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Abstract

Generative Adversarial Networks have become a core technique in Machine Learning to gen-
erate unknown distributions from data samples. They have been used in a wide range of context
without paying much attention to the possible theoretical limitations of those models. Indeed,
because of the universal approximation properties of Neural Networks, it is a general assumption
that GANs can generate any probability distribution. Recently, people began to question this as-
sumption and this article is in line with this thinking. We provide a new result based on extreme
value theory showing that GANs can’t generate heavy tailed distributions. The full proof of this
result is given.

1 Introduction

The universal approximation property of neural
networks (see [8] and [4]) might make us assume
that GANs can simulate any distribution from
a Gaussian prior. However, neural networks, as
functions are by design almost everywhere dif-
ferentiable functions with bounded derivatives
to limit exploding gradients phenomenons (see
[10]). By Rademacher (see [7] for a proof) and
mean value theorems, this is nearly equivalent
to say that neural networks functions are Lip-
schitz continuous. This fact basically sets the
limitations of GANs to express any probability
distribution given a Gaussian prior. The are
numerous definitions of the concept of ”fat”,
”longed” or ”heavy” tailed distributions. They

are usually not equivalent but all convey a
sense of having a larger probability of being
”big” compared to a Gaussian or Exponential
distribution. Here we focus on two possible
ways to define the concept. One, similarly
to [12], is focussing on finite samples and
relies on classical concentration inequalities.
The other is asymptotic and uses Extreme
Value Theory to prove a new theorem in the
continuity of the theoretical work of Huster
et al. in [9] and the experimental approach of [6].

Notations, in the following, we make use of the
following notations:

- f is a Lipschitz function R
n 7→ R, ||f ||l =

supx,y∈Rn,x 6=y
||f(x)−f(y)||

||x−y|| its semi-norm,
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- γn the Gaussian measure on R
n,

- d the Euclidean distance in R
n i.e. d(x, y) =

||y − x||,

- for any set S ⊂ R
n the ǫ neighbourhood

Sǫ = {x ∈ R
n such that d(x, S) < ǫ}, where

ǫ > 0,

- Ā the complement of a subset A ⊂ R
n,

- M the median of a mapping R
n 7→ R for

the γn measure i.e. γn({f ≥ M}) ≥ 1
2 and

γn({f ≤ M}) ≥ 1
2 ,

- X a standard Gaussian random variable in
R
n,

- Ψ̄ = 1√
2π

∫ +∞
x e−u2/2du the Gaussian tail

function.

2 Limitations through sub-

gaussianity

In this section we prove that given a Lipschitz
function and a Gaussian prior X, f(X) is sub-
gaussian: a GAN with a Gaussian prior can only
generate sub-gaussian distributions.

Definition 1. A real valued random variable Y
is said to be sub-gaussian if it satisfies one of the

two following equivalent properties :

m ∃K ∈ R,∀t ≥ 0, P (|Y | ≥ t) ≤ 2e−
t2

K2

∃K ′ ∈ R,∀p ≥ 1, ||X||Lp ≤ K ′√p .

For a proof see [15].
If G = f(X), where f is Lipschitz, by Lips-

chitz continuity and E(X) = 0

∀x ≥ 0 P(|G− f(0)| ≥ x) ≤ P

(

|X| ≥ x

||f ||l

)

.

In particular if X is one dimensional then using
a standard upper bound of the gaussian tail
function G will be sub-gaussian as a sum of two
independant sub-gaussian functions, considering
f(0) as a constant random variable.

If X was n dimensional then,

P

(

|X| ≥ x

||f ||l

)

= P

(

|X|2 ≥ x2

||f ||2l

)

,

and |X|2 following a χ2 distribution with n de-
grees of freedom the sub-gaussianity of G would
seem to be dependent on the dimension of X.
Yet, this is not the case as stated by the follow-
ing remarkable result:

Theorem 1 (Gaussian concentration theorem
[14], [13] and [3]). Let X be a standard gaussian

random variable on R
n and f a Lipschitz func-

tion then f(X)−E(f(X)) is sub-gaussian. More

precisely,

∀ǫ > 0,P(|f(X) − E(f(X))| ≥ ǫ) ≤ 2e−2ǫ2/||f ||2
l .

So in particular, a GAN with a Gaussian prior
will not be able to generate any realistic samples
even if trained on a ”fat tailed” distribution.
This is not the first time that concentration of
measure gives some strong theoretical limits to
machine learning methods see [5] or [11] for a
more recent paper. Limitations of GANs has
also been explored from a different perspective
in [16].

