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Observability estimates for the Schrodinger equation in the
plane with periodic bounded potentials from measurable sets

Kévin Le Balc’h, Jérémy Martin
September 14, 2023

Abstract

The goal of this article is to obtain observability estimates for Schrédinger equations in the
plane R2. More precisely, considering a 2nZ*-periodic potential V € L% (]R2), we prove that the
evolution equation idyu = —Au + V(2)u, is observable from any 27Z2-periodic measurable set, in
any small time T > 0. We then extend Téufer’s recent result [Tau23] in the two-dimensional case
to less regular observable sets and general bounded periodic potentials. The methodology of the
proof is based on the use of the Floquet-Bloch transform, Strichartz estimates and semiclassical
defect measures for the obtaining of observability inequalities for a family of Schrédinger equations
posed on the torus R?/27Z2.
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1 Introduction

1.1 Observability inequalities for the Schrédinger equation in R?

In this work, we are interested in the observability of the following Schrédinger equation

) =(— ))u in 00 d
{ T Car Ve a0y koo < B &

where 1y € L2(R%) and V € L>®(RY) is a real-valued potential. In the case when V is 27Z%periodic,

that is, satisfies
V(x+2kr)=V(z), VeeR?Y VkeZd,

the equation (1.1) can describe the behaviour of an electron in a crystal, see for instance [Klil2] and
the references therein. The notion of observability is defined as follows:

Definition 1.1. Let T > 0 be a positive time and b : R — R be a non-negative measurable function.
The equation (1.1) is said to be observable from b in time T > 0 if and only if there exists a positive
constant C' > 0 such that

T
Yug € L*(RY), ||U0H%2(Rd) < C/O /Rd b(2)|u(t, 2)|*dzdt,

where u is the mild solution of (1.1) with initial data ug.

When b = 1, with w C R? a measurable subset, some geometric conditions can be required to
ensure the observability of (1.1). In the one-dimensional case d = 1, when V' = 0, it has been shown
in [MPS21] and [HWW22] that the free Schrodinger equation is observable at some time 7' > 0 from
b =1, if and only if w is thick, that is,

I, L >0,V eR, |wn(x+][0,L])]>",

where |A| denotes the Lebesgue measure of A C R. In higher dimensions d > 2, this thickness
condition turns out to be necessary ([MPS21, Theorem 2.6]). However, as explained by the authors
of [MPS21], the question of its sufficiency remains open. A sufficient condition was first given in
[MPS21, Proposition 2.11]. Recently, the particular case of periodic sets have been investigated for the
observability of the free Schrodinger equation. In [Tau23, Theorem 2], Taufer has shown that (1.1)
with V' = 0 is observable in any time 7" > 0 from b = 1,,, where w is any non-empty 27Z%periodic open
subset of R%. Notice that non-empty 27Z%periodic open subsets are trivially thick subsets. It is also
worth mentioning that periodic open subsets do not satisfy necessarily the well-known geometric control
condition (GCC), roughly stating that every generalized geodesic meets w in time ¢ < T, that turns
out to be the necessary and sufficient geometric condition for the wave equation, see [BJ16]. On the
other hand, [EV18] shows that the thickness condition is necessary and sufficient for the observability
of the heat equation in dimensions d > 1. According to these results, the geometric condition ensuring
the observability of the Schrodinger equation in R is strictly less restrictive than the one for the wave
equation and more restrictive (in a large sense) than the one for the heat equation.

1.2 Main results in the two-dimensional case

Our main result extends the result by Taufer to the case of less regular observable function b and
general 27Z2-periodic real-valued potential V' € L*(R?), in the two-dimensional case. In all the
following, the d-dimensional torus T¢ is defined by

T .= RY/277Z°.

For the sake of notational simplicity, any function f € L'(T%) will be identified to its 2wZ-periodic
extension to R? belonging to L%OC(Rd). If not specified otherwise, functions will be assumed to be
complex-valued.



Theorem 1.2. Assume d = 2. Let b € L*(T?)\ {0} be a non-negative real-valued function.

