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Observability estimates for the Schrödinger equation in the

plane with periodic bounded potentials from measurable sets

Kévin Le Balc’h, Jérémy Martin

September 14, 2023

Abstract

The goal of this article is to obtain observability estimates for Schrödinger equations in the
plane R2. More precisely, considering a 2πZ2-periodic potential V ∈ L∞(R2), we prove that the
evolution equation i∂tu = −∆u+ V (x)u, is observable from any 2πZ2-periodic measurable set, in
any small time T > 0. We then extend Täufer’s recent result [Tau23] in the two-dimensional case
to less regular observable sets and general bounded periodic potentials. The methodology of the
proof is based on the use of the Floquet-Bloch transform, Strichartz estimates and semiclassical
defect measures for the obtaining of observability inequalities for a family of Schrödinger equations
posed on the torus R2/2πZ2.
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1 Introduction

1.1 Observability inequalities for the Schrödinger equation in Rd

In this work, we are interested in the observability of the following Schrödinger equation{
i∂tu = (−∆ + V (x))u in (0,+∞)× Rd,
u(0, ·) = u0 in Rd, (1.1)

where u0 ∈ L2(Rd) and V ∈ L∞(Rd) is a real-valued potential. In the case when V is 2πZd-periodic,
that is, satisfies

V (x+ 2kπ) = V (x), ∀x ∈ Rd, ∀k ∈ Zd,

the equation (1.1) can describe the behaviour of an electron in a crystal, see for instance [Kli12] and
the references therein. The notion of observability is defined as follows:

Definition 1.1. Let T > 0 be a positive time and b : Rd −→ R+ be a non-negative measurable function.
The equation (1.1) is said to be observable from b in time T > 0 if and only if there exists a positive
constant C > 0 such that

∀u0 ∈ L2(Rd), ‖u0‖2L2(Rd) ≤ C
∫ T

0

∫
Rd
b(z)|u(t, z)|2dzdt,

where u is the mild solution of (1.1) with initial data u0.

When b = 1lω with ω ⊂ Rd a measurable subset, some geometric conditions can be required to
ensure the observability of (1.1). In the one-dimensional case d = 1, when V = 0, it has been shown
in [MPS21] and [HWW22] that the free Schrödinger equation is observable at some time T > 0 from
b = 1lω if and only if ω is thick, that is,

∃γ, L > 0,∀x ∈ R, |ω ∩ (x+ [0, L])| ≥ γ,

where |A| denotes the Lebesgue measure of A ⊂ R. In higher dimensions d ≥ 2, this thickness
condition turns out to be necessary ([MPS21, Theorem 2.6]). However, as explained by the authors
of [MPS21], the question of its sufficiency remains open. A sufficient condition was first given in
[MPS21, Proposition 2.11]. Recently, the particular case of periodic sets have been investigated for the
observability of the free Schrödinger equation. In [Tau23, Theorem 2], Täufer has shown that (1.1)
with V = 0 is observable in any time T > 0 from b = 1lω, where ω is any non-empty 2πZd-periodic open
subset of Rd. Notice that non-empty 2πZd-periodic open subsets are trivially thick subsets. It is also
worth mentioning that periodic open subsets do not satisfy necessarily the well-known geometric control
condition (GCC), roughly stating that every generalized geodesic meets ω in time t ≤ T , that turns
out to be the necessary and sufficient geometric condition for the wave equation, see [BJ16]. On the
other hand, [EV18] shows that the thickness condition is necessary and sufficient for the observability
of the heat equation in dimensions d ≥ 1. According to these results, the geometric condition ensuring
the observability of the Schrödinger equation in Rd is strictly less restrictive than the one for the wave
equation and more restrictive (in a large sense) than the one for the heat equation.

1.2 Main results in the two-dimensional case

Our main result extends the result by Täufer to the case of less regular observable function b and
general 2πZ2-periodic real-valued potential V ∈ L∞(R2), in the two-dimensional case. In all the
following, the d-dimensional torus Td is defined by

Td := Rd/2πZd.

For the sake of notational simplicity, any function f ∈ L1(Td) will be identified to its 2πZd-periodic
extension to Rd belonging to L1

loc(Rd). If not specified otherwise, functions will be assumed to be
complex-valued.
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Theorem 1.2. Assume d = 2. Let b ∈ L1(T2) \ {0} be a non-negative real-valued function.
For every T > 0 and compact subset K ⊂ L∞(T2), there exists a positive constant C = C(b, T,K) >

0 such that for every 2πZ2-periodic real-valued potential V ∈ K and every u0 ∈ L2(R2), the solution u
of (1.1) satisfies

‖u0‖2L2(R2) ≤ C
∫ T

0

∫
R2

b(z)|u(t, z)|2dzdt. (1.2)

Contrary to Täufer’s result, Theorem 1.2 is limited to the two-dimensional case. However, it
allows to consider more general observable functions b and to deal with rough potentials V . Even
if our proof borrows some ingredients of the proof given by Täufer, such as the use of the Floquet-
Bloch transform, the remainder of the proof is very different. In a nutshell, ours uses the notion of
semiclassical measures, whereas Täufer’s proof follows from an Ingham’s type inequality and explicit
computations on the spectrum of the operator −∆+2iθ ·∇+ |θ|2 on L2(Td), based on previous results
of [Jaf90], [KL05]. In particular, its proof seems not to be easily adaptable to the case of Schrödinger
equations with potential.

By the well-known Hilbert Uniqueness Method [Cor07, Theorem 2.42], one can deduce from The-
orem 1.2 an exact controllability result for the Schrödinger equation{

i∂ty = (−∆ + V (x))y + h1ω in (0,+∞)× Rd,
y(0, ·) = y0 in Rd. (1.3)

In (1.3), at time t ∈ [0,+∞), y(t, ·) : Rd → C is the state and h(t, ·) : ω → C is the control.

Corollary 1.3. Assume d = 2. For every non-empty 2πZ2-periodic measurable subset ω ⊂ R2, T > 0
and compact subset K ⊂ L∞(T2), there exists a positive constant C = C(ω, T,K) > 0 such that for
every real-valued potential V ∈ K and y1 ∈ L2(R2), there exists a control h ∈ L2(0, T ;L2(ω)) satisfying

‖h‖L2(0,T ;L2(ω)) ≤ C ‖y1‖L2(R2) ,

and such that the solution y of (1.3) with y0 = 0 satisfies

y(T, ·) = y1.

A key ingredient in the proof of Theorem 1.2 is borrowed from [Tau23] and consists in applying the
Floquet-Bloch transform, which is introduced in Section 2.1. As detailed in Section 2.1, performing
the Floquet-Bloch transform reduces the study of (1.3) to a family of Schrödinger equations posed on
the torus Td: {

i∂tu = (−∆ + 2iθ · ∇+ |θ|2 + V (x))u in (0,+∞)× Td,
u(0, ·) = u0 in Td, (Eθ)

with θ ∈ [0, 1]d. The observability of (Eθ) with θ = 0 has been widely studied over the last two
decades. In [AM14], the observability of (Eθ) is shown to hold from any open subset ω ⊂ Td in
any time T > 0 when θ = 0 and V belongs to a class of potentials slightly larger than the class of
continuous potentials. In the two-dimensional setting, the authors of [BBZ13] established that the
same result holds true for V ∈ L2(T2) but still from open subset. More recently, it has been shown
that the regularity assumption on b can also be relaxed. Indeed, the main result of [BZ19] ensures the
observability of (Eθ) (with θ = 0 and V = 0) as soon as b ∈ L2(T2). Regarding the equations (Eθ)
with non-trivial θ, let us mention that an observability result for the one-dimensional case is given by
[BBZ13, Proposition 3.1] for V ∈ Lp(T1) with p > 1 and b = 1lω where ω ⊂ T1 is a non-empty open
subset.

Our second main result ensures the observability of the Schrödinger equations (Eθ). It is obtained
as a by product of the proof of Theorem 1.2.

3



Theorem 1.4. Let b ∈ L1(T2)\{0} be a non-negative real-valued function, T > 0 and K ⊂ L∞(T2) be
a compact subset. There exists a positive constant C = C(b, T,K) > 0 such that for every real-valued
potential V ∈ K, θ ∈ [0, 1]2 and v0 ∈ L2(T2), the solution v of (Eθ) satisfies

‖v0‖2L2(T2) ≤ C
∫ T

0

∫
T2

b(z)|v(t, z)|2dzdt. (1.4)

Even if our proof closely follows the methodology introduced in [BZ12], [BBZ13] and [BZ19], some
new difficulties appear. Indeed, a key ingredient is the establishment of uniform Strichartz estimates
for the equation (Eθ). Even for fixed θ ∈ [0, 1]2, as mentioned in Remark 3.13 below, Strichartz
estimates cannot be obtained from the usual Zygmund inequality [Zyg74]. This is why we need to first
get uniform resolvent estimates for the operator −∆ + 2iθ · ∇ + |θ|2 + V (x) in the spirit of [BBZ13].
On the other hand, the use of semi-classical defect measures for proving the observability estimates
(1.4) has to be performed by keeping track of the dependence of the parameter θ in all the procedure.

1.3 Organization of the paper

Our article is organised as follows: Section 2 introduces the Floquet-Bloch transform and aims at
showing that uniform observability estimates of (Eθ) with respect to θ leads to an observability estimate
for (1.1). Section 3 is devoted to establish useful properties of the group generated by Hθ,V = −∆ +
2iθ ·∇+|θ|2 +V , such as resolvent estimates and Strichartz estimates. Section 4 consists in establishing
observability inequalities for L2 initial data from observability inequalities for highly oscillating initial
data. In Section 5, the proof of Theorem 1.4 is presented. It uses the notion of semiclassical defect
measure and follows the strategy developed by the authors of [BZ12], [BBZ13] and [BZ19]. Few
facts about semiclassical analysis and semiclassical defect measures are recalled in the Appendix, in
Section A.

2 Proof of the observability inequality on R2

This section aims at proving that Theorem 1.2 is a consequence of uniform observability estimates for
the family of Schrödinger equations (Eθ) posed on Td. The proof relies on the Floquet-Bloch transform
which is presented in Section 2.1.

2.1 The Floquet-Bloch transform

In this part, we give a definition and few facts about the Floquet-Bloch transform. This tool is
instrumental in the proof of Theorem 1.2. We follow the presentation of [Kuc93, Section 4].

Let us first introduce the definition of the Floquet-Bloch transform.

Definition 2.1. Let F : L2(Rd)→ L2([0, 2π]d × [0, 1]d) the Floquet-Bloch transform given by

Fu(y, θ) =
∑
k∈Zd

e2iπθ·ku(y + 2πk) ∀u ∈ L2(Rd), ∀(y, θ) ∈ [0, 2π]d × [0, 1]d.

The first proposition ensures that the Floquet-Bloch transform is an isometry from L2(Rd) to
L2([0, 2π]d × [0, 1]d).

Proposition 2.2. The map F is an isometric isomorphism from L2(Rd) to L2([0, 2π]d × [0, 1]d).

In this paper, we will use a slightly modified Floquet-Bloch transform, denoted by F̃ , defined by

F̃u(y, θ) = eiθ·yFu(y, θ) ∀u ∈ L2(Rd), ∀(y, θ) ∈ [0, 2π]d × [0, 1]d.

It is clear that F̃ still defines an isometric isomorphism from L2(Rd) to L2([0, 2π]d× [0, 1]d). The main
advantage of taking this definition comes from the following result:
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Proposition 2.3. Let k ∈ N. For all u ∈ Hk(Rd) and for almost all θ ∈ [0, 1]d, we have F̃(u)(·, θ) ∈
Hk(Td). Moreover,

F̃(−∆u)(·, θ) = (−∆ + 2iθ · ∇+ |θ|2)F̃u(·, θ) ∀u ∈ H2(Rd), ∀θ ∈ [0, 1]d.

In particular, it appears from Proposition 2.3 that F̃u enjoys some periodicity property in the
y-variable, contrary to Fu. An other elementary result is the following proposition which ensures that
the Floquet-Bloch transform commutes with any periodic function:

Proposition 2.4. Let V ∈ L∞(Rd) be a 2πZd-periodic function. Then,

F̃(V u) = V F̃u ∀u ∈ L2(Rd).

Proposition 2.3 and 2.4 lead to, for all V ∈ L∞(Td), u ∈ H2(Rd) and for almost all θ ∈ [0, 1]d,

F̃(−∆u+ V u)(·, θ) = (−∆ + 2iθ · ∇+ |θ|2 + V )F̃u(·, θ).

Consequently, for V ∈ L∞(Td), we obtain that for all u ∈ L2(Rd) and for almost all θ ∈ [0, 1]d,

F̃(eit(−∆+V )u)(·, θ) = eit(−∆+2iθ·∇+|θ|2+V )F̃u(·, θ) ∀t ∈ R, (2.1)

where
(
eit(−∆+2iθ·∇+|θ|2+V )

)
t∈R

is the one-parameter group generated by the self-adjoint operator

−∆ + 2iθ · ∇+ |θ|2 + V : H2(Td) −→ L2(Td).

2.2 From the uniform observability inequality on T2 to the observability
inequality on R2

This part is devoted to establish that Theorem 1.2 can be deduced from Theorem 1.4.
In the rest of the paper, we will use the notation

Hθ,V v := (−∆ + 2iθ · ∇+ |θ|2 + V )v ∀v ∈ H2(Td),

for V ∈ L∞(Td) and θ ∈ [0, 1]d. The following proposition shows that uniform observability inequalities
for Schrödinger equations (Eθ) directly imply observability inequalities for Schrödinger equations posed
on the Euclidean space.

Proposition 2.5. Let V ∈ L∞(Td), b ∈ L1(Td,R+), T > 0 and C > 0. If for all θ ∈ [0, 1]d and
v0 ∈ L2(Td),

‖v0‖2L2(Td) ≤ C
∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V v0(z)
∣∣2 dz dt,

then for all u0 ∈ L2(Rd),

‖u0‖2L2(Rd) ≤ C
∫ T

0

∫
Rd
b(z)

∣∣∣e−it(−∆+V )u0(z)
∣∣∣2 dz dt.

In the Section 5, we give the proof of Theorem 1.4 which provides uniform observability estimates
with respect to θ ∈ [0, 1]d for the Schrödinger equations (Eθ), in the two-dimensional case. Thanks to
Proposition 2.5, Theorem 1.2 appears as a consequence of Theorem 1.4.

Proof of Proposition 2.5. Let u0 ∈ L2(Rd) and u be the solution of (1.1) associated with u0. Proposi-
tion 2.3 and (2.1) are instrumental in this proof.

First, thanks to the isometry property, the left hand side of (1.1) becomes

‖u0‖2L2(Rd) =
∥∥∥F̃u0

∥∥∥2

L2([0,1]d×Td)
=

∫
[0,1]d

∫
Td
|F̃u0(y, θ)|2dy dθ (2.2)
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Secondly, for the right hand side of (1.1), we have, thanks to Proposition 2.2 and 2.4,∫ T

0

∫
Rd
b(z)|u(t, z)|2dz dt =

∫ T

0

〈F̃(e−it(−∆+V (x))u0), F̃(b · e−it(−∆+V (x))u0)〉L2([0,1]d×Td)dt

=

∫ T

0

∫
[0,1]d

∫
Td
b(z)|F̃(e−it(−∆+V )u0)(z, θ)|2dθ dz dt.

It therefore follows from (2.1) and the previous lines that∫ T

0

∫
Rd
b(z)|u(t, z)|2dz dt =

∫
[0,1]d

(∫ T

0

∫
Td
b(z)|e−itHθ,V F̃u0(z, θ)|2dz dt

)
dθ (2.3)

On the other hand, by assumptions, we have for almost all θ ∈ [0, 1]d,∥∥∥F̃u0(·, θ)
∥∥∥2

L2(Td)
≤ C

∫ T

0

∫
Td
b(z)

∣∣∣e−itHθ,V F̃u0(z, θ)
∣∣∣2 dz dt. (2.4)

By gathering (2.2), (2.3) and (2.4), we finally obtain the expected observability inequality (1.2).

3 Properties of the group generated by Hθ,V

The goal of this section is to first derive resolvent estimates forHθ,V , then deduce a priori estimates and
stability results for solutions to the associated semi-group (e−itHθ,V )t≥0. In both parts, we separate
the available results in the multi-dimensional case to the specific two-dimensional results.