This theorem is also true when we replace
the mean E(f(X)) by a median of f(X). The
original proof of the theorem can be found in
[14]. The proof is quite technical, a more acces-
sible one can be found in [2] . To get a sense of
the concentration of measure phenomenon we
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provide here a simple proof with the median.

The gaussian concentration theorem is a con-
sequence of:

Theorem 2 (Gaussian Isoperimetric Theorem
[3]). Let’s A be a Borel set in R

n and H =
{x ∈ R

n such that x1 < a} with a ∈ R such that

γn(A) = γn(H) then

∀ǫ ≥ 0 γn(Aǫ) ≥ γn(Hǫ) .

It is easily seen that γn(Hr) = Ψ(a+ r) where
Ψ is the cumulative distributive function of the
one dimensional standard Gaussian distribution.
It is not obvious at first sight what is the link be-
tween this theorem and the Gaussian concentra-
tion theorem for Lipschitz functions. The link is
made defining the following ‘isoperimetric func-
tion’ for a ∈ [0, 1] and ǫ > 0

ηa(ǫ) = sup
A borel set ⊂Rn

{γn(Āǫ) | γn(A) ≥ a}

= 1− inf
A borel set ⊂Rn

{γn(Aǫ) | γn(A) ≥ a} .

Lemma 1. Let f : Rn 7→ R be a Lipschitz func-

tion and M a median for the Gaussian measure,

then

∀ǫ > 0 γn(|f −M | > ǫ) ≤ η 1
2

(
ǫ

||f ||l

)

.

Proof. Let A = {f ≤ M}, ǫ > 0 and x ∈ Aǫ

then

∃y ∈ A such that d(x,A) ≤ d(x, y) < ǫ

so, f being Lipschitz and y ∈ A

|f(x)− f(y)| ≤ ||f ||l ǫ .

So, f(x) ≤ M + ||f ||l ǫ i.e. {f ≥ M + ||f ||l ǫ} ⊂
Āǫ. Changing ǫ → ǫ

||f ||l we have proved that for
any Lipschitz function f of median M

∀ǫ > 0 γn({f > M + ǫ}) ≤ η 1
2

(
ǫ

||f ||l

)

.

Noticing that f if Lipschitz iif −f is, ||f ||l =
|| − f ||l, if M is a median of f then −M is a
median of −f and applying what we just proved
to −f the result follows.

We can now prove the Gaussian concentration
theorem.

Proof. Let A be a Borel set such that γn(A) ≥ 1
2 ,

there exists a half-space H = R
n−1×] − ∞, a[

such that γn(A) = γn(H) = Ψ(a) ≥ 1
2 . From the

Isoperimetric Gaussian Theorem

∀ǫ ≥ 0, γn(Aǫ) ≥ γn(Hǫ)

γn(Aǫ) ≥ Ψ(a+ ǫ) ≥ Ψ(ǫ) .

Ψ being non decreasing and a ≥ 0 as Ψ(a) ≥
1
2 . Taking the infinum on the left side and notic-
ing that the infinimum is reached for H

∀ǫ > 0,

inf
A borel set ⊂Rn

{γn(Aǫ) | γn(A) ≥
1

2
} = Ψ(ǫ) .

That is to say,

η 1
2
= 1−Ψ = Ψ̄.

3 Limitations through Extreme

Value Theory

In this section, we prove the main result of this
paper: given a Lipschitz function and a Gaussian
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prior X, if f(X) is in a domain of attraction
of an extreme value distribution of parameter ξ
then ξ ≤ 0. In particular, f(X) can’t be ”heavy
tailed”. In fact, we prove the theorem for a wider
range of distributions.
In the following, we use the notations of Extreme
Value Theory that are introduced in [9].

Theorem 3. Let n ∈ R
∗, f : Rd → R a C1 a.e

Lipschitz function with semi norm L = ||f ||l. Let
Gd

k be a real random variable of probability dis-

tribution function gGd
k
(x) ∝ ‖x‖k2e−

‖x‖22
2 , where

k ∈ N. If f(Gd
k) is in the domain of attrac-

tion of the extreme value distribution of param-

eter ξ ∈ R, i.e f(Gd
k) ∈ D(Hξ), then ξ ≤ 0.