For every T > 0 and compact subset K C L>(T?), there exists a positive constant C' = C(b, T, K) >
0 such that for every 2wZ?-periodic real-valued potential V € K and every ug € L*(R?), the solution u
of (1.1) satisfies

T
fuoleey € [ [ blalutt.2)Pdzat. (1.2)
0 R2

Contrary to Taufer’s result, Theorem 1.2 is limited to the two-dimensional case. However, it
allows to consider more general observable functions b and to deal with rough potentials V. Even
if our proof borrows some ingredients of the proof given by Téaufer, such as the use of the Floquet-
Bloch transform, the remainder of the proof is very different. In a nutshell, ours uses the notion of
semiclassical measures, whereas Téaufer’s proof follows from an Ingham’s type inequality and explicit
computations on the spectrum of the operator —A +2i6 -V + |0]? on L?(T%), based on previous results
of [Jaf90], [KLO5]. In particular, its proof seems not to be easily adaptable to the case of Schrédinger
equations with potential.

By the well-known Hilbert Uniqueness Method [Cor07, Theorem 2.42], one can deduce from The-
orem 1.2 an exact controllability result for the Schrodinger equation

{ i0y = (—A+V(z))y+hl, in(0,+00)xRY, (13)

y(0,-) = wo in R
In (1.3), at time ¢ € [0, +00), y(t,-) : RY — C is the state and h(t,-) : w — C is the control.

Corollary 1.3. Assume d = 2. For every non-empty 2nZ?2-periodic measurable subset w C R?, T > 0
and compact subset I C L (T?), there exists a positive constant C = C(w,T,K) > 0 such that for
every real-valued potential V € K and y; € L?(R?), there exists a control h € L?(0,T; L*(w)) satisfying

”hHL?(o,T;[ﬁ(w)) <cC ||y1HL2(R2) )
and such that the solution y of (1.3) with yo = 0 satisfies

y(Ta ) = Y1

A key ingredient in the proof of Theorem 1.2 is borrowed from [Tau23] and consists in applying the
Floquet-Bloch transform, which is introduced in Section 2.1. As detailed in Section 2.1, performing
the Floquet-Bloch transform reduces the study of (1.3) to a family of Schrédinger equations posed on
the torus T<:

i0u = (—A+2i0 -V +[0]> + V(2))u in (0,+00) x T, g
{ u(0, ) = uo in T¢, (Ep)

with 6 € [0,1]%. The observability of (Fj) with § = 0 has been widely studied over the last two
decades. In [AM14], the observability of (FEj) is shown to hold from any open subset w C T¢ in
any time 7" > 0 when 6 = 0 and V belongs to a class of potentials slightly larger than the class of
continuous potentials. In the two-dimensional setting, the authors of [BBZ13] established that the
same result holds true for V € L?(T?) but still from open subset. More recently, it has been shown
that the regularity assumption on b can also be relaxed. Indeed, the main result of [BZ19] ensures the
observability of (Ey) (with § = 0 and V = 0) as soon as b € L*(T?). Regarding the equations (FEjy)
with non-trivial 8, let us mention that an observability result for the one-dimensional case is given by
[BBZ13, Proposition 3.1] for V € LP(T') with p > 1 and b = 1, where w C T' is a non-empty open
subset.

Our second main result ensures the observability of the Schrodinger equations (Fy). It is obtained
as a by product of the proof of Theorem 1.2.



Theorem 1.4. Let b € L*(T?)\ {0} be a non-negative real-valued function, T > 0 and K C L>=(T?) be
a compact subset. There exists a positive constant C = C(b,T,K) > 0 such that for every real-valued
potential V € K, 6 € [0,1]2 and vy € L*(T?), the solution v of (Ey) satisfies

T
foollaey <€ [ [ balo(e. )Pzt (1.4
0 2

Even if our proof closely follows the methodology introduced in [BZ12], [BBZ13] and [BZ19], some
new difficulties appear. Indeed, a key ingredient is the establishment of uniform Strichartz estimates
for the equation (Ey). Even for fixed 8 € [0,1]%, as mentioned in Remark 3.13 below, Strichartz
estimates cannot be obtained from the usual Zygmund inequality [Zyg74]. This is why we need to first
get uniform resolvent estimates for the operator —A + 2i - V + |0|> + V(z) in the spirit of [BBZ13].
On the other hand, the use of semi-classical defect measures for proving the observability estimates
(1.4) has to be performed by keeping track of the dependence of the parameter 6 in all the procedure.

