) the numerical flow associated to a given numerical method (ℎ is the time-step

of the method) and to the vector field 𝑓 , and assume that it is of order 𝑝, in the sense that1

𝑀𝑎𝑥
0⩽𝑛⩽𝑁

���(Φ 𝑓

ℎ

)𝑛
(𝑦0) − 𝜑 𝑓𝑛ℎ (𝑦0)

��� ⩽ 𝐶ℎ𝑝 (1)

for some constants 𝐶 > 0. If we modify the field 𝑓 used in Φℎ, i.e. if we apply the numerical
flow Φℎ with the modified field 𝑓ℎ instead of 𝑓 , we may obtain a higher-order approximation. In
fact, the theory of modified equations states that it is possible to construct 𝑓ℎ as a series of powers
of ℎ multiplied by appropriately chosen functions (at least as a formal series), in such a way that
(Φ 𝑓ℎ

ℎ
)𝑛 (𝑦0) coincides exactly with 𝑦(𝑡𝑛). The structure of this modified field writes (see [14])

𝑓ℎ (𝑦) = 𝑓 (𝑦) + ℎ𝑝
+∞∑︁
𝑗=1

ℎ 𝑗−1 𝑓 [𝑗] (𝑦) = 𝑓 (𝑦) + ℎ𝑝
𝑘−1∑︁
𝑗=1

ℎ 𝑗−1 𝑓 [𝑗] (𝑦) + ℎ𝑘+𝑝−1𝑅(𝑦, ℎ) (2)

1Here and in the sequel, | · | denotes a norm on R𝑑 .

4

where the coefficient-functions 𝑓 [𝑗] are built upon derivatives of 𝑓 . It can be shown rigorously that
the truncation of this formal series (2) obtained by neglecting the O

(
ℎ𝑘+𝑝−1)-terms, leads to

(Φ 𝑓ℎ
ℎ
)𝑛 (𝑦0) = 𝜑 𝑓𝑛ℎ (𝑦0) + O

(
ℎ𝑘+𝑝−1

)
where 𝑘 denotes the number of terms kept in 𝑓ℎ.

2.1.2 Machine learning methods

The main idea of this paper consists in approximating the modified field 𝑓ℎ by a neural network
approximation 𝑓𝑎𝑝𝑝 (·, ℎ) whose structure mimics the structure of the theoretical modified field (2).
More precisely, we shall approximate separately each function 𝑓 [𝑗] in (2) with a neural network.
As could be anticipated, the truncation of (2) will be echoed by a similar truncation

𝑓𝑎𝑝𝑝 (𝑦, ℎ) = 𝑓 (𝑦) + ℎ𝑝
𝑁𝑡−1∑︁
𝑗=1

ℎ 𝑗−1 𝑓 𝑗 (𝑦) + ℎ𝑁𝑡+𝑝−1𝑅𝑎 (𝑦, ℎ), (3)

where 𝑓𝑖, for 1 ⩽ 𝑖 ⩽ 𝑁𝑡 − 1, and 𝑅𝑎, are Multi Layer Perceptrons. An obvious advantage of this
choice is that the corresponding numerical method remains consistent. Let us further notice that
learning the perturbation in this way is also well-adapted to the situations where the original vector
field possesses a specific structure [10, 17, 18, 25, 28].

The complete numerical procedure can be decomposed into three main steps : Firstly, data
are collected by simulating very accurately the exact flow at various points of the domain. A high
number of simulations and a high accuracy are prerequisite for a good approximation of the modified
field. Secondly, the different neural networks are trained separately by minimising a prescribed
Loss-function. Eventually, given an initial data 𝑦0, an approximation of the exact solution is obtained
by applying the same numerical scheme as the one used for the training to the field 𝑓𝑎𝑝𝑝. In more
details, we follow the three stages:

1. Construction of the data set: 𝐾 initial data 𝑦 (𝑘)0 are randomly selected into a compact set
Ω ⊂ R𝑑 (where we wish to simulate the solution) with uniform distribution. Then, for all
0 ⩽ 𝑘 ⩽ 𝐾 − 1, we compute a very accurate approximation of the the exact flow at times ℎ(𝑘)

with initial condition 𝑦 (𝑘)0 , denoted 𝑦 (𝑘)1 . Time steps ℎ(𝑘) are selected in the domain [ℎ−, ℎ+]
(we actually pick up the value log ℎ(𝑘) randomly in the domain [log ℎ−, log ℎ+] with uniform
distribution).

2. Training of the neural networks: We minimize the Mean Squared Error (MSE), denoted
𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛, which measures the difference between predicted data 𝑦̂ (𝑘,ℓ)1 and “exact data” 𝑦 (𝑘,ℓ)1
by computing the optimal NN’s parameters over 𝐾0 data (where 1 ⩽ 𝐾0 ⩽ 𝐾 −1) by resorting
to a gradient method:

𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛 =
1
𝐾0

𝐾0−1∑︁
𝑘=0

1
ℎ(𝑘)2𝑝+2

���Φ 𝑓𝑎𝑝𝑝 (·,ℎ (𝑘))
ℎ (𝑘)

(
𝑦
(𝑘)
0

)︸ ︷︷ ︸
=𝑦1

(𝑘)

− 𝜑 𝑓
ℎ (𝑘)

(
𝑦
(𝑘)
0

)︸ ︷︷ ︸
=𝑦

(𝑘)
1

���2 (4)

5

At the same time, we compute the value of another MSE, denoted 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡 , which measures
the difference between predicted data 𝑦̂ (𝑘,ℓ)1 and “exact data” 𝑦 (𝑘,ℓ)1 for a subset of the initial
values which have not been used to train the NNs. The objective of this step is to estimate the
performance of the training for "unknown" initial values :

𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡 =
1

𝐾 − 𝐾0

𝐾−1∑︁
𝑘=𝐾0

1
ℎ(𝑘)2𝑝+2

���Φ 𝑓𝑎𝑝𝑝 (·,ℎ (𝑘))
ℎ (𝑘)

(
𝑦
(𝑘)
0

)
− 𝜑 𝑓

ℎ (𝑘)

(
𝑦
(𝑘)
0

) ���2 (5)

If 𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡 exhibit the same decay pattern, one considers that there is no
overfitting, that is to say that the neural network model does not fit exactly against its training
data and remains able to perform accurately against unseen data, which is its main purpose.

3. Numerical approximation: At the end of the training, an accurate approximation 𝑓𝑎𝑝𝑝 (·, ℎ)
of 𝑓ℎ is available. It is then used to compute the successive values of (Φ 𝑓𝑎𝑝𝑝 (·,ℎ)

ℎ
)𝑛 (𝑦0) for

𝑛 = 0, . . . , 𝑁 .