Proof. Case d = 1. We prove by contradiction
that ξ ≤ 0. Supposing that ξ > 0, by theorem
8.a [1], ∀ γ ∈]0, ξ[, E[f(G1

k)
γ ] is finite and

cγ = lim
t→∞

E

[(
f(G1

k)

t

)γ

|f(G1
k) > t

]

=

(

1− γ

ξ

)−1

.

Let γ ∈]0, ξ[. We are only interested in the be-
haviour of the previous integral when t goes to
+∞ so we can suppose that t > f(0) + 1 and
t >

√

|k − 1|+ γL+ |f(0)|.
f−1(]t,∞[) is an open set of R by continuity.
Open intervals are a countable base of R, so we
can write f−1(]t,∞[) =

⋃

i∈I ]ai, bi[ where I is
finite or countable. We can also suppose that
any of those intervals are disjoints. So we can
suppose that :

- f−1(]t,∞[) =
⋃

i∈I ]ai, bi[ where I is finite
or countable

- 0 /∈]ai, bi[, ai 6= 0, bi 6= 0 and f is strictly
positive on each interval

- −∞ ≤ a0 < b0 ≤ a1 < b2 ≤ . . . < bm∗ ≤
+∞, wherem∗ is equal tom or∞ according
to I cardinality

- ∀i ∈ I f(ai) = t if ai > −∞ by continuity
of f

- ∀i ∈ I f(bi) = t if bi < ∞ by continuity of
f

- ∀x ∈]ai, bi[ |x| > t−f(0)
L as f is L-Lipschitz

and ]ai, bi[⊂ f−1(]t,+∞[. In particular,
noting t∗ = min(t, t− f(0)), |x| > t∗

L

Also, we are only interested in t → +∞ so we
can suppose t∗

2
> |k−1|L2. If I = ∅, the case is

trivial: E

[(
f(G1

k
)

t

)γ
|f(G1

k) > t
]

is not defined,

which is a contradiction.
Otherwise, the conditional expectation is well
defined and finite and we have:

E

[(
f(G1

k)

t

)γ

|f(G1
k) > t

]

=

∑

i∈I
∫ bi
ai

(
f(x)
t

)γ
|x|ne−x2

2 dx

∑

i∈I
∫ bi
ai

|x|ne−x2

2 dx
. (1)

Let i ∈ I. For the numerator, integrating by
part:

∫ bi

ai

(
f(x)

t

)γ

|x|ke−x2

2 dx =

[

−|x|k
x

(
f(x)

t

)γ

e−
x2

2

]bi

ai

+

∫ bi

ai

(
k − 1

x2
+ γ

f ′(x)
xf(x)

)

︸ ︷︷ ︸

M

(
f(x)

t

)γ

|x|ke−x2

2 dx

The first integrated part is equal to
[

− |x|k
x e−

x2

2

]bi

ai

, as we have seen on the interval
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bounds either f is equal to t or f = O±∞(x). We
can bound the M term as |x| ≥ t∗

L , f(x) > t > 0
and |f ′| < L,

|M | ≤ |k − 1|L
2

t∗2
+ γ

L2

t∗2
.

We deduce the following inequalities:

∫ bi

ai

(
f(x)

t

)γ

|x|ke−x2

2 dx ≤
[

−|x|k−1e−
x2

2

]bi

ai

+

(|k − 1|+ γ)L2

t∗2

∫ bi

ai

(
f(x)

t

)γ

|x|ke−x2

2 dx , (2)

∫ bi

ai

(
f(x)

t

)γ

|x|ke−x2

2 dx ≥
[

−|x|k−1e−
x2

2

]bi

ai

−

(|k − 1|+ γ)L2

t∗2

∫ bi

ai

(
f(x)

t

)γ

|x|ke−x2

2 dx . (3)

The denominator has still a dependance on f
through the domain of integration, so |x| > t∗

L is
still valid and similarly:

∫ bi

ai

|x|ke−x2

2 dx ≤
[

−|x|k−1e−
x2

2

]bi

ai

+

|k − 1|L2

t∗2

∫ bi

ai

|x|ke−x2

2 dx , (4)

∫ bi

ai

|x|ke−x2

2 dx ≥
[

−|x|k−1e−
x2

2

]bi

ai

−

|k − 1|L2

t∗2

∫ bi

ai

|x|ke−x2

2 dx . (5)

Combining equations (3) and (4) in (1), we have:

E

[(
f(G1

k)

t

)γ

|f(G1
k) > t

]

≥
1− |k−1|L2

t∗2

1 + (|k−1|+γ)L2

t∗2

.