3.1 Resolvent estimates for Hθ,V

In this part, we first establish standard L2 resolvent estimates for Hθ,V in Td. In the second subsection,
we prove L4 resolvent estimates for Hθ,V in T2. This result is specific to the two-dimensional case and
is instrumental in the proof of the Strichartz estimates provided by Proposition 3.12.

3.1.1 L2 resolvent estimates in Td

The first result concerns spectral properties of the operator Hθ,V . As it is standard, the proof is
omitted.

Proposition 3.1. For every θ ∈ [0, 1]d and V ∈ L∞(Td,R), Hθ,V is a self-adjoint, with compact
resolvent, operator on L2(Td). Let (ψk,θ,V )k∈N be the orthonormal basis of eigenfunctions and (λk,θ,V )
be the associated eigenvalues. For every M > 0 and s ∈ R, there exist two positive constants C,C ′ > 0
such that for every V ∈ L∞(Td,R) with ‖V ‖L∞(Td) ≤M and θ ∈ [0, 1]d, we have

C ‖u‖2Hs(Td) ≤
+∞∑
k=0

(1 + |λk,θ,V |2)s/2|uk|2 ≤ C ′ ‖u‖2Hs(Td) , ∀u =

+∞∑
k=0

ukψk,θ,V ∈ Hs(Td). (3.1)

The next result is about stability properties with respect to parameters of the resolvent of Hθ,V .

Proposition 3.2. Assume that θn → θ in [0, 1]d and Vn ⇀
? V in L∞(Td,R) as n → +∞, then for

every λ ∈ C such that <(λ) > 0, the following convergence holds∥∥(λI + iHθn,Vn)−1f − (λI + iHθ,V )−1f
∥∥
L2(T2)

→
n→+∞

0, ∀f ∈ L2(Td).

Proof. The proof combines an energy estimate coupled with the Rellich theorem. We start from

(−iλI −∆ + 2iθn · ∇+ |θn|2 + Vn)un = −if in Td. (3.2)
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After multiplying (3.2) by un, integrating on Td and performing an integration by parts, we obtain

(−iλ+ |θn|2)‖un‖2L2 + ‖∇un‖2L2 + 2〈iθn · ∇un, un〉L2 + 〈Vnun, un〉L2 = −i〈f, un〉L2 . (3.3)

By taking the real and imaginary parts, it follows from (3.3) and Young’s inequalities that there exists
a positive constant C > 0, depending on λ and supn∈N ‖Vn‖L∞(Td), such that

‖∇un‖2L2(Td) ≤ C ‖f‖
2
L2(T2) + C ‖un‖2L2(T2) and ‖un‖2L2(Td) ≤ C ‖f‖

2
L2(T2) .

This readily implies that

‖un‖2H1(Td) ≤ C ‖f‖
2
L2(Td) .

By the Rellich theorem, we have that there exists v ∈ H1(Td) such that, up to a subsequence,

un ⇀ v in H1(Td), un → v in L2(Td) as n→ +∞.

After multiplying (3.2) by iϕ̄ ∈ H1(Td) and integrating by parts, we pass to the limit as n→ +∞∫
Td

(
λvϕ̄+ i

(
∇v · ∇ϕ̄− 2iθ · ∇uϕ̄+ |θ|2vϕ̄+ V vϕ̄

))
dx =

∫
Td
fϕ̄ ∀ϕ ∈ H1(Td).

By uniqueness, we have that v = (λI + iHθ,V )−1f , then (un)n∈N admits a unique accumulation point
(λI + iHθ,V )−1f ∈ H1(Td), which concludes the proof.

3.1.2 L4 resolvent estimates in T2

The main result of this part is a L4 resolvent estimate for Hθ,V in T2.

Proposition 3.3. For every M > 0, there exists C > 0 such that for every θ ∈ [0, 1]2, V ∈ L∞(T2,R),
‖V ‖L∞(T2) ≤M , f ∈ L4/3(T2) and τ ∈ C with |=(τ)| ≥ 1,∥∥(−∆ + 2iθ · ∇+ |θ|2 + V − τ)−1f

∥∥
L4(T2)

≤ C ‖f‖L4/3(T2) . (3.4)

Proposition 3.3 is an adaptation of [BBZ13, Proposition 2.6]. Two main differences appear. First,
due to the presence of the parameter θ in the operator Hθ,V , we need to keep track of the independence
of the constants, with respect to θ to get a uniform constant C in (3.4). The second difference is the
assumption on the potential. While Bourgain, Burq, Zworski are considering potential living in a
compact set of L2(T2), here we are focusing on potentials living in a ball of L∞(T2).

The proof of Proposition 3.3 is crucially based on the following result which is Proposition 3.3 in
the particular case when V = 0.

Proposition 3.4. There exists C > 0 such that for every θ ∈ [0, 1]2, f ∈ L4/3(T2) and τ ∈ C with
|=(τ)| ≥ 1, ∥∥(−∆ + 2iθ · ∇+ |θ|2 − τ)−1f

∥∥
L4(T2)

≤ C ‖f‖L4/3(T2) . (3.5)

Proof of Proposition 3.3 from Proposition 3.4. We start from

(−∆ + 2iθ · ∇+ |θ|2 + V − τ)u = f in T2.

Since V is real-valued, after multiplying by ū and integrating on T2, we obtain by taking the imaginary
part and thanks to Hölder’s inequality

|=(τ)| ‖u‖2L2(T2) ≤ ‖u‖L4(T2) ‖f‖L4/3(T2) . (3.6)

Since |=(τ)| ≥ 1, we get from (3.6) that

‖u‖2L2(T2) ≤ ‖u‖L4(T2) ‖f‖L4/3(T2) .
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On the other hand, we also have

(−∆ + 2iθ · ∇+ |θ|2 − τ)u = f − V u in T2.

So applying the resolvent estimate (3.5), we get

‖u‖L4(T2) ≤ C ‖f‖L4/3(T2) + C ‖V u‖L4/3(T2) .

By plugging the L2-estimate on u in the previous formula, using that V ∈ L∞(T2) and performing
Young’s estimate, we get the expected result (3.4).

All the end of this part is then devoted to the proof of Proposition 3.4.
The next result is a refinement of the Zygmund’s inequality for the operator Hθ,0 i.e. there exists

C > 0 such that for every θ ∈ [0, 1]2 and λ > 0, we have∥∥∥∥∥∥
∑

|n−θ|2=λ

cne
in·x

∥∥∥∥∥∥
L4(T2)

≤ C

 ∑
|n−θ|2=λ

|cn|2
1/2

. (3.7)

Note that inequality (3.7) comes from a straightforward adaptation of [Zyg74].

Proposition 3.5. There exists C > 0 such that for all θ ∈ [0, 1]2, κ ≥ 0, 0 < h ≤ 1 and u =∑
n∈Z û(n)ein·x ∈ L2(T2) satisfying

û(n) = 0 for n /∈ Bθ(κ, h) := {n ∈ Z2 ;
∣∣h2|n− θ|2 − 1

∣∣ ≤ κ2h2},

we have

‖u‖L4(T2) ≤

{
C(1 + κ)1/4(1 + κ2h)1/4 ‖u‖L2(T2) if κ ≤ h−1

C(1 + κ)1/2 ‖u‖L2(T2) if κ ≥ h−1

Remark 3.6. It is worth mentioning that κ = 0 is simply the Zygmund’s inequality (3.7), while the
other regimes have to be treated by different arguments, that are Sobolev embeddings for κ ≥ h−1 and
an arithmetic proof of Sogge’s estimate for spectral projectors for κ ≤ h−1.

The proof that we give below is an adaptation of [BBZ13, Proposition 2.4].

Proof. In the following proof, the constants C > 0 that appear can vary from line to line but do not
depend on θ.

First, we have Bθ(κ1, h) ⊂ Bθ(κ2, h) when κ1 ≤ κ2, so one can safely assume that κ ≥ C where
C ≥ 1 is a positive numerical constant.

For a constant 0 < δ ≤ 1 that will be fixed later, we distinguish two regimes: κh ≥ δ, and κh ≤ δ.
First regime: κh ≥ δ. The estimate comes from the Sobolev embedding H1/2(T2) ↪→ L4(T2)

because û(n) = 0 unless |n|2 ≤ |θ|2 + h−2 + κ2 ≤ 2 + (δ−2 + 1)κ2, so taking κ ≥
√

2, this implies

‖u‖H1/2(T2) ≤ Cδκ
1/2 ‖u‖L2(T2) .

Second regime: hκ ≤ δ. First observe that Bθ(κ, h) ⊂ Aθ(κ, h) where

Aθ(κ, h) := {n ∈ Z2 ; |h|n− θ| − 1| ≤ κ2h2}.

Indeed, using hκ ≤ δ ≤ 1, we have

n ∈ Bθ(κ, h)⇒ −κ2h2 + 1 ≤ h2|n− θ|2 ≤ κ2h2 + 1⇒
√

1− κ2h2 ≤ h|n− θ| ≤
√

1 + κ2h2

⇒ 1− κ2h2 ≤ h|n− θ| ≤ 1 + κ2h2 ⇒ n ∈ Aθ(κ, h).
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Note that we have

C = {z ∈ C ; <(z − θ) ≥ 0, =(z − θ) ≥ 0} ∪ {z ∈ C ; <(z − θ) ≤ 0, =(z − θ) ≥ 0}
∪ {z ∈ C ; <(z − θ) ≤ 0, =(z − θ) ≤ 0} ∪ {z ∈ C ; <(z − θ) ≥ 0, =(z − θ) ≤ 0}

= Cθ++ ∪ Cθ−+ ∪ Cθ−− ∪ Cθ+−.

We will only consider the situation where

u =
∑
n∈Z2

une
in·x =

∑
n∈Z2∩Cθ++

une
in·x.

The general case easily follows.
We first introduce

Aθ(κ, h) =

Nκ,h⋃
α=0

(
Z2 ∩ Aθ,α(κ, h)

)
, with Nκ,h :=

⌊ π

2hk

⌋
,

where
Aθ,α(κ, h) :=

{
z ∈ Cθ++ ; |h|z − θ| − 1| ≤ κ2h2, arg(z − θ) ∈ [αhκ, (α+ 1)hκ)

}
.

Then the proof relies on the following geometric lemma, that is a Corollary of [BBZ13, Lemma 2.5].

Lemma 3.7. Fix δ > 0 small enough. Then there exists Q ∈ N such that for all θ ∈ [0, 1]2, 0 < h < 1,
1 ≤ κ ≤ δ/h and α, β, α′, β′ ∈ {0, 1, . . . , Nκ,h}, if

(Aθ,α(κ, h) +Aθ,β(κ, h)) ∩ ((Aθ,α′(κ, h) +Aθ,β′(κ, h)) 6= ∅, (3.8)

then
|α− α′|+ |β − β′| ≤ Q or |α− β′|+ |β − α′| ≤ Q. (3.9)

Proof of Lemma 3.7. From [BBZ13, Lemma 2.5], we have that there exists Q ∈ N such that for any
0 < h < 1 and any 1 ≤ κ ≤ δ/h, for every α, β, α′, β′ ∈ {0, 1, . . . , Nκ,h}, if (3.8) holds with θ = 0
then (3.9) holds. Therefore, fixing Θ ∈ T2 by remarking that AΘ,α(κ, h) = FΘ(A0,α(κ, h)) with
FΘ(z) = z+ Θ so if (3.8) holds for θ = Θ then (3.8) holds for θ = 0 so (3.9) holds. This concludes the
proof.

By decomposing as follows

u =

Nκ,h∑
α=0

Uα, with Uα :=
∑

n∈Z2∩Aθ,α(κ,h)

une
in·x, (3.10)

we obtain

‖u‖4L4(T2) =
∥∥u2
∥∥2

L2(T2)
=

∫
T2

u2u2dx =

Nα,h∑
α,β,α′,β′=0

∫
T2

UαUβUα′ Uβ′dx. (3.11)

Moreover, for α, β, α′, β′ ∈ {0, 1, . . . , Nκ,h}, we have∫
T2

UαUβUα′ Uβ′dx =
∑

n∈Z2∩Aθ,α

∑
m∈Z2∩Aθ,β

∑
p∈Z2∩Aθ,α′

∑
q∈Z2∩Aθ,β′

unumupuq

∫
T2

eix·(n+m−p−q)dx.

In particular, if (3.8) does not hold, then
∫
T2 UαUβUα′ Uβ′dx = 0. Hence, from Lemma 3.7, we can

restrict the sum in (3.11) to the subset of indices (α, β, α′, β′) satisfying (3.9), i.e.

‖u‖4L4(T2) =
∑

α,β,α′,β′ satisfying (3.9)

∫
T2

UαUβUα′ Uβ′dx (3.12)
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In the following, we denote by C a positive numerical constant whose value may change from a line
to another. For (α, β, α′, β′) satisfying (3.9), Hölder’s inequality gives that∣∣∣∣∫

T2

UαUβUα′ Uβ′dx

∣∣∣∣ ≤ ‖Uα‖L4(T2) ‖Uβ‖L4(T2) ‖Uα′‖L4(T2) ‖Uβ‖L4(T2) ,

so∣∣∣∣∫
T2

UαUβUα′ Uβ′dx

∣∣∣∣ ≤ (‖Uα‖2L4(T2) +‖Uα′‖2L4(T2))(‖Uβ‖
2
L4(T2) +‖Uβ′‖2L4(T2)) if |α−α′|+ |β−β′| ≤ Q,

or∣∣∣∣∫
T2

UαUβUα′ Uβ′dx

∣∣∣∣ ≤ (‖Uα‖2L4(T2) +‖Uβ′‖2L4(T2))(‖Uβ‖
2
L4(T2) +‖Uα′‖2L4(T2)) if |α−β′|+ |β−α′| ≤ Q.

Therefore, we have from (3.12),

‖u‖4L4(T2) ≤ CQ
4

Nα,h∑
α=0

‖Uα‖2L4(T2)

2

. (3.13)

Let us estimate ‖Uα‖2L4(T2). By using Hölder’s inequality, Parseval’s equality then Cauchy-Schwarz
inequality we get

‖Uα‖L4(T2) ≤ C ‖Uα‖
1/2
L∞(T2) ‖Uα‖

1/2
L2(T2)

≤

 ∑
n∈Z2∩Aθ,α(κ,h)

|un|

1/2 ∑
n∈Z2∩Aθ,α(κ,h)

|un|2
1/4

‖Uα‖L4(T2) ≤ C|Z
2 ∩ Aθ,α(κ, h)|1/4 ‖Uα‖L2(T2) . (3.14)

We now need to bound the number of integral points in Aθ,α(κ, h). It is not difficult to see that
Aθ,α(κ, h) is included in a rectangle of height 1 + κ and width 1 + 3κ2h. Moreover, the number of
integral points in any rectangle of height H and width W is bounded by C max(H, 1) max(W, 1). Hence
recalling κh ≤ δ, we have

|Z2 ∩ Aθ,α(κ, h)| ≤ C(1 + κ)(1 + 3κ2h) ≤ 3C(1 + κ)(1 + κ2h). (3.15)

By gathering (3.13), (3.14), (3.15) and (3.10), we obtain

‖u‖4L4(T2) ≤ C(1 + κ)(1 + κ2h) ‖u‖4L2(T2) .

This concludes the proof of Proposition 3.5.

From Proposition 3.5, we can now prove the resolvent estimate of Proposition 3.4.

Proof. We split the proof into two cases.
First case: <(τ) ≤ C. The proof combines an energy estimate coupled to a Sobolev embedding.

We start from
(−∆ + 2iθ · ∇+ |θ|2 − τ)u = f in T2.

After multiplying by u, integrating on T2 and performing an integration by parts, we obtain

1

2
‖∇u‖2L2(Td) + 2i〈θ · ∇u, u〉L2(T2) + (|θ|2 − τ)‖u‖2L2(T2) = 〈f, u〉L2(T2).

By applying Hödler’s inequality and Young’s inequality to the real and imaginary parts, we deduce
that

‖∇u‖2L2(T2) + |θ|2 ‖u‖2L2(T2) −<(τ) ‖u‖2L2(T2) ≤ C ‖u‖L4(T2) ‖f‖L4/3(T2) + C ‖u‖2L2(T2) , (3.16)

|=(τ)| ‖u‖2L2(T2) ≤ ‖u‖L4(T2) ‖f‖L4/3(T2) . (3.17)

10



Since |=(τ)| ≥ 1, we get from (3.17) that

‖u‖2L2(T2) ≤ ‖u‖L4(T2) ‖f‖L4/3(T2) . (3.18)

Plugging (3.18) in (3.16), we obtain

‖u‖2H1(T2) ≤ C ‖u‖L4(T2) ‖f‖L4/3(T2) .