2.2 Error analysis
In this subsection, we analyse the error resulting from the procedure described in previous Subsec-
tion. More specifically, we state estimates of the global error for any standard numerical method.

Theorem 1. Let us denote Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

, the flow of a given numerical scheme Φℎ of order 𝑝, applied
to the modified field 𝑓𝑎𝑝𝑝 (·, ℎ) and let us consider the global error

𝑒𝑛 :=
(
Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

)𝑛
(𝑦0) −

(
𝜑
𝑓

ℎ

)𝑛
(𝑦0), (6)

at times 𝑡𝑛 = 𝑛ℎ for 0 ⩽ 𝑛 ⩽ 𝑁 . Denoting the learning error by

𝛿 := Max
(𝑦,ℎ)∈Ω×[ℎ− ,ℎ+]

�� 𝑓ℎ (𝑦, ℎ) − 𝑓𝑎𝑝𝑝 (𝑦, ℎ)
��

ℎ𝑝
(7)

and assuming that

(i) For any pair smooth vector fields 𝑓1 and 𝑓2, we have

∀0 ≤ ℎ ≤ ℎ+,
������Φ 𝑓1

ℎ
−Φ

𝑓2
ℎ

������
𝐿∞ (Ω)

⩽ 𝐶ℎ | | 𝑓1 − 𝑓2 | |𝐿∞ (Ω) (8)

for some positive constant 𝐶, independent of 𝑓1 and 𝑓2;

(ii) For any smooth vector field 𝑓 , there exists a constant 𝐿 > 0 such that

∀0 ≤ ℎ ≤ ℎ+, ∀(𝑦1, 𝑦2) ∈ Ω2,
���Φ 𝑓

ℎ
(𝑦1) −Φ

𝑓

ℎ
(𝑦2)

��� ⩽ (1 + 𝐿ℎ) |𝑦1 − 𝑦2 | . (9)

Then there exist two constants 𝐶̃, 𝐿̃ > 0 such that:

𝑀𝑎𝑥
0⩽𝑛⩽𝑁

|𝑒𝑛 | ⩽
𝐶𝛿ℎ𝑝

𝐿̃

(
𝑒 𝐿̃𝑇 − 1

)
(10)

6

Proof. The arguments of the proof are completely standard ans thus omitted. ■

Remarks. (i) The vector fields 𝑓 and 𝑓ℎ are smooth, respectively by assumption and by construc-
tion. As for 𝑓𝑎𝑝𝑝 (·, ℎ), it is smooth as well given that it is obtained through the composition of
affine functions 𝐴1, · · · , 𝐴𝐿+1 and nonlinear functions Σ1, · · · , Σ𝐿 (the so-called activation
functions). The output of the NN thus appears to be of the form 𝐴𝐿+1 ◦ Σ𝐿 ◦ 𝐴𝐿 ◦ · · ·Σ1 ◦ 𝐴1
(for 𝐿 layers). Hence, if the activation functions are smooth, then so is 𝑓𝑎𝑝𝑝 (·, ℎ). This is the
case for instance if the Σ𝑖’s are the hyperbolic tangent functions.

(ii) Assumption (8) is straightforwardly satisfied for all known consistent methods.

(iii) A similar error estimate holds for a variable step-size implementation of the numerical
method Φ: if we indeed use the sequence of steps 0 ≤ ℎ 𝑗 ≤ ℎ+, then 𝑇 = ℎ0 + · · · , +ℎ𝑁−1 and
𝑦∗
𝑛+1 = Φ

𝑓𝑎𝑝𝑝 (·,ℎ𝑛)
ℎ𝑛

(
𝑦∗𝑛
)
, then there exist 𝐶̃, 𝐿̃ > 0 such that:

𝑀𝑎𝑥
0⩽𝑛⩽𝑁

���Φ 𝑓𝑎𝑝𝑝 (·,ℎ𝑛−1)
ℎ𝑛−1

◦ . . . ◦Φ 𝑓𝑎𝑝𝑝 (·,ℎ0)
ℎ0

(𝑦0) − 𝜑 𝑓ℎ𝑛−1
◦ . . . ◦ 𝜑 𝑓

ℎ0
(𝑦0)

��� ⩽ 𝐶̃𝛿ℎ𝑝

𝐿̃

(
𝑒 𝐿̃𝑇 − 1

)
,

where ℎ = Max
0⩽ 𝑗⩽𝑁−1

ℎ 𝑗 .

We now focus on numerical schemes belonging to the class of explicit Runge-Kutta methods,
as this allows to specify some of the constants of previous Theorem. Following Remark (i), we
shall assume that 𝑓𝑎𝑝𝑝 (·, ℎ) is well-defined and smooth on the compact set Ω × [𝑡−, 𝑡+], so that it is
Lipschitz with Lipschitz constant

𝜆 := 𝑀𝑎𝑥
ℎ∈𝐻

����𝑑𝑓𝑎𝑝𝑝 (·, ℎ)����𝐿∞ (Ω) . (11)

Corollary 1. Suppose that the numerical scheme Φℎ from Theorem 1 is the Runge-Kutta method
with Butcher tableau (𝐴, 𝑏) where 𝐴 = (𝑎𝑖, 𝑗)1⩽ 𝑗⩽𝑖⩽𝑠 ∈ M𝑠 (R) and 𝑏 = (𝑏 𝑗)1⩽ 𝑗⩽𝑠 ∈ R𝑠. Assume
further that 𝐴 is strictly lower triangular, so that the scheme is explicit, and that it is of order 𝑝.
Then inequality (11) of Theorem 1 holds with 𝐶̃ = 𝛼 and 𝐿̃ = 𝛼𝜆 where

𝛼 = | |𝑏 | |1
(
1 + 𝜆ℎ+ | |𝐴| |∞ 𝑒𝜆ℎ+ | |𝐴| |∞

)
.

Remarks. 1. As the approximation 𝑓𝑎𝑝𝑝 (·, ℎ) of 𝑓ℎ contains an O(ℎ𝑝)-error term, the order
of the new numerical procedure coincides with the order of the underlying scheme Φℎ.
However, as soon as the NN becomes large, 𝛿 is small enough for the combined procedure to
be significantly more accurate then the simple application of Φℎ.