And combining (2) and (5) in (1), as we chose
t >

√

|k − 1|+ γL+ |f(0)|, we have:

E

[(
f(G1

k)

t

)γ

|f(G1
k) > t

]

≤
1 + |k−1|L2

t∗2

1− (|k−1|+γ)L2

t∗2

So cγ = limt→∞ E

[(
f(G1

k
)

t

)γ
|f(G1

k) > t
]

= 1.

Assuming f(G1
k) ∈ D(Hξ), ξ > 0, entails cγ =

(1− γ
ξ )

−1 and γ = 0. We conclude that ξ ≤ 0.

Case d ∈ N
∗
. We prove that ξ ≤ 0 by

contradiction. If ξ > 0 using theorem 8.a [1],
∀0 < γ < ξ, E[f(Gd

k)
γ ] is finite and

cγ = lim
t→∞

E

[(
f(Gd

k)

t

)γ

|f(Gd
k) > t

]

=

(

1− γ

ξ

)−1

.

Let γ ∈]0, ξ[ and t ∈ R
∗
+ such that t > f(0d)

and t > L
√

|k + d− 2|+ γL+ |f(0)|. Using the
hyperspherical coordinates, we introduce the op-
erator H : L([0, π]d−2 × [0, 2π]) 7→ R:

H(f) = α

∫ π

0
...

∫ π

0

∫ 2π

0

d−2∏

i=1

sin(θi)
d−i−1f(θ)dθ,

with α the normalising term for the Gd
k distribu-

tion and dθ = dθ1...dθd−1.
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Then, we have:

E

[(
f(Gd

k)

t

)γ

1f(Gd
k
)>t

]

=

H
(

θ 7→
∫ +∞

0
1fθ(r)>t

(
fθ(r)

t

)γ

rk+d−1e−
r2

2 dr

︸ ︷︷ ︸

E

[

(

fθ(G
1
k+d−1

)

t

)γ

1
fθ(G

1
k+d−1

)>t

]

)

with x = r(x1, ..., xd) and

x1 = sin(θ1)

x2 = sin(θ1) cos(θ2)

...

xd−1 = sin(θ1) sin(θ2) . . . cos(θd−1)

xd = sin(θ1) sin(θ2) . . . sin(θd−1) .

For θ = (θ1, ...θd−1), fθ : r ∈ R+ 7→
f(rx1, ..., rxd) is L-Lipschitz as (x1, . . . , xd) is on
the unit sphere. Also, f(0) = fθ(0). We can use
the bounds from the 1-dimensional proof. We
note:

M+ =
1 + |k+d−2|L2

t∗2

1− (|k+d−2|+γ)L2

t∗2

M− =
1− |k+d−2|L2

t∗2

1 + (|k+d−2|+γ)L2

t∗2

.

We obtain:

E

[(
f(Gd

k)

t

)γ

1f(Gd
k
)>t

]

≤

M+H
(

θ 7→ P(1fθ(G1
k+d−1)>t)

)

.

That is to say,

E

[(
f(Gd

k)

t

)γ

1f(Gd
k
)>t

]

≤ M+P(f(G
d
k) > t) .

Similarly, we have:

E

[(
f(Gd

k)

t

)γ

1f(Gd
k
)>t

]

≥ M−P(f(G
d
k) > t) .

Thus, we conclude similarly that cγ is well-
defined, finite, and cγ = 1 that is γ = 0, which
is absurd as γ > 0.

4 Conclusion and future work

Because of the intrinsic Lipschitz characteristics
of Neural Networks, GANs expressivity is lim-
ited. In particular, a Gaussian prior cannot be
used to simulate heavy tailed distributions. In
the EVT framework, the question of the exis-
tence of a tail index for the generated distri-
bution, or the conditions for its existence, re-
mains. A theoretical partial answer is given in
[9] for GANs with ReLU or Leaky-ReLU activa-
tion functions and a finite number of neurons.
The general case is still an open question. Like-
wise, determining the thinnest tail prior being
able to simulate samples exhibiting heavy tails
is an important question needing further inves-
tigations.
Moreover, experimentally, the problem of train-
ing GANs with a heavy-tailed prior remains too.
Indeed, with such priors GANs are hard to train
and exhibit numerical instabilities.
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