The Sobolev embedding H1(T2) ↪→ L4(T2) enables us to conclude.
Second case: <(τ) > C. First, let us define

∀f =
∑
n∈Z2

fne
in·x ∈ L2(T2), Pθ,τf :=

∑
n∈Z2

fn
(|n− θ|2 − τ)1/2

ein·x.

Let us prove that
∀f ∈ L2(T2), ‖Pθ,τf‖L4(T2) ≤ C ‖f‖L2(T2) . (3.19)

By calling u = Pθ,τf , we decompose u as follows

u =
∑

||n−θ|2−<(τ)|<1

fn
(|n− θ|2 − τ)−1/2

ein·x

︸ ︷︷ ︸
u0

+

+∞∑
j=1

∑
2j−1≤||n−θ|2−<(τ)|<2j

fn
(|n− θ|2 − τ)1/2

ein·x

︸ ︷︷ ︸
uj

.

From Proposition 3.5 with κ = 1 and h = (<(τ))−1/2, we get

‖u0‖L4(T2) ≤ C ‖u0‖L2(T2) ≤ C ‖f‖L2(T2) .

For 1 ≤ j < +∞, from Proposition 3.5 with κ = 2j/2, h = (<(τ))−1/2, we get

‖uj‖L4(T2) ≤ C(1 + κ)1/2 ≤ C2j/4 ‖uj‖L2(T2) .

Therefore, by combining the three previous equations, we obtain

‖u‖L4(T2) ≤ ‖u0‖L4(T2) +

+∞∑
j=1

‖uj‖L4(T2)

≤ C ‖f‖L2(T2) + C

+∞∑
j=1

2j/4 ‖uj‖L2(T2)

≤ C ‖f‖L2(T2) +

+∞∑
j=1

2−j/2

1/2+∞∑
j=1

2j
∑

2j−1≤||n−θ|2−Re(τ)|<2j

|fn|2

||n− θ|2 − τ |

1/2

≤ C ‖f‖L2(T2) ,

which concludes the proof of (3.19).
So, we deduce from (3.19) and [GV95, Lemme p.XVII-5] that

∀f ∈ L4/3(T2),
∥∥Pθ,τP ∗θ,τf∥∥L4(T2)

≤ C ‖f‖L4/3(T2) . (3.20)

Moreover, it is not difficult to see that Pθ,τP
∗
θ,τ coincides with (−∆ + 2iθ · ∇+ |θ|2 − τ)−1 on C∞c (T2)

that is dense in L4/3(T2), hence (3.20) leads to (3.5).

3.2 A priori estimates for the group generated by Hθ,V

This section is devoted to present a priori estimates for the group generated by Hθ,V . In the first
subsection, we begin by introducing useful stability results holding in any dimension. In the second
and third section, we state Strichartz estimates in the one and two dimensional cases.
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3.2.1 Stability results in L2 in Td

We first focus on the d-dimensional setting, i.e. we consider for T > 0{
i∂tv = (−∆ + 2iθ · ∇+ |θ|2 + V )v + f in (0, T )× Td,
v(0, ·) = v0 in Td. (3.21)

The next result relies on the conservation of the L2-norm and the well-posedness of (3.21).

Proposition 3.8. Let T > 0. For every v0 ∈ L2(Td), θ ∈ [0, 1]d and V ∈ L∞(Td,R), the solution v
to (3.21) with f = 0 satisfies

‖v(t)‖L2(Td) = ‖v0‖L2(Td) ∀t ∈ [0, T ]. (3.22)

Moreover, for every v0 ∈ L2(Td), f ∈ L1(0, T ;L2(Td)), θ ∈ [0, 1]d and V ∈ L∞(Td,R), the solution v
of (3.21) satisfies

‖v‖L∞(0,T ;L2(Td)) ≤ ‖v0‖L2(Td) + ‖f‖L1(0,T ;L2(Td)) . (3.23)

The following result is a stability result according to the parameters θ ∈ [0, 1]d and V ∈ L∞(Td).

Proposition 3.9. Assume that θn → θ in [0, 1]d and Vn ⇀
? V in L∞(Td,R) as n → +∞, then we

have
e−itHθn,Vnϕ −→

n→+∞
e−itHθ,V ϕ in L2(Td), ∀t ∈ [0, T ], ∀ϕ ∈ L2(Td). (3.24)

Proof. This is a direct application of Trotter-Kato approximation theorem, see [Paz83, Theorem 4.2],
using the convergence of the resolvent already stated in Proposition 3.2.

3.2.2 Strichartz estimates in T1

Now we focus on the 1-dimensional setting, i.e. we consider for T > 0{
i∂tv = (−∂2

x + 2iθ∂x + |θ|2 + V )v + f in (0, T )× T1,
v(0, ·) = v0 in T1.

(3.25)

Instrumental in the proof of the one-dimensional observability estimates for Schrödinger type equa-
tions are the following Strichartz type estimates, taken from [BBZ13, Proposition 2.1]:

Proposition 3.10 ([BBZ13, Proposition 2.1]). Let T > 0 and M > 0. There exists C = C(T,M) > 0
such that for all θ ∈ [0, 1], V ∈ L∞(T;R) with ‖V ‖L∞ ≤M and u0 ∈ L2(T),∥∥e−itHθ,V u∥∥

L∞(T;L2(0,T ))
≤ C‖u‖L2(T). (3.26)

Notice that Proposition 3.10 is a slightly modified version of [BBZ13, Proposition 2.1]. First, the
potential is assumed to be in L∞(T), which is a sufficient assumption for our purpose. On the other
hand, we claim that the constant in (3.26) can be taken uniformly with respect to V in BL∞(0,M).
This fact is clearly contained in the proof given by the authors of [BBZ13, Proposition 2.1].

The next result concerns Strichartz estimates for solutions to (3.25).

Proposition 3.11. Let T > 0 and M > 0. There exists C = C(T,M) > 0 such that for all θ ∈ [0, 1],
V ∈ L∞(T;R) with ‖V ‖L∞ ≤ M , v0 ∈ L2(T1) and f ∈ L1(0, T ;L2(T1)), the solution v to (3.25)
satisfies

‖v‖L∞(0,T ;L2(T1))∩L∞(T1;L2(0,T )) ≤ C
(
‖v0‖L2(T1) + ‖f‖L1(0,T ;L2(T1))

)
. (3.27)

Proof. On the first hand, thanks to (3.23), we have for all v0 ∈ L2(T1),

‖v‖L∞(0,T ;L2(T1)) ≤ ‖v0‖L2(T1) + ‖f‖L1(0,T ;L2(T1).

On the other hand, by using Duhamel’s formula, we have that

v(t) = e−itHθ,V v0 +

∫ T

0

1s<te
−i(t−s)Hθ,V f(s)ds.
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Then, by (3.22) and (3.26), we have

‖v‖L∞(T;L2
t (0,T )) ≤ C

(
‖v0‖L2(T2) +

∫ T

0

∥∥e−itHθ,V eisHθ,V f(s)
∥∥
L∞(T;L2

t (0,T ))
ds

)

≤ C

(
‖v0‖L2(T2) +

∫ T

0

∥∥eisHθ,V f(s)
∥∥
L2(T1)

ds

)
= C

(
‖v0‖L2(T1) + ‖f‖L1(0,T ;L2(T1))

)
,

which leads to the second estimate of (3.27).

3.2.3 Strichartz estimates in T2

Now we focus on the 2-dimensional setting, i.e. we consider for T > 0{
i∂tv = (−∆ + 2iθ · ∇+ |θ|2 + V )v + f in (0, T )× T2,
v(0, ·) = v0 in T2.

(3.28)

The next result concerns Strichartz estimates for solutions to (3.28).

Proposition 3.12. Let T > 0 and M > 0. There exists C = C(T,M) > 0 such that for every θ ∈
[0, 1]2, v0 ∈ L2(T2), V ∈ L∞(T2,R) with ‖V ‖L∞ ≤ M and f ∈ L4/3(T2;L2(0, T )) ∩ L1(0, T ;L2(T2)),
the solution v to (3.28) satisfies

‖v‖L∞(0,T ;L2(T2))∩L4(T2;L2(0,T )) ≤ C
(
‖v0‖L2(T2) + ‖f‖L4/3(T2;L2(0,T ))∩L1(0,T ;L2(T2))

)
.

Proposition 3.12 has already been proved in [BBZ13, Proposition 2.2] for θ = 0. Here, the main
novelty is to get a uniform a priori estimate with respect to the parameter θ ∈ [0, 1]2.

Remark 3.13. It is worth mentioning that the homogeneous case, i.e. f = 0 cannot be proved as
[BZ19, Remark (3) p.333]. Indeed, the starting point for obtaining such a case is the Zygmund’s
inequality (3.7). By setting v0 =

∑
λ>0 vλ with vλ =

∑
|n−θ|2=λ cne

in·x, we have that for v, solution

to (3.28) with f = 0 and V = 0,

‖v‖4L4(T2;L2(0,2π)) =

∫
T2

∫ 2π

0

∣∣∣∣∣∑
λ

eitλvλ(z)

∣∣∣∣∣
2

dt

2

dz. (3.29)

For θ = 0, the right hand side of (3.29) can then be bounded as follows, using Parseval equality,
Hölder’s inequality and Zygmund’s inequality (3.7)

∫
T2

∫ 2π

0

∣∣∣∣∣∑
λ

eitλvλ(z)

∣∣∣∣∣
2

dt

2

dz = (2π)2

∫
T2

(∑
λ

|vλ(z)|2
)2

dz = (2π)2

∫
T2

∑
λ,µ

|vλ(z)|2|vµ(z)|2dz

≤ (2π)2
∑
λ,µ

‖vλ‖2L4(T2) ‖vµ‖
2
L4(T2) ≤ C

∑
λ,µ

‖vλ‖2L2(T2) ‖vµ‖
2
L2(T2) ≤ C

(∑
λ

‖vλ‖2L2(T2)

)2

≤ C ‖v0‖2L2(T2) .

On the other hand, for θ 6= 0, one cannot use Parseval equality to first estimate the right hand side
of (3.29) because λ > 0 is not an integer anymore. A natural strategy would be to employ an Ingham’s
inequality, see [Ing36]. But for obtaining such an estimate, one needs to prove a gap condition on the set
{|n−θ|2 ; n ∈ Z2}, uniformly in θ. This turns to be false because |(1, 0)−(θ1, θ2)|2−|(0, 1)−(θ1, θ2)|2 =
2(θ2 − θ1)→ 0 as θ2 − θ1 → 0.

Actually, even for fixed θ, this gap fails to hold. Indeed, let us consider θ = (θ1, θ2), where θ1 and
θ2 are Q-linearly independent. It is well-known that, in that case, the set θ1Z + θ2Z is dense in R.
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For any ε > 0, we can therefore find two integers k, l ∈ Z such that 0 < |kθ1 + lθ2| < ε
4 . By defining

n = (k + 2l, l − 2k) and m = (2l − k,−l − 2k), we obtain

0 <
∣∣|n− θ|2 − |m− θ|2∣∣ = 4|kθ1 + lθ2| < ε.

This prevents {|n− θ|2 ; n ∈ Z2} to satisfy a gap.

Instrumental in the proof of Proposition 3.12 are the resolvent estimates (3.4) given by Proposition
3.3.

Proof of Proposition 3.12. Let θ ∈ [0, 1]2, v0 ∈ L2(T2) and f ∈ L4/3(T2;L2(0, T )) ∩ L1(0, T ;L2(T2)).
Let v be the solution of (3.28). We split the solution into two parts, i.e.

v(t) = e−itHθ,V v0 +

∫ t

0

e−i(t−s)Hθ,V f(s)ds =: v1(t) + v2(t).

First step: Bound on v1(t). The goal of this step is to obtain

‖v1(t)‖L∞(0,T ;L2(T2))∩L4(T2;L2(0,T )) ≤ C ‖v0‖L2(T2) . (3.30)

Firstly, from (3.22), we have ‖v1(t)‖L∞(0,T ;L2(T2)) = ‖v0‖L2(T2).

The second bound of (3.30) comes from a “TT ∗ argument”. More precisely, we set

T : v0 ∈ L2(T2) 7→ v1.

In order to prove that T is a bounded operator from L2(T2) to L4(T2;L2(0, T )), it suffices to prove
that TT ∗ is a bounded operator from L4/3(T2;L2(0, T )) to L4(T2;L2(0, T )), see for instance [GV95,
Lemme p.XVII-5].

First, a straightforward computation gives that

T ∗f =

∫ T

0

eisHθ,V f(s)ds ∈ L2(T2), ∀f ∈ L4/3(T2;L2(0, T )),

so

TT ∗f =

∫ T

0

e−i(t−s)Hθ,V f(s)ds =

∫ t

0

e−i(t−s)Hθ,V f(s)ds+

∫ T

t

e−i(t−s)Hθ,V f(s)ds =: T1f + T2f.

It remains to prove that T1 and T2 are bounded operators from L4/3(T2;L2(0, T )) to L4(T2;L2(0, T )).
We will only do it for T1 because the same arguments apply for treating T2.

Setting y = T1f , we observe that y(t, ·) solves the Schrödinger equation (3.28) with v0 = 0, so
setting Y (t) := e−t1(0,+∞)(t)y(t) and F (t) := e−tf(t)1(0,T )(t), the following equation is satisfied in
the distributional sense

i∂tY + iY = (−∆ + 2iθ · ∇+ |θ|2 + V )Y + F in (0,+∞)× T2. (3.31)

Therefore, taking the Fourier transform in the time variable of (3.31), we obtain the equation satisfied

by Ŷ ,
(−∆ + 2iθ · ∇+ |θ|2 + V + τ − i)Ŷ (τ) = −F̂ (τ) ∀τ ∈ R. (3.32)

Therefore one can apply (3.4) to (3.32), using that Im(τ − i) = 1 to get∥∥∥Ŷ (τ)
∥∥∥
L4(T2)

≤ C
∥∥∥F̂ (τ)

∥∥∥
L4/3(T2)

∀τ ∈ R. (3.33)

Hence, using Parseval equality, and reversing time integration and space integration because 4 ≥ 2 ≥
2/3, we get from (3.33) that

‖T1f‖L4(T2;L2(0,T )) ≤ C ‖Y ‖L4(T2;L2(Rt)) = C
∥∥∥Ŷ ∥∥∥

L4(T2;L2(Rτ ))
≤ C

∥∥∥Ŷ ∥∥∥
L2(Rτ ;L4(T2))

≤ C
∥∥∥F̂∥∥∥

L2(Rτ ;L4/3(T2))
≤ C

∥∥∥F̂∥∥∥
L4/3(T2;L2(Rτ ))

≤ C ‖F‖L4/3(T2;L2(Rt)) ≤ C ‖f‖L4/3(T2;L2(0,T )) ,
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which proves that T1 is bounded from L4/3(T2;L2(0, T )) to L4(T2;L2(0, T )). This concludes the proof
of the second bound of (3.30) hence the first step.

Second step: Bound on v2(t). The goal of this step is to obtain

‖v2‖L∞(0,T ;L2(T2))∩L4(T2;L2(0,T )) ≤ C ‖f‖L1(0,T ;L2(T2)∩L4/2(T2;L2(0,T )) .

The first bound is obtained as follows, for every t ∈ [0, T ],

‖v2(t)‖L2(T2)) ≤
∫ T

0

∥∥∥e−i(T−s)Hθ,V f(s)
∥∥∥
L2(T2)

≤
∫ T

0

‖f(s)‖L2(T2) ≤ ‖f‖L1(0,T ;L2(T2)) .

The second bound exactly comes from the boundedness of T1 from L4/3(T2;L2(0, T )) to L4(T2;L2(0, T )),
see the previous step.

This concludes the proof of the second step then the proof of Proposition 3.12.