2. For 𝑁𝑡 = 1, with 1 hidden layer, we have density of MLP’s in C1(Ω) for the Sobolev norm
𝑊1,∞ [18]. If we have Max

ℎ∈𝐻

������ | 𝑓ℎ (·)− 𝑓𝑎𝑝𝑝 (·,ℎ) |ℎ𝑝

������
𝑊1,∞ (Ω)

⩽ 𝛿, then we get

𝜆 ⩽ 𝑀𝑎𝑥
ℎ∈𝐻

����𝑑 𝑓ℎ����𝐿∞ (Ω) + 𝛿ℎ
𝑝
+ . (12)

3. Error estimates for the Forward Euler and the sol-called RK2 methods may be slightly
improved. One has indeed

𝑀𝑎𝑥
0⩽𝑛⩽𝑁

��𝑒∗𝑛�� ⩽ 𝛿ℎ
𝜆

(
𝑒𝜆𝑇 − 1

)
and 𝑀𝑎𝑥

0⩽𝑛⩽𝑁

��𝑒∗𝑛�� ⩽ 𝛿ℎ2

𝜆

(
𝑒
𝜆

(
1+ 𝜆ℎ+2

)
𝑇 − 1

)
,

for respectively Forward Euler and RK2 methods.

7

2.3 An alternative method for parallel training
In this subsection, we show how to learn the modified field in an alternative way. The main idea
consists in training separately each term (say for instance of the modified field for the forward Euler
method), by creating different data sets for different time steps ℎ1 < · · · < ℎ𝑁ℎ :

𝑦 𝑗 = 𝑦0 + ℎ 𝑗 𝑓 (𝑦0) + ℎ2
𝑗 𝑓

[1] (𝑦0) + · · · + ℎ𝑁𝑡
𝑗
𝑓 [𝑁𝑡−1] (𝑦0) + ℎ𝑁𝑡+1

𝑗
𝑅(𝑦0, ℎ 𝑗). (13)

Note that in contrast with previous method, the step-size is not chosen at random for each initial
value. We then obtain a linear system which can be solved by using the generalized inverse of a
matrix. The solution of this linear system encompasses the values of 𝑓 [1] (𝑦0), ..., 𝑓 [𝑁𝑡−1] (𝑦0) and
𝑅(𝑦0, ℎ1), ..., 𝑅(𝑦0, ℎ𝑁ℎ) which correspond to data usable for learning each term of the modified
field separately.

The main advantages of this method are a shorter training-time (at least on a parallel machine),
thus allowing for a larger number of data, and a smaller computational time (again on a parallel
machine) when it comes to obtaining the numerical solution from trained values.

3 Numerical experiments
In order to illustrate our theoretical results, we have tested the method given in Section 2.1 for two
simple dynamical systems used from simple physics:

1. The Non-linear Pendulum: This system describes the movement of a pendulum under the
influence of gravity. It is governed by the equations{

¤𝑦1 = − sin(𝑦2)
¤𝑦2 = 𝑦1

,

where 𝑦2 denotes the angle of the pendulum with respect to the vertical and 𝑦1 its angular
velocity. Note that the system is Hamiltonian, see [10, 14, 18]. Parameters are given in
Appendix B.2.1 for the forward Euler method, Appendix B.2.3 for the Runge-Kutta 2 method
and Appendix B.2.4 for the midpoint rule.

2. The Rigid Body system: This is a three-dimensional system which describes the angular
rotation of a solid in the physical space


¤𝑦1 =

(
1
𝐼3
− 1

𝐼2

)
𝑦2𝑦3

¤𝑦2 =

(
1
𝐼1
− 1

𝐼3

)
𝑦1𝑦3

¤𝑦3 =

(
1
𝐼2
− 1

𝐼1

)
𝑦1𝑦2

,

where 𝑦1, 𝑦2 and 𝑦3 denote the angular momenta, and 𝐼1, 𝐼2 and 𝐼3 the momenta of inertia
[14] (we take here 𝐼1 = 1, 𝐼2 = 2, 𝐼3 = 3). It possesses two invariants, the so-called
Casimir 𝐶 (𝑦) = 1

2 |𝑦 |
2 and the energy 𝐻 (𝑦) = 1

2

(
𝑦2

1
𝐼1
+ 𝑦2

2
𝐼2
+ 𝑦2

3
𝐼3

)
. Hence, the solution lies at the

8

intersection of the sphere |𝑦 |2 = |𝑦(0) |2 and of the ellipsoïd 𝑦2
1
𝐼1
+ 𝑦2

2
𝐼2
+ 𝑦2

3
𝐼3

= 2𝐻 (𝑦(0)). The
domain Ω used for training is thus chosen accordingly. Parameters are given in Appendix
B.2.2.

For the Forward Euler and RK2 methods, the modified field (2) can be computed by recursive
formulae based on various derivatives of 𝑓 , see for instance [8, 14]. It is represented by a series whose
general term 𝑓 [𝑗] has an explicit -though complicated- expression, which can be compared with its
numerical counterpart, obtained by learning it from the data set. For all 𝑦 ∈ R𝑑 , 1 ⩽ 𝑗 ⩽ 𝑘 − 1, we
have on the one hand

𝑓 [1] (𝑦) =
1
2
𝑑𝑓 (𝑦) 𝑓 (𝑦) (14)

𝑓 [𝑗] (𝑦) =
1
𝑗 + 1

𝑑𝑓 [𝑗−1] (𝑦) 𝑓 (𝑦) (15)

for the Forward Euler method, and on the other hand

𝑓 [1] (𝑦) =
1
24
𝑑 (𝑑𝑓 · 𝑓) (𝑦) 𝑓 (𝑦) + 1

8
𝑑𝑓 (𝑦)2 𝑓 (𝑦) (16)

𝑓 [2] (𝑦) =
1
24
𝑑 (𝑑 (𝑑𝑓 · 𝑓) · 𝑓) 𝑓 (𝑦) − 1

2
𝑑𝑓 (𝑦) 𝑓 [1] (𝑦) − 1

2
𝑑𝑓 [1] (𝑦) 𝑓 (𝑦). (17)

for the Runge-Kutta 2 method. Formulas associated to the midpoint method are given in [8].
Truncating the formal power series (2) then gives an approximation of the theoretical modified
field, which serves as a reference

𝑓ℎ (𝑦) = 𝑓 (𝑦) + ℎ𝑝
𝑘−1∑︁
𝑗=1

ℎ 𝑗−1 𝑓 [𝑗] (𝑦) + O
(
ℎ𝑘+𝑝−1

)
. (18)

Here, 𝑝 is the order of the numerical method under consideration.