1.3 Organization of the paper

Our article is organised as follows: Section 2 introduces the Floquet-Bloch transform and aims at
showing that uniform observability estimates of (Ey) with respect to 6 leads to an observability estimate
for (1.1). Section 3 is devoted to establish useful properties of the group generated by Hg vy = —A +
2i6-V +|0]2+V, such as resolvent estimates and Strichartz estimates. Section 4 consists in establishing
observability inequalities for L? initial data from observability inequalities for highly oscillating initial
data. In Section 5, the proof of Theorem 1.4 is presented. It uses the notion of semiclassical defect
measure and follows the strategy developed by the authors of [BZ12], [BBZ13] and [BZ19]. Few
facts about semiclassical analysis and semiclassical defect measures are recalled in the Appendix, in
Section A.

2 Proof of the observability inequality on R?

This section aims at proving that Theorem 1.2 is a consequence of uniform observability estimates for
the family of Schrédinger equations (Fy) posed on T¢. The proof relies on the Floquet-Bloch transform
which is presented in Section 2.1.

2.1 The Floquet-Bloch transform

In this part, we give a definition and few facts about the Floquet-Bloch transform. This tool is
instrumental in the proof of Theorem 1.2. We follow the presentation of [Kuc93, Section 4].
Let us first introduce the definition of the Floquet-Bloch transform.

Definition 2.1. Let F : L*(R%) — L%(]0,27]? x [0,1]%) the Floguet-Bloch transform given by

Fu(y,0) = Z 20k (y 4 2k) Vu € L*(RY), Y(y,0) € [0,27]% x [0,1]%.
kezd

The first proposition ensures that the Floquet-Bloch transform is an isometry from L?(R?) to
L2(]0, 27]4 x [0, 1]9).

Proposition 2.2. The map F is an isometric isomorphism from L?(R%) to L2([0,27]? x [0,1]%).
In this paper, we will use a slightly modified Floquet-Bloch transform, denoted by F, defined by
Fuly,0) = Y Fu(y, ) Vu € L2(R%), Y(y,0) € [0,27]¢ x [0, 1]%.

It is clear that F still defines an isometric isomorphism from L?(R%) to L?([0,27]¢ x [0,1]%). The main
advantage of taking this definition comes from the following result:



Proposition 2.3. Let k € N. For all u € H*(R?) and for almost all 6 € [0,1]%, we have F(u)(-,0) €
H*(T4). Moreover,

F(=Au)(-,0) = (A +2i0 -V + |0*) Fu(-,0)  Vu e H*(RY), V0 € [0,1]%.

In particular, it appears from Proposition 2.3 that Fu enjoys some periodicity property in the
y-variable, contrary to Fu. An other elementary result is the following proposition which ensures that
the Floquet-Bloch transform commutes with any periodic function:

Proposition 2.4. Let V € L>®(R?) be a 27Z%-periodic function. Then,
F(Vu) =V Fu Vu € L*(R%).
Proposition 2.3 and 2.4 lead to, for all V € L>(T9), u € H?(R?) and for almost all § € [0, 1]¢,
F(=Au+Vu)(-,0) = (—A +2i0 -V + 10> + V) Fu(-,0).
Consequently, for V € L>(T9), we obtain that for all u € L?(R?) and for almost all § € [0, 1]¢,

f(eit(_A+V)u)(-, 0) = eit(_AHw'nglz"’V)]}u(-, 0) vVt € R, (2.1)

where (e“(_é‘“w'v”e'uv)) . is the one-parameter group generated by the self-adjoint operator
te

~A+2i0-V + |0 +V : H*(TY) — L*(T%).

2.2 From the uniform observability inequality on T? to the observability
inequality on R?

This part is devoted to establish that Theorem 1.2 can be deduced from Theorem 1.4.
In the rest of the paper, we will use the notation

Hoyv:=(—A+2i0-V+[0>+V)v  Voc H(T?),

for V€ L>(T%) and 6 € [0, 1]%. The following proposition shows that uniform observability inequalities
for Schrodinger equations (Ejp) directly imply observability inequalities for Schrédinger equations posed
on the Euclidean space.

Proposition 2.5. Let V € L>=(T?%), b € LY(T4,Ry), T > 0 and C > 0. If for all 6 € [0,1]* and
Vo € LQ(Td),

T
—q 2
fonlleceny <€ [ [ b e o un(o)] dza

then for all ug € L*(RY),

T . 2
||u0||i2(Rd) < C/ /Rd b(z) ’eﬂt(fAJrv)uo(z)‘ dzdt.
0

In the Section 5, we give the proof of Theorem 1.4 which provides uniform observability estimates
with respect to @ € [0,1]? for the Schrodinger equations (Ey), in the two-dimensional case. Thanks to
Proposition 2.5, Theorem 1.2 appears as a consequence of Theorem 1.4.