4 Observability estimates in Td: from highly oscillating initial
data to L2 initial data

The goal of this section is to prove that it is sufficient to establish observability inequalities for highly
oscillating initial data to deduce the observability of L2 initial data. Note that this step holds for
all multi-dimensional torus Td. The first part consists in obtaining a weaker observability estimate,
i.e. the expected observability estimate up to a compact term by using a dyadic decomposition,
see Proposition 4.1 below. Then, the second part is devoted to remove this compact term by using
a compactness-uniqueness argument, see Proposition 4.2 below. Here, because we are considering
measurable observation sets, some arguments have to be changed as the unique continuation property
satisfied by the elliptic operator Hθ,V . It is worth mentioning that while Proposition 4.1 focuses on a
subset of L∞ potentials, Proposition 4.2 considers a compact subset of L∞ potentials.

4.1 Weaker observability estimate

Let d ≥ 1. For θ ∈ [0, 1]d, V ∈ L∞(Td,R) and ρ > 0, we define for all h > 0,

Πh,ρ,θ,V u0 = χ

(
h2Hθ,V − 1

ρ

)
u0,

where χ ∈ C∞c ((−1, 1),R) is equal to 1 in a neighborhood of 0.

Proposition 4.1. Let b ∈ L∞(Td,R+) be a non-negative real-valued function and S ⊂ L∞(Td,R) be a
bounded subset. If for any T > 0 there exist some positive constants C = C(T, S) > 0, ρ0 = ρ0(T, S) >
0 and h0 = h0(T, S) > 0 such that for all θ ∈ [0, 1]d and V ∈ S, we have

∀0 < h ≤ h0,∀0 < ρ ≤ ρ0,∀u0 ∈ L2(Td),

‖Πh,ρ,θ,V u0‖2L2(Td) ≤ C
∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V (Πh,ρ,θ,V u0)(z)
∣∣2 dzdt, (4.1)

then for any T > 0 there exists a positive constant C ′ = C ′(T, S) > 0 such that for all θ ∈ [0, 1]d and
V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
′

(∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V u0(z)
∣∣2 dzdt+ ‖u0‖2H−2(Td)

)
.

Proof. Let us assume that (4.1) holds for any time T > 0.
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Let us show that the following weaker observability estimates hold: for any T > 0 there exists a
constant C ′ > 0 such that for all θ ∈ [0, 1]d and V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V u0(z)
∣∣2 dzdt+ C‖u0‖2H−2(Td). (4.2)

The weaker observability estimate (4.2) will be deduced from the observability estimate for highly
oscillating initial data (4.1). The strategy is crucially inspired by [BZ19, Section 3.1]. Let us describe
in an heuristic way the strategy.

We first decompose dyadically the initial data, the low frequencies are then putting into the H−2-
norm of the initial data, whereas (4.1) is applied to high frequencies. Moreover, in order to reconstruct
the solution, in the right hand side of (4.2), the natural idea is to commute

√
b and Hθ,V that does

not work. This is why here we will crucially use that Dte
−itHθ,V = −Hθ,V e−itHθ,V with Dt = ∂t/i.

Therefore, one can use Dt

√
b =
√
bDt. Finally, because we are observing the solution in the interval

time (0, T ), one should commute 1(0,T ) and Dt, that does not work. This is why, before applying the
observability estimate, one may introduce a cut-off function ψ, whose support is contained in (0, T ),
then apply semi-classical calculus in the time variable in order to commute ψ and Dt. The remainder
terms would be put in the H−2-norm of the initial data.

Let T > 0. By assumptions, there exist ρ0 > 0, h0 > 0 such that (4.1) holds. Fix R > 1 such that
(R−1, R) ⊂ {r ∈ R ; χ((r− 1)/ρ0) = 1}. Then from [BCD11, Proposition 2.10], one can find a dyadic
partition of the unity as follows, there exist ϕ0 ∈ C∞c ((−1, 1); [0, 1]) and ϕ ∈ C∞c ((R−1, R); [0, 1]) such
that, denoting ϕk(r) = ϕ2(R−kr) for k ≥ 1,

∀r ∈ R+, ϕ2
0(r) +

+∞∑
k=1

ϕk(r) = 1. (4.3)

Notice that, since S is a bounded subset of L∞(Td), there exists M > 0 such that

∀V ∈ S, ‖V ‖L∞(Td) ≤M.

We therefore deduce from (3.1) that for every s ∈ R, there exist c′1, c
′
2 > 0 such that for every θ ∈ [0, 1]d

and V ∈ S,

c′1

+∞∑
k=0

R2ks ‖ϕk(Hθ,V )u0‖2L2(Td) ≤ ‖u0‖2Hs(Td) ≤ c
′
2

+∞∑
k=0

R2ks ‖ϕk(Hθ,V )u0‖2L2(Td) . (4.4)

Let ψ ∈ C∞c ((0, T ); [0, 1]) that satisfies ψ(t) = 1 on (T/3, 2T/3). Let us choose K ≥ 1 large enough
such that R−K ≤ h2

0. Then, we have that for every k ≥ K + 1, setting h = R−k/2, ϕk(Hθ,V ) coincides
with Πh,ρ0,θ,V ϕk(Hθ,V ). One can then use (4.1) on the time interval (T/3, 2T/3) to obtain

‖ϕk(Hθ,V )u(T/3)‖2L2(T2) ≤ C
∫
R
ψ(t)2

∥∥∥√bϕk(Hθ,V )u(t)
∥∥∥2

L2(T2)
dt ∀k ≥ K + 1. (4.5)

Now using that Dtu = −Hθ,V u and Dt

√
b =
√
bDt, we deduce from (4.5) that

‖ϕk(Hθ,V )u(T/3)‖2L2(T2) ≤ C
∥∥∥√bψ(t)ϕk(Dt)u

∥∥∥2

L2(Rt×T2)
∀k ≥ K + 1. (4.6)

Let ψ̃ ∈ C∞c ((0, T ); [0, 1]) such that ψ̃ = 1 on supp(ψ). Setting h = R−k/2, the semi-classical
parameter, from the semi-classical calculus on R, see Theorem A.4, (A.3) and (A.4), the asymptotic
expansion holds

ψ(t)ϕk(Dt) = ψ(t)ϕ2(hDt)

= ψ(t)ϕ2(hDt)ψ̃(t) + ψ(t)ϕ2(hDt)(1− ψ̃(t))

= ψ(t)ϕ2(hDt)ψ̃(t) + E(t, hDt)(1 + |t|2)−1(1 + |hDt|2)−1, (4.7)

16



where

E(t, hDt) = oph(c), c ∈ S(R2) and sup
(t,τ)∈R×R

|(1+t2)α(1+τ2)β∂γt ∂
δ
τ c(t, τ)| ≤ Cα,β,γ,δh3, α, β, γ, δ ∈ N.

Then, by using (4.6), (4.7), Theorem A.1, (A.1) and again Dtu = −Hθ,V u in (0, T ) we have

‖ϕk(Hθ,V )u(T/3)‖2L2(Td)

≤ C
∥∥∥√bϕk(Dt)ψ̃(t)u

∥∥∥2

L2(Rt×Td)
+ Ch6

∥∥(1 + t2)−1(1 + |hDt|2)−1u(t)
∥∥2

L2(Rt×Td)

≤ C
∥∥∥ϕk(Dt)ψ̃(t)

√
bu
∥∥∥2

L2(Rt×Td)
+ Ch6

∥∥(1 + t2)−1(1 + |hHθ,V |2)−1u(t)
∥∥2

L2(Rt×Td)
∀k ≥ K + 1.

Therefore, by summing for k ≥ K + 1 the preceding estimate, remembering that h = R−k/2, we get
from (3.1), (3.22), (4.3) and (4.4)

+∞∑
k=K+1

‖ϕk(Hθ,V )u(T/3)‖2L2(Td) ≤
∫
R
ψ̃(t)2

∥∥∥√bu(t)
∥∥∥2

L2(Td)
dt+ C

∥∥(1 + |Hθ,V |2)−1u(t)
∥∥2

L∞(Rt;L2(Td))

≤ C
∫ T

0

∥∥∥√bu(t)
∥∥∥2

L2(Td)
dt+ C

∥∥(1 + |Hθ,V |2)−1u0

∥∥2

L2(Td)

≤ C
∫ T

0

∥∥∥√bu(t)
∥∥∥2

L2(Td)
dt+ C ‖u0‖2H−2(Td) (4.8)

To sum up, we then have from (4.4) and (4.8)

‖u0‖2L2(Td) =

+∞∑
k=0

‖ϕk(Hθ,V )u0‖2L2(Td) ≤ C ‖u0‖2H−2(Td) +

+∞∑
k=K+1

∥∥∥e−i(T/3)Hθ,V ϕk(Hθ,V )u0

∥∥∥2

L2(Td)

≤ C ‖u0‖2H−2(Td) +

+∞∑
k=K+1

‖ϕk(Hθ,V )u(T/3)‖2L2(Td) ≤ C
∫ T

0

∥∥∥√bu(t)
∥∥∥2

L2(Td)
dt+ C ‖u0‖2H−2(Td) ,

which concludes the proof of (4.2).

4.2 Remove the compact term in the weaker observability estimate

Proposition 4.2. Let b ∈ L∞(Td) be a non-negative real-valued function and S ⊂ L∞(Td,R) be a
compact subset for the weak? topology. If for any T > 0 there exist some positive constants C =
C(T, S) > 0 such that for all θ ∈ [0, 1]d and V ∈ S, we have

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
′

(∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V u0(z)
∣∣2 dzdt+ ‖u0‖2H−2(Td)

)
. (4.9)

then for any T > 0 there exists a positive constant C ′ = C ′(T, S) > 0 such that for all θ ∈ [0, 1]d and
V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
′
∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V u0(z)
∣∣2 dzdt.

Proof. Let us assume that (4.9) holds for any time T > 0.

First step: an unique continuation property. Let us consider the following space

NT,θ,V =
{
u ∈ L2(Td); b(x)e−itHθ,V u(x) = 0 on [0, T ]× Td

}
,

with θ ∈ [0, 1]d and V ∈ S. First of all, let us show that the Hilbert space (NT,θ,V , ‖ ·‖L2(Td)) is a finite
dimensional space. Thanks to (4.9), we have that the norms ‖ · ‖L2(Td) and ‖ · ‖H−2(Td) are equivalent.
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As a consequence, one can readily show that the unit closed ball BL2(Td)(0, 1) ∩ NT,θ,V is compact,
thanks to the Rellich Theorem. In particular, the Riesz Theorem provides that the dimension of NT,θ,V
is finite.

Let us now show that NT,θ,V = {0}. To that end, we proceed by contradiction and assume
NT,θ,V 6= {0}. We begin by noticing that NT,θ,V is invariant by the action of Hθ,V . Indeed, if

u ∈ NT,θ,V , then for all 0 < ε < T , uε = e−iεHθ,V u−u
ε belongs to NT−ε,θ,V . Thus, by applying (4.9) at

time T − ε, we obtain that for all 0 < ε < T ,

‖uε‖L2(Td) ≤ C ′‖uε‖H−2(Td),

for some positive constant C ′ > 0. Since uε −→
ε→0+

Hθ,V u in D′(Td) and H−2(Td), it follows that

u ∈ D (Hθ,V ) (see for instance [Paz83, Section 1.1]) and

‖Hθ,V u‖L2(Td) ≤ C”‖u‖L2(Td),

for some positive constant C ′′ > 0. Moreover, since uε belongs to NT−ε,θ,V for all 0 < ε < T , we
deduce that Hθ,V u ∈ NT−δ,θ,V for all 0 < δ < T . Then, Hθ,V u ∈ NT,θ,V and NT,θ,V is invariant by the
action of Hθ,V . As a consequence, since Hθ,V|NT,θ,V is a self-adjoint operator on the finite dimensional

Hilbert space (NT,θ,V , ‖ · ‖L2(Td)), there exists a nontrivial function φ ∈ L2(Td) and λ ∈ R such that

(−∆ + 2iθ · ∇+ |θ|2 + V )φ = λφ and φ ∈ NT,θ,V .

In particular, φ is an eigenfunction of (−∆ + 2iθ · ∇ + |θ|2 + V ) which vanishes on a set of positive
measure. By the unique continuation result from [Reg01, Theorem 1.2], we deduce that φ ≡ 0. This
provides a contradiction and consequently, NT,θ,V = {0} .

Second step: we remove the H−2-norm in the weak observability estimate. By now, we establish
that there exists a positive constant C ′ = C ′(T,M) > 0 such that for all θ ∈ [0, 1]d and V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
′
∫ T

0

∫
Td
a(z)

∣∣e−itHθ,V u0(z)
∣∣2 dzdt.

Once again, we proceed by contradiction and it provides sequences (un)n∈N ⊂ L2(Td) with ‖un‖L2(Td) =

1 for all n ∈ N, (θn)n∈N ⊂ [0, 1]d and (Vn)n∈N ⊂ S, such that for all n ∈ N∗,∫ T

0

∫
Td
b(z)

∣∣e−itHθn,Vnun(z)
∣∣2 dzdt ≤ 1

n
. (4.10)

Since (un)n∈N is bounded in L2(Td), there exists f ∈ L2(Td) such that, up to a subsequence, (un)n∈N
weakly converges to f in L2(Td) and strongly converges to f in H−2(Td). Thanks to the weak observ-
ability estimate (4.9), it follows that

1 ≤ C‖f‖2H−2(Td). (4.11)

On the other hand, since (θn)n∈N is bounded and S is weakly? compact in L∞(Td), there exist θ ∈
[0, 2π]d and V ∈ S such that, up to a subsequence:

θ →
n→+∞

θ and Vn ⇀?

n→+∞
V in L∞(Td).

We then get that for all t ∈ [0, T ],

e−itHθn,Vnun ⇀
n→+∞

e−itHθ,V f weakly in L2. (4.12)

Indeed, for obtaining (4.12), we proceed as follows, for ϕ ∈ L2(Td),

〈e−itHθn,Vnun − e−itHθ,V f, ϕ〉 = 〈(e−itHθn,Vn − e−itHθ,V )un, ϕ〉+ 〈e−itHθ,V un − e−itHθ,V f, ϕ〉
= 〈un, (eitHθn,Vn − eitHθ,V )ϕ〉+ 〈un − f, eitHθ,V ϕ〉,

18



the first term goes to 0 as n→ +∞ according to the stability result (3.24) and the second term goes
to 0 as n→ +∞ by weak convergence.

From (4.12) and (4.10), we then deduce that for all t ∈ [0, T ],∫ T

0

∫
Td
b(z)

∣∣e−itHθ,V f(z)
∣∣2 dzdt ≤ lim inf

n→+∞

∫ T

0

∫
Td
b(z)

∣∣e−itHθn,Vnun(z)
∣∣2 dzdt = 0,

that implies that f ∈ NT,θ,V = {0}. This contradicts (4.11) and ends the proof of Proposition 4.1.

5 Proof of the uniform observability inequality on T2

This section is devoted to the proof of Theorem 1.4. It is adapted from the one given by Burq and
Zworski in [BZ19], in the case V = 0 and θ = 0. Let us recall that two main differences appear
in comparison with [BZ19]: the presence of the parameter θ ∈ [0, 1]2 and the bounded potential
V ∈ L∞(T2) in the operator Hθ,V . These difficulties have already been handled in Sections 3 and 4.
Here, we continue keeping track of θ to ensure that the observability constants do not depend on θ.

In a first part, we prove one-dimensional observability estimates (for highly oscillating data) thanks
to semi-classical defect measures. The second part consists in proving two-dimensional observability
estimates (also for highly oscillating data) using semi-classical defect measures and a reduction of the
dimension argument based on ergodicity arguments.

Before continuing, let us state a useful easy lemma, that will be used in the next two parts. It
enables us to pass from L∞-observable sets to L1-observable sets in the multi-dimensional setting.

Lemma 5.1. Let T > 0 and S ⊂ L∞(Td). Assume that for every B ∈ L∞(Td,R+) \ {0}, there exists
a positive constant C > 0 such that for all θ ∈ [0, 2π]d and V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
∫ T

0

∫
T1

B(x)
∣∣e−itHθ,V u0(x)

∣∣2 dxdt. (5.1)

Then, for every b ∈ L1(Td,R+)\{0}, there exists a positive constant C > 0 such that for all θ ∈ [0, 2π]d

and V ∈ S,

∀u0 ∈ L2(Td), ‖u0‖2L2(Td) ≤ C
∫ T

0

∫
Td
b(x)

∣∣e−itHθ,V u0(x)
∣∣2 dxdt. (5.2)

Proof. Indeed, if b ∈ L1(Td,R+) \ {0} then, there exists R > 0 such that
∣∣{x ∈ Td; b(x) < R}

∣∣ > 0.
Thus, B = 1l(0,R)(b)b ∈ L∞(Td) \ {0} and for all u0 ∈ L2(Td), we have that∫ T

0

∫
Td
B(x)

∣∣e−itHθ,V u0(x)
∣∣2 dxdt ≤

∫ T

0

∫
Td
b(x)

∣∣e−itHθ,V u0(x)
∣∣2 dxdt.