3.1 Approximation of the modified field
In this subsection, we study the approximation error between the learned modified field (3) and the
theoretical modified field (2) for the nonlinear Pendulum. We observe the learning error w.r.t. both
space and time step variables. More precisely, we plot the function

𝑔𝑘ℎ : 𝑥 ↦→ 1
ℎ𝑝

��� 𝑓ℎ𝑘 (𝑥) − 𝑓𝑎𝑝𝑝 (𝑥, ℎ)
��� (19)

for 𝑘 = 4 over the domain Ω = [−2, 2]2 in order to study the learning error in space, where the
O-term in 𝑓ℎ (𝑦) is simply neglected. We furthermore represent Max

Ω
𝑔𝑘
ℎ

for several values of time
steps ℎ, in order to study the learning error in function of the the time step. Note that we clearly get
the expected order of convergence of 𝑓𝑎𝑝𝑝 (·, ℎ) towards the modified field 𝑓ℎ, with the exception of
a plateau for small values of ℎ .

Figures 1,2 and 3 show that the error 𝑔4
ℎ

is globally constant at the center of the domain and
grows near its boundaries (see [10] where a similar behaviour is observed).

9

Altogether, these experiments confirm that the modified field can be appropriately learned with
our neural network.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y 2

Error between perturbations - theoretical and learned - Forward Euler

1.00e-04

1.00e-04

1.00e-04
1.00e-04

1.00e-04

1.00e-04

2.00e-04

2.
00

e-
04

2.00e-04

2.00e-04

2.00e-04

3.
00

e-
04

3.00e-04

3.00e-04

3.00e-04

4.00e-04

4.00e-04

4.0
0e

-04

5.
00

e-
04

10 1 100
10 5

10 4

10 3

10 2

10 1

100

101

Error between learned field and modified field with Forward Euler

h h
h h2

h h3

h h4

Order 1
Order 2
Order 3
Order 4

Figure 1: Forward Euler method. Left: Difference between 𝑓ℎ
4 and 𝑓𝑎𝑝𝑝 (·, ℎ) for ℎ = 0.1. Right:

Error between 𝑓ℎ
𝑘 and 𝑓𝑎𝑝𝑝 (·, ℎ) for 1 ⩽ 𝑘 ⩽ 4.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y 2

Error between perturbations - theoretical and learned - RK2

1.00e-03 1.00e-03

2.00e-03

2.00e-03

3.
00

e-
03

3.
00

e-
03

4.00e-03

4.00e-03

5.00e-03

5.00e-03

6.00e-03

6.00e-03

7.00e-03

7.00e-03

8.00e-03

8.00e-03

9.00e-03

9.00e-03

1.00e-02

1.00e-02

1.10e-02

1.10e-02

1.20e-02

1.20e-02

1.30e-02

1.30e-02

1.40e-02

1.40e-02

1.
50

e-
02

1.
50

e-
02

10 1 100

10 4

10 3

10 2

10 1

100

101

Error between learned field and modified field with RK2
h h2

h h3

h h4

Order 2
Order 3
Order 4

Figure 2: Runge-Kutta 2 method. Left: Difference between 𝑓ℎ
4 and 𝑓𝑎𝑝𝑝 (·, ℎ) for ℎ = 0.1. Right:

Error between 𝑓ℎ
𝑘 and 𝑓𝑎𝑝𝑝 (·, ℎ) for 1 ⩽ 𝑘 ⩽ 4.

10

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y 2

Error between perturbations - theoretical and learned - MidPoint

8.00e-05

8.00e-05

8.00e-05

8.00e-05

8.00e-05

1.
60

e-
04

1.60e-04

1.60e-04

1.60e-04

1.60e-04

2.
40

e-
04

2.40e-04

2.40e-043.20e-04

10 1

10 6

10 5

10 4

10 3

10 2

Error between learned field and modified field for MidPoint
h Ch2

h Ch4

Order 2
Order 4

Figure 3: Midpoint method. Left: Difference between 𝑓ℎ
4 and 𝑓𝑎𝑝𝑝 (·, ℎ) for ℎ = 0.05. Right: Error

between 𝑓ℎ
𝑘 and 𝑓𝑎𝑝𝑝 (·, ℎ) for 1 ⩽ 𝑘 ⩽ 4. Note that owing to the structure of the modified field for

midpoint method (see [8, 14]), terms for odd powers of ℎ vanish.

3.2 Loss decay and Integration of ODE’s
Now, in order to compare, for a given method, the integration of a dynamical system with the
original field and with the learned modified field, we will solve the nonlinear Pendulum with the
Forward Euler, Runge-Kutta 2 and midpoint methods and the Rigid Body system with the Forward
Euler method. However, prior to that, we study the decays of the 𝐿𝑜𝑠𝑠-functions for the training
and testing data sets (𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡). Their similarity is a good indication that there is no
overfitting (the size of the training data set is thus appropriately estimated). As the MSE 𝐿𝑜𝑠𝑠 is
used, it gives an idea of the value of the square of the learning error.

Figures 4, 5 and 6 show a more accurate numerical integration by using the corresponding
learned modified field 𝑓𝑎𝑝𝑝 (·, ℎ) than using 𝑓 . Moreover, exact flow and numerical flow with
𝑓𝑎𝑝𝑝 (·, ℎ) seem identical due to the small numerical error.

11

0 25 50 75 100 125 150 175 200
Epochs

10 7

10 6

Lo
ss

Evolution of the Loss function (MLP)

Losstrain

Losstest

4 2 0 2 4
y1

2

1

0

1

2

3

4
y 2

Trajectories

f
nh(y0)

(fapp
h)n(y0)

(f
h)n(y0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Lo
ca

l e
rro

r

Comparison of local errors

|(f
h)n(y0) f

nh(y0)|
|(fapp

h)n(y0) f
nh(y0)|

Figure 4: Comparison between 𝐿𝑜𝑠𝑠 decays (green: 𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛, red: 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡), trajectories (dashed
dark: exact flow, red: numerical flow with 𝑓 , green: numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) and local error
(blue: exact flow and numerical flow with 𝑓 , yellow: exact and numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) for
the nonlinear pendulum with Forward Euler method.

12

0 25 50 75 100 125 150 175 200
Epochs

10 7

10 6

10 5

Lo
ss

Evolution of the Loss function (MLP)

Losstrain

Losstest

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 2
Trajectories

f
nh(y0)

(fapp
h)n(y0)

(f
h)n(y0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

10 6

10 5

10 4

10 3

10 2

Lo
ca

l e
rro

r

Comparison of local errors

|(f
h)n(y0) f

nh(y0)|
|(fapp

h)n(y0) f
nh(y0)|

Figure 5: Comparison between 𝐿𝑜𝑠𝑠 decays (green: 𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛, red: 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡), trajectories (dashed
dark: exact flow, red: numerical flow with 𝑓 , green: numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) and local error
(blue: exact flow and numerical flow with 𝑓 , yellow: exact and numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) for
the nonlinear pendulum with Runge-Kutta 2 method.