Proof of Proposition 2.5. Let ug € L?(R?) and u be the solution of (1.1) associated with ug. Proposi-
tion 2.3 and (2.1) are instrumental in this proof.
First, thanks to the isometry property, the left hand side of (1.1) becomes

2

ol gy = ||l = [, L Fuworaa (22)
0,1

L2([0,1]¢ xT4)



Secondly, for the right hand side of (1.1), we have, thanks to Proposition 2.2 and 2.4,
T T ~ _
/ / b(2)|u(t, z)|*dz dt = / (Fe ATV EDyg) Fb- e ATVENug)) 120,170 ra) dt
o Jrd 0
T ~ .
_ / / / b(2)| F (e "DV (2, 6) 2B d= dt.
o Jio,1)¢ JTd

It therefore follows from (2.1) and the previous lines that

T T
/ b()|ult, )[2dz dt — / ( / b(2)|e= MoV Fug (2, 0)2d dt) i (2.3)
0 JRd [0,1]4 0 Td

On the other hand, by assumptions, we have for almost all 8 € [0, 1],

9 T
< C’/ / b(z)
L2(T4) o Jrd

By gathering (2.2), (2.3) and (2.4), we finally obtain the expected observability inequality (1.2). O

~ i ~ 2
H]-“uo(~,9)‘ e*lt’*wmo(z,o)] dz dt. (2.4)

3 Properties of the group generated by Hy

The goal of this section is to first derive resolvent estimates for Hg -, then deduce a priori estimates and
stability results for solutions to the associated semi-group (e~*7.v),5q. In both parts, we separate
the available results in the multi-dimensional case to the specific two-dimensional results.

3.1 Resolvent estimates for Hyy

In this part, we first establish standard L? resolvent estimates for Hg - in T%. In the second subsection,
we prove L* resolvent estimates for Hp,v in T?. This result is specific to the two-dimensional case and
is instrumental in the proof of the Strichartz estimates provided by Proposition 3.12.

3.1.1 I? resolvent estimates in T¢

The first result concerns spectral properties of the operator Hgy . As it is standard, the proof is
omitted.

Proposition 3.1. For every 6 € [0,1]? and V € L>®(T%,R), Hov is a self-adjoint, with compact
resolvent, operator on L*(T4). Let (¢ 9.v )ren be the orthonormal basis of eigenfunctions and (A.0,v)
be the associated eigenvalues. For every M > 0 and s € R, there exist two positive constants C,C’ > 0
such that for every V€ L>=(T? R) with VIl o (ray < M and 6 € [0, 1]¢, we have

+oo +oo
Cllullfyepay < S0+ P )2 unl® < O lullfroimay . Yu= wrtbpoy € H(TY).  (3.1)
k=0 k=0

The next result is about stability properties with respect to parameters of the resolvent of Hg v .

Proposition 3.2. Assume that 6,, — 0 in [0,1]% and V,, —* V in L=(T% R) as n — +oco, then for
every A € C such that R(N\) > 0, the following convergence holds

|(AL +iHg, v,) " f — (M + Ho )" 2oy L0 Vfe L*(T).
Proof. The proof combines an energy estimate coupled with the Rellich theorem. We start from

(=N — A+ 26, -V + |0,]> + Vi )u, = —if in T, (3.2)



After multiplying (3.2) by 1, integrating on T¢ and performing an integration by parts, we obtain
(=X + 10n D) Junl|32 + | Vunl3 2 + 200 - Vi, ) 12 4+ (Vitin, un) 2 = —i{f,u,) 2. (3.3)

By taking the real and imaginary parts, it follows from (3.3) and Young’s inequalities that there exists
a positive constant C' > 0, depending on A and sup, e ||Va [ 1o (74, such that

||VUnH?:2(Td) <cC ||f\|%2(1r2) +C ||Un||2L2(T2) and ||Un||2L2(Td) < Hf||2L2(’]I‘2) :
This readily implies that
Hun‘lifl(il‘d) <C ||f||2Lz(1rd) :
By the Rellich theorem, we have that there exists v € H'(T%) such that, up to a subsequence,
w, — v in HY(T?), u, — v in L*(T%) as n — +oo.