Conjugating the previous estimate with (5.1) leads to (5.2).

5.1 One dimensional observability estimates

This section is devoted to prove the following one dimensional weak observability estimates for smooth
potentials.

Proposition 5.2. Let b ∈ L∞(T1) \ {0} be a non-negative function, M > 0 and T > 0. There exists
a positive constant C > 0 such that for all θ ∈ [0, 1] and V ∈ C∞(T1,R) with ‖V ‖L∞ ≤M ,

∀u0 ∈ L2(T1), ‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣e−itHθ,V u0(x)

∣∣2 dxdt+ C‖u0‖2H−2(T1).

Recall the notation of the operator Hθ,V = −∂2
x + 2iθ · ∂x + |θ|2 + V (x) that will be used in the

sequel of this part.
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Proof. Thanks to Proposition 4.1, it is sufficient to establish that there exist some positive constants
C = C(T,M) > 0, ρ0 = ρ0(T ) > 0 and h0 = h0(T ) > 0 such that for all θ ∈ [0, 1] and V ∈ C∞(T1,R)
with ‖V ‖L∞ ≤M , we have

∀0 < h ≤ h0,∀0 < ρ ≤ ρ0,∀u0 ∈ L2(T1),

‖Πh,ρ,θ,V u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣e−itHθ,V (Πh,ρ,θ,V u0)(x)

∣∣2 dxdt.
To that end, let us proceed by contradiction. Assume that there exist some sequences (hn)n≥0 ⊂ (0, 1],
(ρn)n≥0 ⊂ R∗+, (Vn)n≥0 ⊂ C∞(T1,R), (θn)n≥0 ⊂ [0, 1] and (un)n≥0 ⊂ L2(T1) satisfying:

hn, ρn −→
n→+∞

0, ‖Vn‖L∞ ≤M, vn = Πhn,ρn,θn,Vnun with ‖vn‖L2 = 1

and ∫ T

0

∫
T1

b(x)
∣∣e−itHθn,Vn vn(x)

∣∣2 dxdt −→
n→+∞

0. (5.3)

By definition, the family (un)n≥0 satisfies the (hn)-oscillating property (A.6). By applying Proposi-
tion A.8, there exists a finite measure µ ∈ L∞(R,M+(T ∗T)) such that, up to a subsequence: for all
ϕ ∈ L1(R) and a ∈ C∞c (T× R),

lim
n→+∞

∫
R
ϕ(t)〈ophn(a)e−itHθn,Vn vn, e

−itHθn,Vn vn〉L2(Td)dt =

∫
R×T∗T1

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt, (5.4)

and the measure µ satisfies

∀s ∈ R, ∂s

∫
R

∫
T∗T1

ϕ(t)a(x+ sξ, ξ)µ(t, dx, dξ)dt = 0, (5.5)

for all ϕ ∈ L1(R) and a ∈ C∞c (T× R). Moreover, the following properties hold

∀t0, t1 ∈ R, µ([t0, t1]× T1 × R) = |t1 − t0| and Suppµ ⊂ R× T1 × {−1, 1}.

Let us define the measure

µT (dx) =

∫ T

0

∫
Rξ
µ(t, dx, dξ)dt.

As a consequence of Proposition 3.10, we show that∫
T
b(x)µT (dx) = 0.

To that end, let us first check that there exists f ∈ L∞(T) such that µT = f(x)dx. Indeed, we obtain
from (5.4) and (3.26) that for all a ∈ C∞c (T)∫

T
a(x)µT (dx) = lim

n→+∞

∫
R

∫
T
a(x)

∣∣e−itHθn,Vn vn∣∣2 (x)dxdt ≤ C‖a‖L1(T),

and then, µT ∈
(
L1(T)

)′
= L∞(T). Now, let (bp)p∈N ∈ C∞c (T)N be a sequence converging to b in L1(T).

Notice that since µT = f(x)dx ∈ L∞, we readily have
∫
T b(x)µT (dx) = limp→+∞

∫
T bp(x)µT (dx). On

the other hand,∣∣∣∣∫
T
bp(x)µT (dx)

∣∣∣∣ = lim
n→+∞

∣∣∣∣∣
∫ T

0

∫
T
bp(x)

∣∣e−itHθn,Vn vn∣∣2 (x)dxdt

∣∣∣∣∣
≤ lim
n→+∞

∫ T

0

∫
T
b(x)

∣∣e−itHθn,Vn vn∣∣2 (x)dxdt+ C‖b− bp‖L1(T).
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We deduce from the last inequality and (5.3) that∫
T
b(x)µT (dx) = lim

p→+∞

∣∣∣∣∫
T
bp(x)µT (dx)

∣∣∣∣ = 0.

Finally, let us notice that the invariance property (5.5) leads to

∂xµT = 0.

Let us check this fact. Thanks to the fact that

Suppµ ⊂ R× T1 × {−1, 1},

it is sufficient to prove that for all a ∈ C∞c (T1 × R) with

(Supp a) ∩ (T1 × {−1, 1}) ⊂ T1 × {−1} or (Supp a) ∩ (T1 × {−1, 1}) ⊂ T1 × {1},

and for all φ ∈ L1(R), ∫
R

∫
T1×R

φ(t)∂xa(x, ξ)µ(t, dx, dξ) = 0.

For example, let us deal with the case when (Supp a) ∩ (T1 × {−1, 1}) ⊂ T1 × {1}. Thanks to the
invariance property (5.5), we have for all φ ∈ L1(R) and for all s ∈ R,∫

R

∫
T1×R

φ(t)∂xa(x, ξ)dµ(t, dx, dξ) =

∫
R

∫
T1×{1}

φ(t)∂xa(x+ sξ, ξ)µ(t, dx, dξ)

=

∫
R

∫
T1×{1}

φ(t)∂xa(x+ s, 1)µ(t, dx, dξ).

By using anew the invariance property (5.5) and the fact that ∂xa(x+ s, 1) = ∂sa(x+ s, 1), it follows
that ∫

R

∫
T1×R

φ(t)∂xa(x, ξ)dµ(t, dx, dξ) =

∫
R

∫
T1×{1}

φ(t)∂sa(x+ s, ξ)µ(t, dx, dξ)

= ∂s

∫
R

∫
T1×{1}

φ(t)a(x+ sξ, ξ)µ(t, dx, dξ)∫
R

∫
T1×R

φ(t)∂xa(x, ξ)dµ(t, dx, dξ) = 0.

This proves that ∂xµT = 0, which means that µT = cdx, with c > 0 since µT (T1) = T > 0.
This implies, in particular, that

c‖b‖L1(T) =

∫
T
b(x)µT (x) = 0.

This is a contradiction since b 6= 0 and this ends the proof of Proposition 5.2.

Thanks to Proposition 5.2, we can establish the following result which provides one-dimensional
observability estimates for Schrödinger equations with L∞-potential and source term:

Corollary 5.3. Let b ∈ L1(T1,R+) \ {0} be a non-negative function, M > 0, and T > 0. There
exists a positive constant C > 0 such that for all θ ∈ [0, 1], V ∈ L∞(T1;R) with ‖V ‖L∞(T1,R) ≤ M ,
u0 ∈ L2(T1) and f ∈ L1((0, T ), L2(T1)), the mild solution u to{

i∂tu = (−∂2
x + 2iθ · ∂x + |θ|2 + V (x))u+ f in (0, T )× T1,

u(0, ·) = u0 in T1.

satisfies the observability estimate

‖u‖2L∞((0,T );L2(T1)) ≤ C

(∫ T

0

∫
T1

b(x)|u(t, x)|2dxdt+ ‖f‖2L1((0,T ),L2(T1))

)
.

21



Proof. Let us first deal with the case f = 0 and b ∈ L∞(T1,R+) \ {0}. According to Proposition 4.2,
since BL∞(0,M) is weakly? compact in L∞(T1), it is sufficient to show that there exists C > 0 such
that for all θ ∈ [0, 1] and V ∈ L∞(T1,R) with ‖V ‖L∞(T1) ≤M ,

∀u0 ∈ L2(T1), ‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)|u(t, x)|2dx dt+ C‖u0‖2H−2(T1).

From Proposition 5.2, there exists a positive constant C > 0 such that for all θ ∈ [0, 1], V ∈ C∞(T1,R)
with ‖V ‖L∞ ≤M and u0 ∈ L2(T1),

‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣∣e−it(−∂2

x+2iθ·∂x+|θ|2+V (x))u0(x)
∣∣∣2 dxdt+ C‖u0‖2H−2(T1). (5.6)

Let V ∈ L∞(T1,R). One can find a sequence (Vn)n∈N ⊂ C∞(T1,R) satisfying

∀n ∈ N, ‖Vn‖L∞(T1) ≤M and Vn −→
n→+∞

V for the weak? topology of L∞.

Moreover, we obtain from (5.6) that for all n ∈ N, θ ∈ [0, 1] and u0 ∈ L2(T1,R),

‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣∣e−it(−∂2

x+2iθ·∂x+|θ|2+Vn(x))u0(x)
∣∣∣2 dxdt+ C‖u0‖2H−2(T1).

We therefore deduce from the above estimates, together with the stability result given by Proposi-
tion 3.24 and the dominated convergence Theorem, that for all θ ∈ [0, 1] and u0 ∈ L2(T1),

‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣∣e−it(−∂2

x+2iθ·∂x+|θ|2+V (x))u0(x)
∣∣∣2 dxdt+ C‖u0‖H−2(T1).

Since BL∞(0,M) is weakly? compact in L∞(T1), we are now able to conclude from Proposition 4.2
that for all θ ∈ [0, 1], V ∈ L∞(T1,R) with ‖V ‖L∞ ≤M and u0 ∈ L2(T1),

‖u0‖2L2(T1) ≤ C
∫ T

0

∫
T1

b(x)
∣∣∣e−it(−∂2

x+2iθ·∂x+|θ|2+V (x))u0(x)
∣∣∣2 dxdt. (5.7)

Notice that, thanks to Lemma 5.1, the observability estimates (5.7) holds true for b ∈ L1(T1,R+)\{0}.
Let us now consider the general case. We split u into two terms, the one coming from the initial

data and the second coming from the source term, we have

u(t) = e−itHθ,V u0 +

∫ t

0

e−i(t−s)Hθ,V f(s)ds. (5.8)

Taking the square of the L2(T1)-norm on both sides of the previous equality, we have that

‖u(t)‖2L2(T1) ≤ 2
∥∥e−itHθ,V u0

∥∥2

L2(T1)
+ 2

∥∥∥∥∫ t

0

e−i(t−s)Hθ,V f(s)ds

∥∥∥∥2

L2(T1)

.

Then, from the Minkowski inequality, the conservation of the L2-norm (3.22) and the observability
inequality for the homogeneous equation (5.7), we deduce that

‖u(t)‖2L2(T1) ≤ 2 ‖u0‖2L2(T1) + 2

(∫ t

0

‖f(s)‖L2(T1) ds

)2

≤ C
∫ T

0

∫
T1

b(x)|e−it
′Hθ,V u0|2dt′dx+ C‖f‖2L1((0,T ),L2(T1)).
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Now we plug the Duhamel formula (5.8) in the right hand side of the previous estimate, using Fubini
theorem, we obtain for all t ∈ (0, T )

‖u(t)‖2L2(T1)

≤ C
∫ T

0

∫
T1

b(x)|u(t′)|2dt′dx+ C

∫ T

0

∫
T1

b(x)

∣∣∣∣∣
∫ t′

0

e−i(t
′−s)Hθ,V f(s)ds

∣∣∣∣∣
2

dt′dx+ C‖f‖2L1((0,T ),L2(T1))

≤ C
∫ T

0

∫
T1

b(x)|u(t′)|2dt′dx+ C ‖b‖L1(T1)

∥∥∥∥∥
∫ t′

0

e−i(t
′−s)Hθ,V f(s)ds

∥∥∥∥∥
2

L∞(T1;L2(0,T ))

+ C‖f‖2L1((0,T ),L2(T1)).

Moreover, the Strichartz estimates (3.27) given by Proposition 3.11 shows that∥∥∥∥∥
∫ t′

0

e−i(t
′−s)Hθ,V f(s)ds

∥∥∥∥∥
2

L∞(T1;L2(0,T ))

≤ C‖f‖2L1((0,T ),L2(T1)).

Then, it follows that

‖u‖2L∞(0,T ;L2(T1)) ≤ C
∫ T

0

∫
T1

b(x)|u(t)|2dtdx+ C‖f‖2L1((0,T ),L2(T1)),

which concludes the proof of Corollary 5.3.

5.2 Two-dimensional observability estimates

This section is devoted to the proof of Theorem 1.4. It is divided into two parts. The first one
establishes uniform observability estimates for smooth potentials, belonging to a relative compact
subset of L4(T2). In the second part, we deduce the observability estimates for L∞-potentials from
the smooth case and the stability result of Proposition 3.9. Without loss of generality, according to
Lemma 5.1, we can assume that b ∈ L∞(T2).

5.2.1 Observability estimates for smooth potentials

In this section, we prove the following proposition which provides weak observability estimates for
smooth potentials:

Proposition 5.4. Let T > 0, M > 0, b ∈ L∞(T2,R) \ {0} be a non-negative function and K ⊂
C∞(T2) ∩ BL∞(0,M) be a relatively compact subset of L4(T2,R). There exists a positive constant
C = C(T, b,M,K) > 0 such that for every real-valued potential V ∈ K, θ ∈ [0, 1]2 and v0 ∈ L2(T2),

‖v0‖2L2(T2) ≤ C
∫ T

0

∫
T2

b(z)|e−itHθ,V v(t, z)|2dzdt+ C‖u0‖2H−2(T2).

Let M > 0, T > 0 and K ⊂ C∞(T2) ∩ BL∞(0,M) be a relatively compact subset of L4(T2,R).
Thanks to Proposition 4.1, it is sufficient to establish that there exist some positive constants C =
C(T, b,M,K) > 0, ρ0 = ρ0(T ) > 0 and h0 = h0(T ) > 0 such that for all θ ∈ [0, 1]2 and V ∈ K, we have

∀0 < h ≤ h0,∀0 < ρ ≤ ρ0,∀u0 ∈ L2(T2),

‖Πh,ρ,θ,V u0‖2L2(T2) ≤ C
∫ T

0

∫
T2

b(z)
∣∣e−itHθ,V (Πh,ρ,θ,V u0)(z)

∣∣2 dzdt,
where Hθ,V = −∆ + 2iθ · ∇+ |θ|2 + V .

To that end, let us proceed by contradiction. Assume that there exist some sequences (hn)n∈N ⊂
(0, 1], (ρn)n∈N ⊂ R∗+, (Vn)n∈N ⊂ K, (θn)n∈N ⊂ [0, 1]2 and (un)n∈N ⊂ L2(T2) satisfying:

hn, ρn −→
n→+∞

0, vn = Πhn,ρn,θn,Vnun with ‖vn‖L2 = 1

23



and ∫ T

0

∫
T2

b(z)
∣∣e−itHθn,Vn vn(z)

∣∣2 dzdt −→
n→+∞

0. (5.9)

Since K is relatively compact in L4(T2), up to a subsequence, (Vn)n∈N is a Cauchy sequence in L4(T2).
Let us consider a small parameter δ > 0, to be chosen later. There exists pδ ∈ N such that

‖Vn − Vpδ‖L4(T2) ≤ δ ∀n ≥ pδ. (5.10)

By definition, the family (vn)n∈N satisfies the (hn)-oscillating property (A.6). We can therefore apply
Proposition A.8 which provides a finite measure µ ∈ L∞(R,M+(T ∗T2)) such that, up to a subsequence:
for all ϕ ∈ L1(R) and a ∈ C∞c (T2 × R2),

lim
n→+∞

∫
R
ϕ(t)〈ophn(a)e−itHθn,Vn vn, e

−itHθn,Vn vn〉L2(T2)dt =

∫
R×T∗T2

ϕ(t)a(z, ξ)µ(t, dz, dζ)dt. (5.11)

Moreover, the measure µ satisfies

∀s ∈ R, ∂s

∫
R

∫
T∗T2

ϕ(t)a(z + sζ, ζ)µ(t, dz, dζ)dt = 0, (5.12)

for all ϕ ∈ L1(R) and a ∈ C∞c (T2 × R2). Furthermore, the following properties hold

∀t0, t1 ∈ R, µ([t0, t1]× T2 × R2) = |t1 − t0| and Suppµ ⊂ R× T2 × S1.