13

0 25 50 75 100 125 150 175 200
Epochs

10 9

10 8

10 7

Lo
ss

Evolution of the Loss function (MLP)

Losstrain

Losstest

y1

0.4
0.2

0.0
0.2

0.4

y 20.5

0.0

0.5

y 3

0.70
0.75
0.80
0.85
0.90
0.95

Trajectories

f
nh(y0)

(fapp
h)n(y0)

(f
h)n(y0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

10 5

10 4

10 3

10 2

10 1

lo
ca

l e
rro

r

Comparison of local errors

|(f
h)n(y0) f

nh(y0)|
|(fapp

h)n(y0) f
nh(y0)|

Figure 6: Comparison between 𝐿𝑜𝑠𝑠 decays (green: 𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛, red: 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡), trajectories (dashed
dark: exact flow, red: numerical flow with 𝑓 , green: numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) and local error
(blue: exact flow and numerical flow with 𝑓 , yellow: exact and numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) for
the Rigid Body system with Forward Euler method.

As the midpoint method is a symmetric and symplectic method, it is known to preserve accu-
rately the geometric properties of the model. In order to evaluate the extent to which this feature
persists in our context, we simply plot the value of the Hamiltonian along the numerical solution
obtained from learned data. We test this method for the pendulum system, which is hamiltonian.
Figure 7 shows a smaller error for integration with 𝑓𝑎𝑝𝑝 (·, ℎ) by using the midpoint method than
integration with 𝑓 . Moreover, the hamiltonian function of the pendulum system, given by

𝐻 : 𝑦 ↦→ 1
2
𝑦2

1 + (1 − cos(𝑦2)) (20)

is preserved by the midpoint method with 𝑓𝑎𝑝𝑝 (·, ℎ) with smaller oscillations than midpoint
with 𝑓 . Preservation is better than DOPRI5 too, which is a non-symplectic method, as shown in
Figure 8.

14

0 25 50 75 100 125 150 175 200
Epochs

10 8

10 7

Lo
ss

Evolution of the Loss function (MLP)

Losstrain

Losstest

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
y1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 2
Trajectories

f
nh(y0)

(fapp
h)n(y0)

(f
h)n(y0)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

10 5

10 4

10 3

10 2

Lo
ca

l e
rro

r

Comparison of local errors

|(f
h)n(y0) f

nh(y0)|
|(fapp

h)n(y0) f
nh(y0)|

Figure 7: Comparison between 𝐿𝑜𝑠𝑠 decays (green: 𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑖𝑛, red: 𝐿𝑜𝑠𝑠𝑇𝑒𝑠𝑡), trajectories (dashed
dark: exact flow, red: numerical flow with 𝑓 , green: numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) and local error
(blue: exact flow and numerical flow with 𝑓 , yellow: exact and numerical flow with 𝑓𝑎𝑝𝑝 (·, ℎ)) for
the nonlinear pendulum with midpoint method.

15

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time

10 8

10 7

10 6

10 5

10 4

10 3

Er
ro

r f
or

 in
va

ria
nt

s

Error for Hamiltonian

MidPoint - fapp

MidPoint - f
DOPRI5 - f

Figure 8: Evolution of the error between Hamiltonian 𝐻 : 𝑦 ↦→ (1 − cos(𝑦2)) + 1
2 𝑦

2
1 over the

numerical flow and Hamiltonian at 𝑡 = 0, 𝐻 (𝑦0).

Eventually, we study the global error between the exact flow and the approximation obtained
from the original field, as well as the error between the exact flow and the numerical flow obtained
form the learned modified field. The errors are plot as functions of the step-size and the curves are
in perfect agreement with the estimates of previous theorems (for the Forward Euler, Runge-Kutta
2 and midpoint methods).

10 1 100

Time step

10 3

10 2

Gl
ob

al
 e

rro
r

Error between trajectories with Forward Euler
Forward Euler - fapp

10 1 100

Time step

10 5

10 4

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Error between trajectories RK2
RK2 - f
RK2 - fapp

Figure 9: Integration errors (green: integration with 𝑓 , red: integration with 𝑓𝑎𝑝𝑝 (·, ℎ)). Left:
Nonlinear Pendulum with Forward Euler. Right: Nonlinear Pendulum with Runge-Kutta 2.

16

10 1

Time step

10 5

10 4

10 3

10 2

10 1

Gl
ob

al
 e

rro
r

Error between trajectories MidPoint
MidPoint - f
MidPoint - fapp

1006 × 10 1 2 × 100

Time step

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Error between trajectories with Forward Euler
Forward Euler - f
Forward Euler - fapp

Figure 10: Integration errors (green: integration with 𝑓 , red: integration with 𝑓𝑎𝑝𝑝 (·, ℎ)). Left:
midpoint method for the nonlinear Pendulum. Right: Forward Euler method for the Rigid Body
System.

Note that the estimate of Theorem 1 is confirmed by Figures 9 and 10 , with a smaller multi-
plicative constant for the RK2 method.

3.3 Computational times for explicit methods
In this subsection, we plot efficiency curves (global error w.r.t. computational time). As the main
goal of this paper is to design cheaper and/or more accurate solvers, we shall compare our results
with the state-of-the-art Dormand & Prince methods [15].

Figures 11 and 12 show numerical errors for explicit methods (Forward Euler and Runge-Kutta
2) with 𝑓𝑎𝑝𝑝 (·, ℎ) can be smaller than numerical errors for DOPRI5 with 𝑓 , especially for large time
steps.

17

10 2 10 1

Computation time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100
Gl

ob
al

 e
rro

r
Computation time vs Error between trajectories

Forward Euler - fapp

DOPRI5 - f

10 2 10 1

Computation time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Computation time vs Error between trajectories
RK2 - f
RK2 - fapp

DOPRI5 - f

Figure 11: Comparison between computational time and integration error (red: numerical method
with 𝑓 , green: integration with 𝑓𝑎𝑝𝑝 (·, ℎ), yellow: integration with DOPRI5). Left: Nonlinear
Pendulum with Forward Euler. Right: Nonlinear Pendulum with Runge-Kutta 2.

10 2

Computation time (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Computation time vs Error between trajectories
Forward Euler - f
Forward Euler - fapp

DOPRI5 - f

Figure 12: Comparison between computational time and integration error (red: numerical method
with 𝑓 , green: integration with 𝑓𝑎𝑝𝑝 (·, ℎ), yellow: integration with DOPRI5) for Rigid Body system
with Forward Euler method.