After multiplying (3.2) by i¢ € H'(T?) and integrating by parts, we pass to the limit as n — +oo
/ (Mg +1i (Vv Vg —2i0 - Vug + 0°vp + Vvg)) de = / fe  Yee HY(TY.
Td T4

By uniqueness, we have that v = (A +iHg y) "1 f, then (uy,)nen admits a unique accumulation point
(M +iHg )"t f € HY(T?), which concludes the proof. O
3.1.2 L* resolvent estimates in T?

The main result of this part is a L* resolvent estimate for Ho,v in T?.

Proposition 3.3. For every M > 0, there exists C > 0 such that for every 6 € [0,1)%, V € L*°(T?,R),
IVl oo 2y < M, f € LY3(T?) and T € C with |3(7)| > 1,

(A +2i0-V+ 6 +V — 7)*1f}|L4(T2) < Ol parsrey - (3.4)

Proposition 3.3 is an adaptation of [BBZ13, Proposition 2.6]. Two main differences appear. First,
due to the presence of the parameter 6 in the operator Hy 1/, we need to keep track of the independence
of the constants, with respect to € to get a uniform constant C' in (3.4). The second difference is the
assumption on the potential. While Bourgain, Burq, Zworski are considering potential living in a
compact set of L?(T?), here we are focusing on potentials living in a ball of L>(T?).

The proof of Proposition 3.3 is crucially based on the following result which is Proposition 3.3 in
the particular case when V = 0.

Proposition 3.4. There exists C > 0 such that for every 6 € [0,1]%, f € L*Y3(T?) and 7 € C with
() =1,
(=2 +2i0 -V + [0 = 7) 7 f| agroy < CllFlaragrey - (3.5)
Proof of Proposition 3.3 from Proposition 3.4. We start from
(—-A+2i0-V+ 0> +V —7)u= fin T%

Since V is real-valued, after multiplying by % and integrating on T?, we obtain by taking the imaginary
part and thanks to Holder’s inequality

2
ISl ze(r2y < lullpa ey 11l Lars (2 - (3.6)

Since |J(7)| > 1, we get from (3.6) that

2
||UHL2(T2) < ||u||L4(’IF2) ||fHL4/3(1r2) :



On the other hand, we also have

(~A+2i0-V+ 10> —7)u= f—Vuin T%
So applying the resolvent estimate (3.5), we get

lull a2y < C NSl pasaqrey + C IV ull pasa(pe) -

By plugging the L?-estimate on u in the previous formula, using that V € L*°(T?) and performing
Young’s estimate, we get the expected result (3.4). O

All the end of this part is then devoted to the proof of Proposition 3.4.
The next result is a refinement of the Zygmund’s inequality for the operator Hy o i.e. there exists
C > 0 such that for every 0 € [0,1]?> and X > 0, we have

1/2

Z cpe'™® <C Z len]? . (3.7)

|n79|2:)\ L4(v]1-2) |n7‘9|2:>‘

Note that inequality (3.7) comes from a straightforward adaptation of [Zyg74].
Proposition 3.5. There exists C > 0 such that for all 6 € [0,1]2, kK > 0,0 < h < 1 and u =
> ez i(n)e™® e L*(T?) satisfying
u(n) =0 forn & By(rk,h) :=={n€Z®; |K’In—0]* — 1| < k*h*},
we have

full oy < 4 COF QLY ooy f < 272
BT = C(+ m)Y2 |ull o ey ifr>h!

Remark 3.6. It is worth mentioning that k = 0 is simply the Zygmund’s inequality (3.7), while the
other regimes have to be treated by different arguments, that are Sobolev embeddings for kK > h™1 and
an arithmetic proof of Sogge’s estimate for spectral projectors for k < h™1.

The proof that we give below is an adaptation of [BBZ13, Proposition 2.4].

Proof. In the following proof, the constants C' > 0 that appear can vary from line to line but do not
depend on 6.

First, we have By(k1,h) C Bp(ka,h) when k1 < ko, so one can safely assume that k > C where
C' > 1 is a positive numerical constant.

For a constant 0 < é < 1 that will be fixed later, we distinguish two regimes: kh > 4, and kh < 4.