Let us define the measure µT ∈M+(T ∗T2) by

µT (dz, dζ) =

∫ T

0

µ(t, dz, dζ)dt.

We divide the remainder of the proof into six steps.

First step: regularity property for µT .
We have from (5.11), together with Proposition A.8 assertion (ii), that for all a ∈ C∞c (T2),∫

T2×R2

a(z)µT (dz, dζ) = lim
n→+∞

∫ T

0

∫
T2

a(z)
∣∣e−itHθn,Vn vn(z)

∣∣2 dzdt.
Consequently, we obtain for all a ∈ C∞c (T2),∣∣∣∣∫

T2×R2

a(z)µT (dz, dζ)

∣∣∣∣ = lim
n→+∞

∣∣∣∣∣
∫ T

0

∫
T2

a(z)
∣∣e−itHθn,Vn vn(z)

∣∣2 dz∣∣∣∣∣
≤ ‖a‖L2(T2)

∥∥e−itHθn,Vn vn∥∥2

L4(T2,L2(0,T ))

≤ CT ‖a‖L2(T2),

where the last inequality follows from the Strichartz type estimates given by Proposition 3.12. It
follows from the Riesz representation Theorem that there exists a non-negative function gT ∈ L2(T2)
such that for all a ∈ C∞c (T2), ∫

T2×R2

a(z)µT (dz, dζ) =

∫
T2

a(z)gT (z)dz.

Now, let (bp)p∈N ∈ C∞c (T2)N be a sequence converging to b in L2(T2). Notice that since gT ∈ L2,
we readily have

∫
T2 b(z)gT (z)dz = limp→+∞

∫
T bp(z)gT (z)dz. On the other hand,∣∣∣∣∫

T2

bp(z)gT (z)dz

∣∣∣∣ = lim
n→+∞

∣∣∣∣∣
∫ T

0

∫
T
bp(z)

∣∣e−itHθn,Vn vn∣∣2 (z)dzdt

∣∣∣∣∣
≤ lim
n→+∞

∫ T

0

∫
T
b(z)

∣∣e−itHθn,Vn vn∣∣2 (z)dzdt+ C‖b− bp‖L1(T2).
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We deduce from the last inequality and (5.9) that∫
T2×R2

b(z)µT (dz, dζ) =

∫
T2

b(z)gT (z)dz = 0. (5.13)

Second step: Ergodicity property. We define the set ΣR\Q of irrational directions on the torus T2

ΣR\Q :=
{

(z, ζ) ∈ T ∗T2; |ζ| = 1, Z2 ∩ {ζ}⊥ = {0}
}
,

and ΣQ = ΣcR\Q the set of rational directions. The set ΣR\Q is clearly invariant by the flow:

∀(z, ζ) ∈ ΣR\Q,∀s ∈ R, (z + sζ, ζ) ∈ ΣR\Q. (5.14)

Let us show that µT (ΣR\Q) = 0. Let (bp)p∈N ⊂ C∞c (T2;R+) such that bp −→
p→+∞

b in L2(T2). Clearly,

we have
〈bp〉 −→

p→+∞
〈b〉,

where 〈b〉 =
∫
T2 b(x)dx. Since 〈b〉 = ‖b‖L1(T2) > 0, for p sufficiently large, we have 〈bp〉 ≥

‖b‖L1(T2)

2 > 0.
Furthermore, by unique ergodicity of the flow z 7−→ z + sζ, the following convergence holds: for all
p ∈ N,

∀(z, ζ) ∈ ΣR\Q, 〈bp〉S(z, ζ) :=
1

S

∫ S

0

bp(z + sζ)ds −→
S→+∞

〈bp〉.1

Consequently, we obtain from the Fatou’s lemma that

0 ≤ µT (ΣR\Q)〈bp〉 =

∫
ΣR\Q

〈bp〉µT (dz, dζ) =

∫
ΣR\Q

lim inf
S→+∞

〈bp〉S(z, ζ)µT (dz, dζ)

≤ lim inf
S→+∞

∫
ΣR\Q

〈bp〉S(z, ζ)µT (dz, dζ). (5.15)

By (5.12) and (5.14), µT (dz, dζ) and ΣR\Q are invariant by the flow, it follows that for all S > 0,∫
ΣR\Q

〈bp〉S(z, ζ)µT (dz, dζ) =
1

S

∫ S

0

∫
ΣR\Q

bp(z + sζ, ζ)µT (dz, dζ) =

∫
ΣR\Q

bp(z)µT (dz, dζ). (5.16)

On the other hand, (5.13) shows that

0 ≤

∣∣∣∣∣
∫

ΣR\Q

bp(z)µT (dz, dζ)

∣∣∣∣∣ =

∣∣∣∣∣
∫

ΣR\Q

bp(z)− b(z)µT (dz, dζ)

∣∣∣∣∣ ≤
∫
T2

|bp(z)− b(z)|gT (z)dz −→
p→+∞

0.

(5.17)
Finally, by gathering (5.15), (5.16) and (5.17), we obtain that

0 ≤ µT (ΣR\Q) ≤ 2

‖b‖L1

∣∣∣∣∣
∫

ΣR\Q

bp(z)µT (dz, dζ)

∣∣∣∣∣ −→p→+∞
0,

providing µT (ΣR\Q) = 0. Consequently, µT (ΣQ) = T > 0 and since
{
ζ ∈ S1; ∃z ∈ T2, (z, ζ) ∈ ΣQ

}
is

a countable set, there exists ζ0 ∈ R2 such that

µT (T2 × {ζ0}) > 0 and ζ0 =
(n,m)√
n2 +m2

for some (n,m) ∈ Z2.

Third step: a change of variables. This step is devoted to show that, up to a change of variables,
we can assume that ζ0 = (0, 1). Let F : R2 −→ R2 be the isometry defined by

∀(x1, x2) ∈ R2, F (x1, x2) = x1ξ
⊥
0 + x2ζ0,

1To prove this convergence, one can check it for trigonometric polynomials and then conclude by a density argument.
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where ζ⊥0 = (−m,n)√
n2+m2

. One can readily verify that for any function u periodic with respect to (2πZ)2,

the function F ∗u is periodic with respect to (AZ)2, with A = 2π
√
n2 +m2. Moreover, if u(t, ·) is

solution to the Schrödinger equation:{
i∂tu = (−∆ + 2iθ · ∇+ |θ|2 + V (y))u in (0, T )× T2,
u(0, ·) = u0 in T2,

then, v(t, ·) = F ∗u(t, ·) is solution to the Schrödinger equation posed on R2/(AZ)2:{
i∂tv = (−∆ + 2iF−1(θ) · ∇+ |θ|2 + F ∗V (y))v in (0, T )× R2/(AZ)2,
v(0, ·) = F ∗u0 in R2/(AZ)2.

(5.18)

As a consequence, if we define wn = F ∗vn then,

∀t ∈ R, F ∗
(
e−it(−∆+2iθn·∇+|θn|2+Vn)vn

)
= e−it(−∆+2iF−1(θn)·∇+|θn|2+F∗Vn)wn.

In the following, the new torus R2/(AZ)2 is still denoted T2. Up to a subsequence, associated to this
family of solutions of the Schrödinger equation (5.18) with initial data (wn)n∈N is a semiclassical defect
measure ν ∈ L∞(R,M+(T ∗T2)) satisfying:

• for all t0, t1 ∈ R, ν([t0, t1]× T2 × R2) = A2|t1 − t0| and Supp ν ⊂ R× T2 × S1,

• νT (T2 × {(0, 1)}) > 0, with νT (dz, dζ) =
∫ T

0
ν(t, dz, dζ)dt.

In other words, we are in the same situation as in the second step, with ζ0 = (0, 1). For the sake
of conciseness, we keep in the remainder of the proof the notations adopted in the second step and
assume that ζ0 = (0, 1).

Fourth step: localization around the rational direction ζ0. In this step, we localize the semiclassical
defect measure µ around the rational direction ζ0 = (0, 1). For m ∈ N∗, we define the following set of
rational directions

ΣmQ :=

{
(z, ζ) ∈ T2 × S1; ζ =

(p, q)√
p2 + q2

, p2 + q2 ≤ m, pgcd(p, q) = 1

}
.

Let ε > 0 be a small positive real number, to be chosen later. By denoting ΣmR\Q =
(
ΣmQ
)c

, we have

ΣQ =
⋃
m∈N∗ ΣmQ so ΣR\Q = ΣcQ =

⋂
m∈N∗(Σ

m
Q )c =

⋂
m∈N∗ ΣmR\Q, with Σm+1

R\Q ⊂ ΣmR\Q for all m ∈ N∗.
Then, the second step shows that

lim
m→+∞

µT

(
ΣmR\Q

)
= µT

(
ΣR\Q

)
= 0.

In particular, this provides a positive integer mε ∈ N∗ such that µT

(
ΣmεR\Q

)
< ε. Since the projection

of ΣmεQ onto S1 is a discrete set, we can choose χε ∈ C∞c (R2) such that

χε((0, 1)) = 1, Suppχε ⊂ B((0, 1); ε) and ΣmεQ ∩
(
T2 × Suppχε

)
= T2 × {(0, 1)},

where B((0, 1); ε) stands for the Euclidean ball of R2 centered at (0, 1) with radius ε.

Fifth step: a normal form argument. This step consists in applying a normal form argument in
order to reduce the study to a Schrödinger equation with a one-variable potential. The following
proposition is an adaptation of [BBZ13, Proposition 4.4] (see also [BZ12, Corollary 2.6]).

Proposition 5.5. There exist three bounded families (Qn,δ)n∈N, (Rn,δ)n∈N, (Wn,δ)n∈N in L(L2(T2))
such that for all n ∈ N,

(I + hnQn,δ)Hθn,Vpδχε(hnD) =
(
Hθn,〈Vpδ 〉y (I + hnQn,δ) + hnWn,δDx

)
χε(hnD) + hnRn,δ,
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where 〈Vpδ〉y(x) =
∫
T1 Vpδ(x, y)dy and D = Dz = (Dx, Dy) = 1

i∇. More precisely, there exist a positive
constant C > 0 independent on δ and a positive constant Cδ > 0 such that for all n ∈ N,

‖Qn,δ‖L(L2) ≤ C, ‖Wn,δ‖L(L2) ≤ Cδ and ‖Rn,δ‖L(L2) ≤ Cδ.

Let us mention that, contrary to [BBZ13, Proposition 4.4], our symbols depend on the semiclassical
parameters hn. For that reason, we need to carefully estimate each commutators appearing in the proof
of Proposition 5.5.

Proof of Proposition 5.5. Let σ ∈ C∞c (R \ {0}) be equal to 1 near to the projection of Suppχε onto
{0} × R (such a function can be chosen independently with respect to ε.). Let us define

Qn,δ =
i

2
Ṽpδ

σ(hnDy)

hnDy
,

with Ṽpδ(x, y) =
∫ y

0
Vpδ(x, y

′)−〈Vpδ〉y(x)dy′. The family (Qn,δ)n∈N is uniformly bounded (with respect

to δ) in L(L2(T2)) since ‖Ṽpδ‖L∞ ≤ 2M . With this choice, we obtain

(I + hnQn,δ)Hθn,Vpδχε(hnD)−Hθn,〈Vpδ 〉y (I + hnQn,δ)χε(hnD)

=
(
hn[Qn,δ,−∆] + 2ihn[Qn,δ, θn · ∇] + Vpδ − 〈Vpδ〉+ hnQn,δVpδ − hn〈Vpδ〉Qn,δ

)
χε(hnD)

=

(
−hni(DxṼpδ)Dx

σ(hnDy)

hnDy

)
χε(hnD) + hn(Rn,δ,1 +Rn,δ,2),

with Rn,δ,1 = (Qn,δVpδ − 〈Vpδ〉Qn,δ)χε(hnD) and

Rn,δ,2 =

(
− i

2
D2
x(Ṽpδ)

σ(hnDy)

hnDy
+
i

2
[Ṽpδ , D

2
y + 2θn · ∇]

σ(hnDy)

hnDy
+
Vpδ − 〈Vpδ〉y

hn

)
χε(hnD).

We can readily check that the family (Rn,δ,1)n∈N is bounded in L(L2(T2)). Furthermore, by direct
computations, we have

Rn,δ,2 =

(
i

2
(∆Ṽpδ)

σ(hnDy)

hnDy
− 2θn · (∇Ṽpδ)

σ(hnDy)

hnDy
− i

hn
(DyṼpδ)σ(hnDy) +

Vpδ − 〈Vpδ〉
hn

)
χε(hnD)

=

(
i

2
(∆Ṽpδ)

σ(hnDy)

hnDy
− 2θn · (∇Ṽpδ)

σ(hnDy)

hnDy
+
Vpδ − 〈Vpδ〉

hn
(1− σ(hnDy))

)
χε(hnD)

=

(
i

2
(∆Ṽpδ)

σ(hnDy)

hnDy
− 2θn · (∇Ṽpδ)

σ(hnDy)

hnDy

)
χε(hnD),

since i(DyṼpδ) = Vpδ − 〈Vpδ〉y and (1− σ)χε = 0. We obtain that the family (Rn,δ,2)n∈N is bounded in
L(L2(T2)). Finally, we obtain that

(I+hnQn,δ)Hθn,Vpδχε(hnD)−Hθn,〈Vpδ 〉y (I+hnQn,δ)χε(hnD) = hnWn,δDxχε(hnD)+hn(Rn,δ,1+Rn,δ,2),

with

Wn,δ = − i
2
Dx(Ṽpδ)

σ(hnDy)

hnDy
.

Once again, the family (Wn,δ)n∈N is bounded in L(L2(T2)). This ends the proof of Proposition 5.5.

Sixth step: reduction to the one-dimensional case. This steps consists in reducing the study to the
one-dimensional case, in order to conclude thanks to Corollary 5.3. We begin by defining for all t ∈ R
and n ∈ N, wn,δ(t) = (I + hnQn,δ)χε(hnD)vn(t). First of all, we show that there exists a constant
γ > 0, independent on ε and δ, such that

0 < γ ≤ lim inf
n→+∞

‖wn,δ‖L2((0,T )×T2).
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Indeed, if C > 0 is such that supn∈N ‖Qn,δ‖L(L2) ≤ C then, we have

lim inf
n→+∞

‖wn,δ‖L2((0,T )×T2) ≥ lim inf
n→+∞

‖χε(hnD)vn‖L2((0,T )×T2) − lim sup
n→+∞

hnC‖vn‖L2((0,T )×T2)

= lim inf
n→+∞

‖χε(hnD)vn‖L2((0,T )×T2).

Moreover, thanks to (5.11), we have

lim inf
n→+∞

‖χε(hnD)vn‖2L2((0,T )×T2) = lim inf
n→+∞

∫ T

0

〈χ2
ε(hnD)vn(t), vn(t)〉L2(T2)dt

=

∫
T2×R2

χ2
ε(ξ)µT (dx, dξ) ≥ µT

(
T2 × {(0, 1)}

)
.

This implies that lim infn→+∞ ‖wn,δ‖L2((0,T )×T2) ≥ γ > 0, with γ = µT
(
T2 × {(0, 1)}

) 1
2 > 0.

Furthermore, notice that, thanks to Proposition 5.5, wn,δ solves the following Schrödinger equation

i∂twn,δ(t) = (−∆ + 2iθn · ∇+ |θn|2 + 〈Vpδ〉y(x))wn,δ(t) + fn,ε,δ(t) + gn,ε,δ(t)

with

fn,ε,δ(t) = hnRn,δvn(t) + (I + hnQn,δ)[χε(hnD), Vpδ ]vn(t),

gn,ε,δ(t) = hnWn,δDxχε(hnD)vn(t) + (I + hnQn,δ)χε(hnD)(Vpδ − Vn)vn(t).