Besides, we compare the integration error with the learned modified field and the integration
error using truncated modified field at the order 𝑘 𝑓ℎ

𝑘 . For the forward Euler method, use this
numerical method with 𝑓ℎ

𝑘 will give a numerical method of order 𝑘 , called modified Euler [10, 14].

18

10 2 10 1 100

Computation time (s)

10 5

10 4

10 3

10 2

10 1

100
Gl

ob
al

 e
rro

r
Computation time vs Global error - AI method vs modified field

Forward Euler - fapp

Forward Euler 0rder 2
Forward Euler 0rder 3
Forward Euler 0rder 4

10 3 10 2 10 1 100

Computation time (s)

10 4

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Computation time vs Global error - AI method vs modified field
Forward Euler - fapp

Forward Euler 0rder 1
Forward Euler 0rder 2
Forward Euler 0rder 3
Forward Euler 0rder 4

Figure 13: Computational time versus integration error for the Forward Euler method (red: with
𝑓 , yellow: with 𝑓ℎ

2, magenta: with 𝑓ℎ
3, cyan: with 𝑓ℎ

4, green: with 𝑓𝑎𝑝𝑝 (·, ℎ). Left: Nonlinear
Pendulum. Right: Rigid Body system.

Figure 13 shows for both systems that integration with 𝑓ℎ
𝑘 is more expensive in time or less

accurate that integration with 𝑓𝑎𝑝𝑝 (·, ℎ). Moreover, we always conserve an interesting integration
error whereas the other methods are not accurate at all for small computational time.

3.4 Evaluation of alternative method
In this subsection, a comparison between the two learning techniques is illustrated. For the com-
parison to be fair, we adapt the volume of data so that the training times are nearly identical.

Figure 14 shows that both methods are able to generalize for smaller time steps than those
used for training. In the two cases, traditional and alternative method with parallel training give
approximately identical results

19

0 2 4 6 8 10
t

10 5

10 4

10 3

10 2

10 1

100

Lo
ca

l e
rro

r
Comparison of local errors

Forward Euler
Unic learning
Separate learning
Separate and parallel learning

10 4 10 3 10 2 10 1 100

h

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Gl
ob

al
 e

rro
r

Comparison of global errors
Forward Euler
Unic learning
Separate learning
Separate and parallel learning

Figure 14: Comparison between forward Euler, traditional and alternative method for simple
pendulum. Left: Comparison of local errors. Right: Comparison of integration errors.

4 Conclusions
The numerical experiments presented in this paper demonstrate that learning the modified vector
field is very beneficial in terms of efficiency. Clearly, the training of the network is an overload
which should be considered separately for real-time applications. Another interesting outcome of
our study is the fact that even when explicit formulae of the various terms of the modified field are
available, it is advantageous to use its learned counterpart. Eventually, even though the technique
used here is not fitted to situations where invariants should be conserved (learning directly the
modified Hamiltonian would definitely be a better option), the learned vector field approximately
retains the properties of its exact counterpart. It remains to be emphasized that the problems that we
solved here are of small dimension and further studies with larges systems (for instance originating
from PDEs) are needed.

Acknoledgements
The authors of this paper would like thank Pierre Navaro for his advises in the implementation
aspects.

Bibliography
[1] Anastassiou, G. Quantitative approximations. Chapman and Hall/CRC, 2000.

[2] Bach, F. Learning Theory from First Principles. Draft of a book, version of Sept, 6, 2021.

[3] Beyn, W. J., Dieci, L., Guglielmi, N., Hairer, E., Sanz-Serna, J. M., Zennaro, M. Current
Challenges in Stability Issues for Numerical Differential Equations. Cetraro: Springer, 2011.

20

[4] Brunton, S. L., Proctor, J. L., Kutz, J. N. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15), 3932-3937, 2016.

[5] Butcher, J. C. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

[6] Casas, F., Martínez, V. (Eds.). Advances in Differential Equations and Applications. Springer
International Publishing, 2014.

[7] Champagne, J.E. Les réseaux de neurones multi-couches, le comment et le pourquoi, Notes et
commentaires au sujet des conférences de S. Mallat du Collège de France, 2019.

[8] Chartier, P., Hairer, E., Vilmart, G. Numerical integrators based on modified differential
equations. Mathematics of computation, 76(260), 1941-1953, 2007.

[9] Chen, R. T., Rubanova, Y., Bettencourt, J., Duvenaud, D. K. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

[10] David, M., Méhats, F. Symplectic learning for Hamiltonian neural networks. arXiv preprint
arXiv:2106.11753, 2021.

[11] De Ryck, T., Lanthaler, S., & Mishra, S. (2021). On the approximation of functions by tanh
neural networks. Neural Networks, 143, 732-750.

[12] Gribonval, R., Kutyniok, G., Nielsen, M., Voigtlaender, F. Approximation spaces of deep
neural networks. Constructive approximation, 55(1), 259-367, 2022.

[13] Haber, E., Ruthotto, L. Stable architectures for deep neural networks. Inverse problems, 34(1),
014004, 2017.

[14] Hairer, E., Lubich, C., Wanner, G. Geometric Numerical integration: structure-preserving
algorithms for ordinary differential equations. Springer, 2006.

[15] Hairer, E., Nørsett, S. P., Wanner, G. Solving ordinary differential equations. 1, Nonstiff
problems. Springer-Vlg, 1993.

[16] Hairer, E., Vilmart, G. Preprocessed discrete Moser–Veselov algorithm for the full dynamics
of a rigid body. Journal of Physics A: Mathematical and General, 39(42), 13225, 2006.

[17] Jin, P., Zhang, Z., Kevrekidis, I. G., Karniadakis, G. E. Learning Poisson systems and tra-
jectories of autonomous systems via Poisson neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[18] Jin, P., Zhang, Z., Zhu, A., Tang, Y., Karniadakis, G. E. SympNets: Intrinsic structure-
preserving symplectic networks for identifying Hamiltonian systems. Neural Networks, 132,
166-179, 2020.

[19] Leimkuhler, B., Reich, S. Simulating hamiltonian dynamics (No. 14). Cambridge university
press, 2004.

21

[20] Lu, Y., Zhong, A., Li, Q., Dong, B. Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations. In International Conference on Machine
Learning (pp. 3276-3285). PMLR, July 2018.

[21] Nguyen, D., Ouala, S., Drumetz, L., Fablet, R. Em-like learning chaotic dynamics from noisy
and partial observations. arXiv preprint arXiv:1903.10335, 2019.