Let us show that (fn,ε,δ)n∈N converges to 0 in L2((0, T )× T2). On the first hand, since (vn(t))n∈N
is bounded in L∞((0, T ), L2(T2)) and (Rn,δ)n∈N is bounded in L(L2(T2)), the first term on the right
hand side goes to 0 in L2((0, T )× T2). On the other hand, to deal with the second term on the right
hand side, it is sufficient to show that ([χε(hnD), Vpδ ])n∈N converges to 0 in L(L2(T2)). This is a
consequence of (A.7) together with the Calderon-Vaillancourt Theorem (A.5).

Regarding the sequence (gn,ε,δ)n∈N, we have that there exist a constant Cδ > 0, independent on ε,
and a constant C ′ > 0, independent on ε and δ, such that

lim sup
n→+∞

‖gn,ε,δ‖2L2((0,T )×T2) ≤ Cδε
2 + C ′δ2. (5.19)

Indeed, since supn∈N ‖Qn,δ‖L(L2) ≤ C and (Wn,δ)n∈N is bounded by a constant Cδ > 0 in L(L2(T2)),
we have

lim sup
n→+∞

‖gn,ε,δ‖2L2((0,T )×T2)

≤ 2Cδ lim sup
n→+∞

∫ T

0

‖hnDxχε(hnD)vn(t)‖2L2(T2)dt+ 2 lim sup
n→+∞

‖(Vpδ − Vn)vn‖2L2((0,T )×T2) .

On the first hand, by using the fact that Suppχε ⊂ {(ξ1, ξ2) ∈ R2; |ξ1| ≤ ε}, it follows that

lim sup
n→+∞

∫ T

0

‖hnDxχε(hnD)vn(t)‖2L2(T2)dt ≤ ε
2‖vn‖2L2((0,T )×T2) = ε2T.

On the other hand, since lim supn→+∞ ‖Vpδ − Vn‖L4(T2) ≤ δ by (5.10), it follows from the Strichartz
type estimates given by Proposition 3.12 that

lim sup
n→+∞

‖(Vpδ − Vn)vn‖2L2((0,T )×T2) ≤ ‖Vpδ − Vn‖
2
L4(T2)‖vn‖

2
L4(T2,L2(0,T )) ≤ C

′δ2,

where C ′ > 0 is a new positive constant provided by Proposition 3.12. We therefore obtain (5.19).
By now, we use the Fourier series Theory in the y-variable. We can write

wn,δ(t, z) =
∑
k∈Z

wn,δ,k(t, x)eiky, fn,ε,δ(t, z) =
∑
k∈Z

fn,ε,δ,k(t, x)eiky, gn,ε,δ(t, z) =
∑
k∈Z

gn,ε,δ,k(t, x)eiky,
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for z = (x, y) ∈ T2. Since 〈Vpδ〉y does not depend on y, we obtain that for all integers k and n, wn,δ,k
solves the following one-dimensional Schrödinger equation posed on T1:

i∂twn,δ,k(t) = (−∂2
x + 2iθ1,n · ∂x + |θn|2 + 〈Vpδ〉(x) + k2 + 2θ2,nk)wn,δ,k(t) + fn,ε,δ,k(t) + gn,ε,δ,k(t),

where θn = (θ1,n, θ2,n).
We can now apply the one-dimensional observability estimates, given by Corollary 5.3, to the

solutions wn,δ,k, with potential 〈Vpδ〉y and observable 〈b〉y. By Parseval’s Theorem, we obtain∫ T

0

‖wn,δ(t)‖2L2(T2)dt =
∑
k∈Z

∫ T

0

‖wn,δ,k(t)‖2L2(T1)dt

≤ C̃
∑
k∈Z

∫ T

0

∫
T1

〈b〉y(x)|wn,δ,k(t, x)|2dxdt+ C̃
∑
k∈Z
‖fn,ε,δ,k + gn,ε,δ,k‖2L2((0,T )×T1),

where C̃ > 0 is a positive constant, independent on δ > 0, provided by Corollary 5.3. It follows that

0 < γ2 ≤ lim inf
n→+∞

∫ T

0

‖wn,δ(t)‖2L2(T2)dt ≤ lim sup
n→+∞

∫ T

0

‖wn,δ(t)‖2L2(T2)dt (5.20)

≤ C̃ lim sup
n→+∞

∫ T

0

∫
T2

〈b〉y(x)|wn,δ(t, z)|2dzdt+ C̃Cδε
2 + C̃C ′δ2.

It remains to estimate the first term of the right hand side. Let (bp)p∈N ⊂ C∞(T2,R+) be a sequence
converging to b in L2(T2) and satisfying ‖bp‖L∞ ≤ ‖b‖L∞ , for all p ∈ N. We have, for all p, n ∈ N,

∫ T

0

∫
T2

〈b〉y(x)|wn,δ(t, z)|2dzdt

=

∫ T

0

∫
T2

〈b− bp〉y(x)|wn,δ(t, z)|2dzdt+

∫ T

0

∫
T2

〈bp〉y(x)|wn,δ(t, z)|2dzdt. (5.21)

On the first hand, thanks to the Strichartz type estimates given by Proposition 3.12, there exists an
other constant C ′ > 0 such that for all p, n ∈ N,∫ T

0

∫
T2

〈b− bp〉y(x)|wn,δ(t, z)|2dzdt ≤ ‖〈b− bp〉y‖L2(T1) ‖wn,δ‖
2
L4(T2,L2(0,T ))

≤ C ′ ‖〈b− bp〉y‖L2(T1)

(
‖wn,δ(0, ·)‖2L2(T2) + ‖fn,ε,δ + gn,ε,δ‖2L2((0,T )×T2)

)
.

Thus, we have for all p ∈ N,

lim sup
n→+∞

∫ T

0

∫
T2

〈b− bp〉y(x)|wn,δ(t, z)|2dzdt ≤ C ′ε,δ ‖b− bp‖L2(T2) , (5.22)

for a new positive constant C ′ε,δ > 0. On the other hand, thanks to (5.11), we have for all p ∈ N,

lim sup
n→+∞

∫ T

0

∫
T2

〈bp〉y(x)|wn,δ(t, z)|2dzdt =

∫
T2×R2

〈bp〉y(x)|χε(ζ)|2µT (dz, dζ)

=

∫
ΣmεQ

〈bp〉y(x)|χε(ζ)|2µT (dz, dζ) +

∫
ΣmεR\Q

〈bp〉y(x)|χε(ζ)|2µT (dz, dζ).

Let us recall that ΣmεQ ∩ (T2 × Suppχε) = T2 × {(0, 1)} and µT (ΣmεR\Q) < ε. We deduce that

lim sup
n→+∞

∫ T

0

∫
T2

〈bp〉(x)|wn,δ(t, z)|2dzdt ≤
∫
T2×{(0,1)}

〈bp〉y(x)µT (dz, dζ) + ‖bp‖L∞(T2)ε. (5.23)
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Moreover, since T2×{(0, 1)} and µT (dz, dζ) are invariant under the flow (z, ξ) 7→ (z+ sζ, ζ) for s ∈ R,
we have ∫

T2×{(0,1)}
〈bp〉y(x)µT (dz, dζ) =

∫
T2×{(0,1)}

bp(z)dµT (dz, dζ) ≤
∫
T2

bp(z)gT (z)dz, (5.24)

where gT ∈ L2(T2) is introduced in the first step. Finally, by gathering (5.20), (5.21), (5.22), (5.23)
and (5.24), we obtain

0 < γ2 ≤ C̃C ′ε,δ‖b− bp‖L2(T2) + C̃

∫
T2

bp(z)gT (z)dz + C̃‖bp‖L∞(T2)ε+ C̃Cδε
2 + C̃C ′δ2.

Since supp∈N ‖bp‖L∞ ≤ ‖b‖L∞ , bp −→
p→+∞

b in L2(T2) and
∫
T2 b(z)gT (z)dz = 0, by passing to the limit

when p→ +∞, we first have

0 < γ2 ≤ C̃‖b‖L∞ε+ C̃Cδε
2 + C̃C ′δ2.

Then, letting ε go to 0 leads to

0 <
γ2

2
≤ C̃C ′δ2.

Since δ > 0 can be chosen arbitrary small, this last inequality provides a contradiction. This ends the
proof of Proposition 5.4.

5.2.2 From smooth to rough potentials

In this section, we end the proof of Theorem 1.4. Let T > 0 and K ⊂ L∞(T2,R) be a compact subset.
Since K is compact, there exists M > 0 such that K ⊂ BL∞(0,M). Let (ρn)n∈N ⊂ C∞(T2) be an
approximation of unity. From K, we define the following set of real-valued smooth potentials:

K′ := {ρn ∗ V ; V ∈ K, n ∈ N} .

It can be readily checked that K′ ⊂ C∞(T2) ∩ BL∞(0,M) is relatively compact in L4(T2). Thanks
to Proposition 5.4, there exists a positive constant C = C(T,M,K′) > 0 such that for all n ∈ N,
θ ∈ [0, 1]2, V ∈ K′ and u0 ∈ L2(T2),

‖u0‖2L2(T2) ≤ C
∫ T

0

∫
T2

b(z)
∣∣∣e−it(−∆+2iθ·∇+|θ|2+ρn∗V )u0(z)

∣∣∣2 dzdt+ C‖u0‖2H−2(T2). (5.25)

Let V ∈ K. Since ρn ∗ V −→
n→+∞

V in L4(T2), we then have ρn ∗ V ⇀? V in L∞(T2), so one can

use Proposition 3.9 to pass to the limit as n → +∞ in (5.25) to finally get for all θ ∈ [0, 1]2 and
u0 ∈ L2(T2),

‖u0‖2L2(T2) ≤ C
∫ T

0

∫
T2

b(z)
∣∣∣e−it(−∆+2iθ·∇+|θ|2+V )u0(z)

∣∣∣2 dzdt+ C‖u0‖2H−2(T2).

Since K is compact in L∞(T2), we can apply Proposition 4.2 to conclude the proof of Theorem 1.4.

A Appendix

A.1 Semiclassical quantization on Euclidean spaces

This section is devoted to present few facts about semiclassical analysis on Euclidean spaces. We follow
the presentation of [Zwo12, Chapter 4].

In this section, h > 0 denotes a positive parameter and a ∈ S(R2d), a = a(x, ξ) is called a symbol.
The Weyl quantization of a is the operator oph(a) acting on u ∈ S(Rd) by the formula

oph(a)u(x) =
1

2πhd

∫
Rd

∫
Rd
e
i
h 〈x−y,ξ〉a

(
x+ y

2
, ξ

)
u(y)dydξ.
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We first present a result that tells us how the Weyl quantization acts on the Schwartz space S(Rd),
on tempered distributions S ′(Rd) and on L2(Rd).

Theorem A.1. We have the following continuity results.

1. [Zwo12, Theorem 4.1]. Assume a ∈ S(R2d). Then, oph(a) can be extended as an operator
mapping S ′(Rd) to S(Rd).

2. [Zwo12, Theorem 4.2]. Assume a ∈ S ′(R2d). Then, oph(a) can be extended as an operator
mapping S(Rd) to S ′(Rd).

3. [Zwo12, Theorem 5.1]. Assume a ∈ C∞b (R2d) := {a ∈ C∞(R2d) ; ‖∂αa‖L∞(R2d) ≤ Cα ∀α ∈ N2d}.
Then, oph(a) can be extended as an operator mapping L2(Rd) to L2(Rd). Moreover, we have

‖oph(a)‖L(L2(Rd)) ≤ C ‖a‖L∞(R2d) +O(h1/2). (A.1)

The third point of Theorem A.1 is usually called Calderon-Vaillancourt Theorem. Note that [Zwo12,
Theorem 4.23] telling us that

‖oph(a)‖L(L2(Rd)) ≤ C
∑
|α|≤Md

‖∂αa‖L∞(R2d) , (A.2)

would not be sufficient for our purpose. Actually, the useful bound (A.1) comes from (A.2) and a
tricky scaling argument. It is also worth mentioning that one can derive a better bound than (A.1).
Indeed, [Zwo12, Theorem 13.13] states that

‖oph(a)‖L(L2(Rd)) = ‖a‖L∞(R2d) +O(h).

We have this straightforward result, that enables to compute explicitly the operator oph(a) for
particular symbols a.

Lemma A.2. We have

1. [Zwo12, Equation (4.1.6)]. If a(x, ξ) = ξα, then oph(a)u(x) = hαDαu(x), where Dα = (1/i)∂α,

2. [Zwo12, Theorem 4.3]. If a(x, ξ) = a(x) ∈ S ′(Rd) then oph(a)u(x) = a(x)u(x).

We now state the well-known G̊arding inequality that roughly indicates that if the symbol is non-
negative then the associated operator is almost non-negative.

Theorem A.3. [Zwo12, Theorem 4.32]. Assume a ∈ C∞b (R2d) and a ≥ 0 in R2d. Then there exist
constants C ≥ 0 and h0 > 0 such that

〈oph(a)u, u〉 ≥ −Ch ‖u‖2L2(Rd) ∀0 < h < h0, ∀u ∈ L2(Rd).

Roughly speaking, the next result tells us first that the composition of two pseudodifferential
operators is also a pseudodifferential operator and we can give an exact formula. Secondly, we present
the asymptotic expansion of such a symbol with respect to h.

Given z = (x, ξ), w = (y, η) in R2d, define their symplectic product

σ(z, w) = 〈ξ, y〉 − 〈x, η〉.

Theorem A.4. [Zwo12, Theorem 4.11 and 4.12].
Suppose that a, b ∈ S(R2d). Then, there exists c ∈ S(R2d) such that

oph(a)oph(b) = oph(c),

where
c(x, ξ) = ei

h
2 σ(Dx,Dξ,Dy,Dη)(a(x, ξ)b(y, η))|(y,η)=(x,ξ).
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Moreover, we have

c = ab+
h

2i
{a, b}+OS(h2),

and

[oph(a), oph(b)] =
h

i
oph({a, b}) +OS(h3). (A.3)

If we assume further that supp(a) ∩ supp(b) = ∅, then

c = OS(h∞). (A.4)

In the previous result, the notation ϕ = OS(hk) means that for all multiindices α, β, γ, δ,

sup
(x,ξ)∈R2d

|(1 + |x|2)α(1 + |ξ|2)β∂γx∂
δ
ξa(x, ξ)| ≤ Cα,β,γ,δhk.

A.2 Semiclassical quantization on the torus

We need to extend the semiclassical quantization to the torus Td. First, one can identify the torus Td
with the fundamental domain

Td ≈ {x = (x1, . . . , xn) ; 0 ≤ xi ≤ 1, ∀1 ≤ i ≤ d}.

We likewise identify functions in Td with periodic functions on Rd

u(x+ k) = u(x) ∀k ∈ Zd.

Symbols a on T ∗Td = Td × Rd are similarly identified with symbols a ∈ R2d that are periodic with
respect to the variable x ∈ Rd,

a(x+ k, ξ) = a(x, ξ) ∀k ∈ Zd.

Operators obtained by quantizing such symbols satisfy

(oph(a)u)(x+ k) = (oph(a)u(·+ k))(x).

From the previous results, established in the Euclidean case R2d, one can deduce the analogue in
the torus.

Theorem A.5. Suppose that a, b ∈ C∞b (T ∗Td).

1. The operator oph(a) can be extended as an operator mapping L2(Td) to L2(Td). Moreover, we
have

‖oph(a)‖L(L2(Td)) ≤ C ‖a‖L∞(T∗Td) +O(h1/2). (A.5)

2. If a ≥ 0, then there exist constants C ≥ 0 and h0 > 0 such that

〈oph(a)u, u〉 ≥ −Ch ‖u‖2L2(Td) ∀0 < h < h0, ∀u ∈ L2(Td).

3. There exists c ∈ S(R2d), periodic with respect to x ∈ Rd, such that

oph(a)oph(b) = oph(c),

where
c(x, ξ) = ei

h
2 σ(Dx,Dξ,Dy,Dη)(a(x, ξ)b(y, η))|(y,η)=(x,ξ). (A.6)

Moreover, we have

c = ab+
h

2i
{a, b}+OS(h2),

and

[oph(a), oph(b)] =
h

i
oph({a, b}) +OS(h3). (A.7)
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4. Given a polynomial function P of degree 2, we have

[oph(a), oph(P (ξ))] =
h

i
oph(∇ξP (ξ) · ∇xa) (A.8)

Proof. We only prove the fourth point. From the exact formula (A.6), the terms of order bigger than
h in the asymptotic expansion only involve derivatives of order more than three so they all vanish.
Therefore, we have [oph(a), oph(P (ξ))] = h

i oph({a, P (ξ)}) = h
i oph(∇ξP (ξ) · ∇xa), which concludes

the proof.