[22] Offen, C., Ober-Blöbaum, S. Symplectic integration of learned Hamiltonian systems. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 32(1), 013122, 2022.

[23] Prince, P. J., Dormand, J. R. High order embedded Runge-Kutta formulae. Journal of compu-
tational and applied mathematics, 7(1), 67-75, 1981.

[24] Raissi, M., Perdikaris, P., Karniadakis, G. E. Machine learning of linear differential equations
using Gaussian processes. Journal of Computational Physics, 348, 683-693, 2017.

[25] Raissi, M., Perdikaris, P., Karniadakis, G. E. Multistep neural networks for data-driven dis-
covery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

[26] Regazzoni, F., Dede, L., Quarteroni, A. Machine learning for fast and reliable solution of
time-dependent differential equations. Journal of Computational physics, 397, 108852, 2019.

[27] Zhu, A., Jin, P., Zhu, B., Tang, Y. On Numerical Integration in Neural Ordinary Differential
Equations. arXiv preprint arXiv:2206.07335, 2022.

[28] Zhu, A., Zhu, B., Zhang, J., Tang, Y., Liu, J. VPNets: Volume-preserving neural networks for
learning source-free dynamics. arXiv preprint arXiv:2204.13843, 2022.

A Proof of Theorem 1
Let us consider, for time step ℎ and for all 𝑛 ∈ [[0, 𝑁]] (where ℎ = 𝑇/𝑁), the numerical scheme

𝑦∗0 = 𝑦0, 𝑦∗𝑛+1 = Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(
𝑦∗𝑛
)

The consistency error is of the form

𝜀∗𝑛 := 𝑦(𝑡𝑛+1) −Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(𝑦(𝑡𝑛))

= 𝑦(𝑡𝑛+1) −Φ
𝑓ℎ
ℎ
(𝑦(𝑡𝑛))︸ ︷︷ ︸

=0 (Modified field)

+Φ
𝑓ℎ
ℎ
(𝑦(𝑡𝑛)) −Φ

𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(𝑦(𝑡𝑛))

= Φ
𝑓ℎ
ℎ
(𝑦(𝑡𝑛)) −Φ

𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(𝑦(𝑡𝑛))

so that, taking (7) and (8) into account, we have��𝜀∗𝑛�� ⩽ 𝐶𝛿ℎ𝑝+1.

Upon using (6), (21) and (21), the local truncation error can then be written as

𝑒∗𝑛+1 = Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(𝑦∗𝑛) −Φ
𝑓𝑎𝑝𝑝 (·,ℎ)
ℎ

(𝑦(𝑡𝑛)) − 𝜀∗𝑛,

22

and from (9), we get��𝑒∗𝑛+1
�� ⩽ (

1 + 𝐿ℎ
) ��𝑒∗𝑛�� + ��𝜀∗𝑛�� ⩽ (

1 + 𝐿ℎ
) ��𝑒∗𝑛�� + 𝐶𝛿ℎ𝑝+1

where 𝐿 := 𝑀𝑎𝑥
ℎ∈[ℎ− ,ℎ+]

𝐿 𝑓𝑎𝑝𝑝 (·,ℎ) . A discrete Grönwall lemma then leads to

��𝑒∗𝑛�� ⩽ 𝐶𝛿ℎ𝑝+1
𝑛−1∑︁
𝑗=0
𝑒𝐿 (𝑛− 𝑗−1)ℎ ⩽ 𝐶𝛿ℎ𝑝+1 𝑒

𝐿𝑛ℎ − 1
𝑒𝐿ℎ − 1

⩽ 𝐶𝛿ℎ𝑝

𝐿

(
𝑒𝐿𝑇 − 1

)
.

B Choice of the parameters

B.1 Link between learning error and parameters
The influence of the number of parameters over the learning error has been studied. In particular,
we have studied the effect of the number of neurons and hidden layers. The dynamical system
chosen for the test is the non-linear pendulum while the numerical method is simply the Forward
Euler method. In order to approximate the learning error, we compute the value

𝛿 ≈ 𝑀𝑎𝑥
ℎ∈𝐻∗

1
ℎ

������ 𝑓ℎ4(𝑥𝑖, 𝑗) − 𝑓𝑎𝑝𝑝 (𝑥𝑖, 𝑗 , ℎ)
������
𝑙∞

(21)

where (𝑥𝑖, 𝑗)0⩽𝑖, 𝑗⩽40 is a uniform grid on the squareΩ = [−2, 2]2,𝐻∗ = (𝑒ℎ
∗
𝑗)0⩽ 𝑗⩽14 where (ℎ∗

𝑗
)0⩽ 𝑗⩽14

is a uniform discretization of [log(ℎ−), log(ℎ+)] and 𝑓ℎ
4 corresponds to the field (2) for 𝑘 = 4 with

𝑅 neglected, computed via the formulas given in [8, 14].

As observed in Figure 15, a plateau appears when the number of parameters is large. This
plateau has a lower value for a larger number of data. Moreover, we observe that deep networks are
more efficient than shallow networks in order to learn the good vector field.

23

101 102 103 104 105

Weights (bias neglected)

10 2

10 1

Learning error vs weights (100000 data)
w w 1/2

learning error (HL = 1)
learning error (1 HL 10), = 10
learning error (1 HL 10), = 20
learning error (1 HL 10), = 50
learning error (1 HL 10), = 80
learning error (1 HL 10), = 100
learning error (1 HL 10), = 150
learning error (1 HL 10), = 200

101 102 103 104 105

Weights (bias neglected)

10 2

10 1

Learning error vs weights (500000 data)
w w 1/2

learning error (HL = 1)
learning error (1 HL 10), = 10
learning error (1 HL 10), = 20
learning error (1 HL 10), = 50
learning error (1 HL 10), = 80
learning error (1 HL 10), = 100
learning error (1 HL 10), = 150
learning error (1 HL 10), = 200

Figure 15: Learning error 𝛿 versus number of parameters 𝑤 in the neural network (number of
neurons 𝜁 and hidden layers 𝐻𝐿). Shallow network is plot with red points whereas deep network
is plot with green points (light green for 10 neurons to dark green for 200 neurons). Bias are
neglected. Learning error is plot for 100 000 data (left) and 500 000 data (right). 200 epochs are
used. [ℎ−, ℎ+] = [10−2, 10−1]. The curve of 𝑤 ↦→ 𝑤

1
2 has been added for comparison purposes.

B.2 Parameters selected in our numerical experiments
For the training, the optimizer Adam of Pytorch is used. Besides, the mini-batching option is
activated as it appears to be more efficient. Hyperbolic tangent tanh was selected as activation
function.