A.3 Semiclassical measures for Schrödinger equations

This section is devoted to recall useful results concerning semiclassical measures for Schrödinger equa-
tions.

Let (hn)n∈N ⊂ (0, 1] be a sequence of real positive numbers tending to 0. Let (θn)n∈N ⊂ [0, 1]d and
(Vn)n∈N ⊂ C∞(Td) be a sequence of smooth real-valued potentials satisfying

sup
n∈N
‖Vn‖L∞(Td;R) < +∞.

To simplify, we denote by Hn(= Hθn,Vn) the Schrödinger operator given by

Hn = −∆ + 2iθn · ∇+ |θn|2 + Vn,

with n ∈ N.

Definition A.6. A bounded family (un)n∈N ⊂ L2(Td) is said to be (hn)-oscillating if and only if

lim
R→+∞

lim sup
n→+∞

‖1l(R,+∞)(h
2
nHn)un‖L2(Td) = 0.

The following lemma shows that a (hn)-oscillating family is actually also (hn)-oscillating with
respect to the free Schrödinger operator −∆.

Lemma A.7. Let (un)n∈N ∈ L2(Td) be a bounded family. This family is (hn)-oscillating (with respect
to Hn) if and only if

lim
R→+∞

lim sup
n→+∞

‖1l(R,+∞)(−h2
n∆)un‖L2(Td) = 0. (A.9)

Proof. Let us prove that if (un)n∈N is (hn)-oscillating (with respect to Hn) then (A.9) holds. The
converse can be proved in the same manner. By using the facts that

1l(R,+∞)(−h2
n∆) = 1l(R,+∞)(−h2

n∆)1l(
√
R,+∞)(h

2
nHn) + 1l(R,+∞)(−h2

n∆)1l(−∞,
√
R)(h

2
nHn)

and for all R > 4 and v ∈ L2(Td),

‖1l(R,+∞)(−h2
n∆)v‖2L2(Td) ≤

1

R− 2
√
R

〈
1l(R,+∞)(−h2

n∆)h2
n(−∆ + 2iθn · ∇)v, v

〉
L2(Td)

,

thanks to functional calculus, we deduce that for all R > 4 and n ∈ N, taking v = 1l(−∞,
√
R)(h

2
nHn)un,

‖1l(R,+∞)(−h2
n∆)un‖2L2(Td) ≤ 2‖1l(√R,+∞)(h

2
nHn)un‖2L2(Td)

+
2

R− 2
√
R

〈
h2
n(−∆ + 2iθn · ∇)1l(−∞,

√
R)(h

2
nHn)un, 1l(−∞,

√
R)(h

2
nHn)un

〉
L2(Td)

.

Moreover, we have that for all n ∈ N,〈
h2
n(−∆ + 2iθn · ∇)1l(−∞,

√
R)(h

2
nHn)un, 1l(−∞,

√
R)(h

2
nHn)un

〉
L2(Td)

≤
√
R‖un‖2L2(Td) + h2

n

(
d+ ‖Vn‖L∞(Td)

)
‖un‖2L2(Td).
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We therefore deduce from the previous lines, together with the facts that (Vn)n∈N is L∞-bounded and

(un)n∈N is L2-bounded, denoting M = supn∈N ‖un‖
2
L2(Td),

lim sup
n→+∞

‖1l(R,+∞)(−h2
n∆)un‖2L2(Td) ≤ lim sup

n→+∞
‖1l(√R,+∞)(h

2
nHn)un‖2L2(Td) +

√
RM

R− 2π
√
R
.

We can now apply the (hn)-oscillating assumption to conclude that

lim sup
n→+∞

‖1l(R,+∞)(−h2
n∆)un‖2L2(Td) ≤ lim sup

n→+∞
‖1l(√R,+∞)(h

2
nHn)un‖2L2(Td) +

√
RM

R− 2
√
R
−→

R→+∞
0.

This concludes the proof of Lemma A.7.

The following proposition is the main result of this section. It provides a generalisation of results
established in [Mac09] by Macià. More precisely, [Mac09, Theorem 1 & 2] studied semiclassical defect
measures for solutions to Schrödinger equations associated to an operator H = −∆+V . The following
result extends [Mac09, Theorem 1 & 2] to the operators Hn = −∆ + 2iθn · ∇+ |θn|2 + Vn, which are
allowed to vary according to n ∈ N. The proof follows the very same lines as the ones given in [Mac09].
For the convenience of the reader, the proof is entirely recalled.

Proposition A.8. Let (un)n∈N be a bounded family in L2(Td). If (un)n∈N is (hn)-oscillating then there
exists a subsequence, still denoted (un)n∈N and a finite measure µ ∈ L∞(R,M+(T ∗Td)) satisfying:

(i) For every ϕ ∈ L1(R) and every a ∈ C∞c (T ∗Td),

lim
n→+∞

∫
R
ϕ(t)〈ophn(a)e−itHnun, e

−itHnun〉L2(Td)dt =

∫
R×T∗Td

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt.

(ii) For every ϕ ∈ L1(R) and every a ∈ C∞c (Td),

lim
n→+∞

∫
R
ϕ(t)a(x)|e−itHnun(x)|2dt =

∫
R×T∗Td

ϕ(t)a(x)µ(t, dx, dξ)dt.

(iii) The measure µ is invariant under the geodesic flow: for every ϕ ∈ L1(R), a ∈ C∞c (T ∗Td),

∀s ∈ R,
∫
R

∫
T∗Td

ϕ(t)a(x+ sξ, ξ)µ(dt, dx, dξ) =

∫
R

∫
T∗Td

ϕ(t)a(x, ξ)µ(dt, dx, dξ).

Proof. Let ψn(t, x) = e−itHnun(x).

First step: subsequence for time-space Wigner distribution.
Let us introduce the time-space Wigner distribution Wn ∈ D′(R× Td × R× Rd), given by

∀b ∈ C∞c (R× Td × R× Rd), 〈Wn, b〉 = 〈ophn(bn)ψn, ψn〉L2(R×Td),

where bn(t, x, τ, ξ) := b(t, x, hnτ, ξ).
Thanks to the Caldéron-Vaillancourt Theorem (A.1), for every b ∈ D′(R×Td×R×Rd), the family

〈Wn, b〉 is bounded. Since the space (D′(R×Td×R×Rd), ‖ · ‖∞) is separable, it follows that, up to a
subsequence, (Wn)n∈N converges to µ̃ ∈ D′(R×Td×R×Rd). By using anew the Caldéron-Vaillancourt
Theorem, we have for every b ∈ C∞c (R× Td × R× Rd),

‖〈Wn, b〉‖ ≤ C ‖b‖∞ +O(h1/2
n ),

and by passing to the limit as n→ +∞, we obtain that

∀b ∈ C∞c (R× Td × R× Rd), 〈µ̃, b〉D′,D ≤ C‖b‖∞.

The above estimate therefore ensures that µ̃ is a Radon measure on R × Td × R × Rd. Moreover, by
the G̊arding inequality, for a non-negative test function b ∈ C∞c (R× Td × R× Rd),

〈Wn, b〉 ≥ −Chn ‖un‖L2(Td) .
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Then, as n→ +∞,
∀b ∈ C∞c (R× Td × R× Rd), 〈µ̃, b〉 ≥ 0,

and µ̃ is therefore a positive Radon measure.

Second step: semiclassical defect measure for ψn.
By now, we define the following positive Radon measure on R× Td × Rd

µ(dt, dx, dξ) :=

∫
Rτ
µ̃(dt, dx, dτ, dξ).

We first establish that µ is well-defined, µ ∈ L∞(R,M+(Td×Rd)) and that (i) holds. Let ϕ, χ ∈ C∞c (R)
with 0 ≤ χ ≤ 1 and χ(−1,1) ≡ 1. For all a ∈ C∞c (T ∗Td) and R > 0,∫

R
ϕ(t)〈ophn(a)ψn, ψn〉L2(Td)dt = 〈Wn, b〉+ rn(R), (A.10)

with b(t, x, τ, ξ) = ϕ(t)χ(τ/R)a(x, ξ) and

rn(R) =

∫
R
ϕ(t)〈ophn(a)ψn, ψn〉L2(Td)dt− 〈ophn(bn)ψn, ψn〉L2(R×Td).

Moreover, from the third assertion in Theorem A.5, we have that

ophn(bn) = oph2
n
(ϕ(t)χ(τ/R))ophn(a) = ϕ(t)χ(h2

nDt/R)ophn(a) +OL(L2)(h
2
n).

This implies that

rn(R) =

∫
R
ϕ(t)

〈
(1− χ(h2

nDt/R))ophn(a)ψn, ψn
〉
L2(Td)

dt+O(h2
n),

and

|rn(R)| ≤
∫
R
ϕ(t)‖ophn(a)(1− χ(h2

nDt/R))ψn‖L2(Td)dt+O(h2
n).

Moreover, since
(1− χ(h2

nDt/R))ψn = (1− χ(h2
nHn/R))ψn,

we deduce from the (hn)-oscillation property that

lim sup
n→+∞

‖ophn(a)(1− χ(h2
nDt/R))ψn‖L2(Td) ≤ C lim sup

n→+∞
‖(1− χ(h2

nHn/R))ψn‖L2(Td) −→
R→+∞

0.

This shows that
lim

R→+∞
lim sup
n→+∞

|rn(R)| = 0. (A.11)

By gathering (A.10) and (A.11), we obtain

lim
n→+∞

∫
R
ϕ(t)〈ophn(a)ψn, ψn〉L2(Td)dt =

∫
R×Td×Rd

ϕ(t)a(x, ξ)µ(dt, dx, dξ).

Observe that, since for every n ∈ N, ‖ψn‖L∞(R,L2(Td)) = 1, we have

∀n ∈ N,∀ϕ ∈ C∞c (R),∀a ∈ C∞c (T ∗Td),
∫
R
ϕ(t)〈ophn(a)ψn, ψn〉L2(Td)dt ≤ C‖ϕ‖L1(R)‖a‖L∞(T∗Td).

It follows that µ ∈ L∞(R,M+(T ∗Td)) and the above convergence holds for all ϕ ∈ L1(R). Notice
that, at this step, we have for all real numbers t0 ≤ t1, µ([t0, t1]× T ∗Td) ≤ t1 − t0, since for all t ∈ R,
‖ψn(t, ·)‖L2(Td) = 1.
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Third step: proof of assertion (ii). Let χ ∈ C∞c (R) with χ ≡ 1 on (−1, 1). For R > 1, we define
χR = χ(·/R). Thanks to the previous step, we deduce that for all R > 1, ϕ ∈ L1(R) and a ∈ C∞c (Td),

lim
n→+∞

∫
R
ϕ(t)〈ophn(aR)ψn, ψn〉L2(Td)dt =

∫
R×Td×Rd

ϕ(t)a(x)χR(ξ)µ(dt, dx, dξ) (A.12)

with aR(x, ξ) = a(x)χR(ξ).
By the dominated convergence theorem, we have the following convergence∫

R×Td×Rd
ϕ(t)a(x)χR(ξ)µ(dt, dx, dξ) −→

R→+∞

∫
R×Td×Rd

ϕ(t)a(x)µ(dt, dx, dξ).

On the other hand, thanks to the third assertion of Theorem A.5, we have for all R > 1∫
R
ϕ(t)〈ophn(aR)ψn, ψn〉L2(Td)dt

=

∫
R
ϕ(t)〈a(x)ψn, ψn〉L2(Td)dt+

∫
R
ϕ(t)〈a(x)(χR(hnDx)− 1)ψn, ψn〉L2(Td)dt+O(hn). (A.13)

Moreover, by using the (hn)-oscillating property and Lemma A.9, we obtain

| lim sup
n→+∞

∫
R
ϕ(t)〈a(x)(χR(hnDx)− 1)ψn, ψn〉L2(Td)dt|

≤ lim sup
n→+∞

∫
R
|ϕ(t)|dt‖(1− χR(hnDx))un‖L2(Td) −→

R→+∞
0. (A.14)

Thanks to (A.12), (A.13) and (A.14), we deduce that

lim
n→+∞

∫
R
ϕ(t)〈a(x)ψn, ψn〉L2(Td)dt =

∫
R
ϕ(t)a(x)µ(dt, dx, dξ).

This concludes the proof of assertion (ii).

Fourth step: semiclassical defect measure and geodesic flow.
It remains to show that the semiclassical defect measure is invariant under the geodesic flow. As a
first step, let us notice that it is sufficient to establish that

∀ϕ ∈ C∞c (R),∀a ∈ C∞c (T ∗Td),
∫
R

∫
T∗Td

ϕ(t)ξ · ∇xa(x, ξ)µ(t, dx, dξ)dt = 0. (A.15)

Indeed, if (A.15) holds, then it follows that for all ϕ ∈ C∞c (R), a ∈ C∞c (T ∗Td), and s ∈ R,

d

ds

∫
R

∫
T∗Td

ϕ(t)a(x+ sξ, ξ)µ(dt, dx, dξ) =

∫
R

∫
T∗Td

ϕ(t)ξ · ∇xas(x, ξ)µ(t, dx, dξ)dt = 0,

where as(x, ξ) = a(x + sξ, ξ). To conclude, let us show that (A.15) holds. Let ϕ ∈ C∞c (R) and
a ∈ C∞c (T ∗Td). Thanks to (A.8) and the second step of this proof, we obtain∫

R

∫
T∗Td

ϕ(t)ξ · ∇xa(x, ξ)µ(t, dx, dξ)dt = lim
n→+∞

∫
R
ϕ(t)〈ophn(ξ · ∇xa)φn, φn〉L2(Td)dt

= lim
n→+∞

hni

∫
R
ϕ(t)

〈
[ophn(a),−∆]φn, φn

〉
L2(Td)

dt. (A.16)

Moreover, by using the evolution equation satisfied by φn, we deduce from integration by parts, the
following identity∫

R
ϕ(t)

〈
[ophn(a),−∆]φn, φn

〉
L2(Td)

dt =

∫
R
ϕ(t)

〈
[ophn(a),Hn]φn, φn

〉
L2(Td)

dt+On→+∞(1)

=

∫
R
ϕ(t)i

d

dt

〈
ophn(a)φn, φn

〉
L2(Td)

dt+On→+∞(1)

= −i
∫
R
ϕ′(t)

〈
ophn(a)φn, φn

〉
L2(Td)

dt+On→+∞(1).
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In particular, this provides∫
R
ϕ(t)

〈
[ophn(a),−∆]φn, φn

〉
L2(Td)

dt = On→+∞(1),

and therefore (A.16) implies (A.15).

We end this section by a useful example:

Example A.9. Let (hn)n∈N ⊂ (0, 1] and (ρn)n∈N ⊂ R∗+ be two sequences tending to 0 and (un)n∈N be
a bounded sequence in L2(Td) such that

1l[1−ρn,1+ρn](h
2
nHn)un = un.

Then, the sequence (un)n∈N is (hn)-oscillating and any semiclassical defect measure µ ∈ L∞(R,M+(Td))
provided by Proposition A.8 satisfies

Suppµ ⊂ R× Td × Sd−1.

Proof of Example A.9. Let χ ∈ C∞c (Rd) be a nonnegative test function supported in Rd \ Sd−1 and
t0, t1 ∈ R with t0 < t1. By assumption, there exists δ > 0 such that for all ξ ∈ Suppχ,

||ξ|2 − 1| ≥ δ.

Without loss of generality, we can assume that |ξ|2 − 1 ≥ δ, for ξ ∈ Suppχ. We have

0 ≤
∫ t1

t0

〈χ(hnD)un(t), un(t)〉L2(Td)dt ≤
∫ t1

t0

〈
χ(hnD)

(−h2
n∆− 1)

δ
un(t), un(t)

〉
L2(Td)

dt

≤ ‖χ‖L
∞

δ

∫ t1

t0

〈(h2
nHn − 1)1l[1−ρn,1+ρn](h

2
nHn)un(t), un(t)〉L2(Td)dt+O(hn) ≤ O(ρn + hn).

Eventually, this provides ∫ t1

t0

∫
Td×Rd

χ(ξ)µ(t, dx, dξ)dt = 0,

and then, Suppµ ⊂ R× Td × Sd−1.
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