B.2.1 Nonlinear Pendulum - Forward Euler
Parameters

Math Parameters:
Dynamical system: Pendulum
Numerical method: Forward Euler
Interval where time steps are selected: [ℎ− , ℎ+] = [0.1, 2.5]
Time for ODE simulation: 𝑇 = 20
Time step for ODE simulation: ℎ = 0.1
AI Parameters:
Domain where data are selected: Ω = [−2, 2]2
Number of data: 𝐾 = 25 000 000
Proportion of data for training: 80% - 𝐾0 = 20 000 000
Number of terms in the perturbation (MLP’s): 𝑁𝑡 = 1
Hidden layers per MLP: 2
Neurons on each hidden layer: 200
Learning rate: 2 · 10−3

Weight decay: 1 · 10−9

Batch size (mini-batching for training): 300
Epochs: 200
Epochs between two prints of loss value: 20

Computational time for training: 10 h 14 min 17 s

B.2.2 Rigid body system - Forward Euler

Casimir invariant introduced at the beginning of the section 3 allows to chose the training data in
the spherical crown

{
𝑥 ∈ [−2, 2]2 : 0.98 ⩽ |𝑥 | ⩽ 1.02

}
24

Parameters
Math Parameters:
Dynamical system: Rigid Body
Numerical method: Forward Euler
Interval where time steps are selected: [ℎ− , ℎ+] = [0.5, 2.5]
Time for ODE simulation: 𝑇 = 20
Time step for ODE simulation: ℎ = 0.5
AI Parameters:
Domain where data are selected: Ω =

{
𝑥 ∈ [−2, 2]2 : 0.98 ⩽ |𝑥 | ⩽ 1.02

}
Number of data: 𝐾 = 100 000 000
Proportion of data for training: 80% - 𝐾0 = 80 000 000
Number of terms in the perturbation (MLP’s): 𝑁𝑡 = 1
Hidden layers per MLP: 2
Neurons on each hidden layer: 250
Learning rate: 2 · 10−3

Weight decay: 1 · 10−9

Batch size (mini-batching for training): 300
Epochs: 200
Epochs between two prints of loss value: 20

Computational time for training: 1 Day 21 h 59 min 51 s

B.2.3 Nonlinear Pendulum - Runge-Kutta 2
Parameters

Math Parameters:
Dynamical system: Pendulum
Numerical method: RK2
Interval where time steps are selected: [ℎ− , ℎ+] = [0.1, 2.5]
Time for ODE simulation: 𝑇 = 20
Time step for ODE simulation: ℎ = 0.1
AI Parameters:
Domain where data are selected: Ω = [−2, 2]2
Number of data: 𝐾 = 100 000 000
Proportion of data for training: 80% - 𝐾0 = 80 000 000
Number of terms in the perturbation (MLP’s): 𝑁𝑡 = 1
Hidden layers per MLP: 2
Neurons on each hidden layer: 250
Learning rate: 5 · 10−4

Weight decay: 1 · 10−9

Batch size (mini-batching for training): 300
Epochs: 200
Epochs between two prints of loss value: 20

Computational time for training: 3 Days 2 h 54 min 35 s

B.2.4 Nonlinear Pendulum - midpoint
Parameters

Math Parameters:
Dynamical system: Pendulum
Numerical method: midpoint
Interval where time steps are selected: [ℎ− , ℎ+] = [0.05, 0.5]
Time for ODE simulation: 𝑇 = 20
Time step for ODE simulation: ℎ = 0.25
AI Parameters:
Domain where data are selected: Ω = [−2, 2]2
Number of data: 𝐾 = 20 000 000
Proportion of data for training: 80% - 𝐾0 = 16 000 000
Number of terms in the perturbation (MLP’s): 𝑁𝑡 = 1
Hidden layers per MLP: 2
Neurons on each hidden layer: 200
Learning rate: 2 · 10−3

Weight decay: 1 · 10−9

Batch size (mini-batching for training): 300
Epochs: 200
Epochs between two prints of loss value: 20

Computational time for training: 9 h 47 min 51 s

B.3 Nonlinear Pendulum - Comparison between traditional and alternative
method

For the standard method, data are created by simulating several solutions with the same initial
condition for different time steps.

25

Parameters
Math Parameters:
Dynamical system: Pendulum
Numerical method: Forward Euler
Interval where time steps are selected: [ℎ− , ℎ+] = [0.01, 0.5]
Time for ODE simulation: 𝑇 = 20
Time step for ODE simulation: ℎ = 0.1
AI Parameters:
Domain where data are selected: Ω = [−2, 2]2
Number of data
- Traditional method: (𝐾, 𝑁ℎ) = (50 000, 5)
- Alternative method: (𝐾, 𝑁ℎ) = (76 129, 5)
- Alternative method (parallel training): (𝐾, 𝑁ℎ) = (105 735, 5)
Proportion of data for training: 80%
- Traditional method: (𝐾0 , 𝑁ℎ) = (40 000, 5)
- Alternative method: (𝐾0 , 𝑁ℎ) = (60 903, 5)
- Alternative method (parallel training): (𝐾0 , 𝑁ℎ) = (84 588, 5)
Number of terms in the perturbation (MLP’s): 𝑁𝑡 = 3
Hidden layers per MLP: 2
Neurons on each hidden layer: 50
Learning rate: 2 · 10−3

Weight decay: 1 · 10−9

Batch size (mini-batching for training): 100
Epochs: 200
Epochs between two prints of loss value: 20

For the alternative method with parallel training, the total computational time for training
correspond to the maximum of all training times for each term of the modified field.

Computational time for training
Method Traditional Alternative Alternative (parallel training)
𝑓1 2 min 54 s 3 min 24 s
𝑓2 2 min 22 s 3 min 28 s
𝑅 13 min 23 s 17 min 9 s

Total 18 min 33 s 18 min 41 s 17 min 9 s

26

	Introduction
	Scope of the paper
	Related work

	Improving the accuracy of numerical methods with machine learning
	General strategy
	Modified field
	Machine learning methods

	Error analysis
	An alternative method for parallel training

	Numerical experiments
	Approximation of the modified field
	Loss decay and Integration of ODE's
	Computational times for explicit methods
	Evaluation of alternative method

	Conclusions
	Proof of Theorem 1
	Choice of the parameters
	Link between learning error and parameters
	Parameters selected in our numerical experiments
	Nonlinear Pendulum - Forward Euler
	Rigid body system - Forward Euler
	Nonlinear Pendulum - Runge-Kutta 2
	Nonlinear Pendulum - midpoint

	Nonlinear Pendulum - Comparison between traditional and alternative method