First regime: xh > 6. The estimate comes from the Sobolev embedding H'/2(T?) < L*(T?)
because u(n) = 0 unless |n|? < |02 + h=2 + k? < 24 (672 + 1)x?, so taking x > /2, this implies

el /22y < Com™2 Il pa ey -
Second regime: hx < 8. First observe that By(k, h) C Ag(k, h) where
Ag(k,h) :={n €Z*; |hln— 0] — 1| < &*n?}.
Indeed, using hx < § < 1, we have

n € By(k,h) = —k*h? +1 < h?n— 01 < k*h? +1 = /1 — K282 < hn — 0] < /1 + K2h2
= 1—kr*h? < hln—0] <1+ rK%h* = n € Ay(k, h).



Note that we have
C={z€eC; R(z-0)>0,(z—0)>01U{zeC; R(z—-0) <0,
U{zeC; R(z—0)<0, S(z—0) <0}u{zeC; R(z—¥6
=cf,ucl ucl_uci_

= o
%2
~
|
=
\%
o
2

We will only consider the situation where

u = E up e = E upe™ .

nez? nez2ncy

The general case easily follows.
We first introduce

U (Z2 1 Apa(s, ), with N, == {ﬁJ ,

where

Ag .ok, h) = {z €Cl,; |hlz— 0] — 1| < k*h2, arg(z — 0) € [ahk, (o + 1)h/<;)}.
Then the proof relies on the following geometric lemma, that is a Corollary of [BBZ13, Lemma 2.5].
Lemma 3.7. Fiz 6 > 0 small enough. Then there exists Q € N such that for all § € [0,1]2, 0 < h < 1,
1<k <d/hand o, B,a/, 5 €{0,1,....Ngn}, if
(Ag,a(r, h) + Agp(k, b)) N ((Ag,ar (5, h) + Ag g (K, 1)) # 0, (3.8)
then
lo—o/| +18=B<Qorfa—p[+]|6-0|<Q. (3.9)

Proof of Lemma 3.7. From [BBZ13, Lemma 2.5], we have that there exists Q € N such that for any
0<h<1landanyl<&x <d/h, for every a, 3,0/, 8" € {0,1,...,Ngp}, if (3.8) holds with 6 = 0
then (3.9) holds. Therefore, fixing © € T? by remarking that Ag o(k,h) = Fo(Aoa(k,h)) with
Fo(z) = 2+ © so if (3.8) holds for § = © then (3.8) holds for § = 0 so (3.9) holds. This concludes the
proof. L

By decomposing as follows

Nx,,h
u=Y U, with U= >  upe™?, (3.10)
a=0 n€Z?NAg, o (k,h)
we obtain
Na,n
lal ooy = [[u2 ]| oy = | u?uPda = UaUsUs Upd (3.11)
u L4(T2) — u L2(T?) 2u ucar = i aUpUqr Uprazx. .
T a,B,a’,8'=0 T
Moreover, for a, 8,0/, ' € {0,1,..., Nt p}, we have

/11*2 UaU,BUio/ de e Z Z Z Z Un Uy T Tl /Tz et (ntm=p=a) j,.

n€Z2NAg,o MEL?NAg, g PEL2NAy o1 qEZ2NAy g/

In particular, if (3.8) does not hold, then [, UoUsUy Ug/dx = 0. Hence, from Lemma 3.7, we can
restrict the sum in (3.11) to the subset of indices (a, 8, o', 8') satisfying (3.9), i.e

lllzacre) = > /T UaUpUsr Uprda (3.12)
a,B,a,B" satisfying (3.9)



In the following, we denote by C' a positive numerical constant whose value may change from a line
to another. For («, 3,a/, 8’) satisfying (3.9), Holder’s inequality gives that

/ UnUsT Uprda
’]1‘2

< ||Ua||L4('Jl‘2) HUBHL4(T2) ||Ua’||L4('Jl‘2) ||UBHL4(T2) )
SO

UaUpUar Ugrde| < ([UallLarzy + 10 |22 U8 oy + [ Usr [ o) il — ' |+18 =8 < @,

T2

or

UaUpUar Ugrdr| < (|Uall a2y + 108 1 s 2 (T8I s oy + U [ 72y i [ = B[ +18— '] < Q.

T2
Therefore, we have from (3.12),

Na,h

4
lulzagrey < CQ* | D WUallZacrsy | - (3.13)

a=0

Let us estimate ||Ua||2L4(’J1‘2)- By using Holder’s inequality, Parseval’s equality then Cauchy-Schwarz
inequality we get

1/2 1/2
1Uall ey < C Ul gy [Uall

Loo( L2(T?)
1/2 1/4
< > lual > lwl
n€Z2NAg, o (k,h) n€Z?NAg, o (k,h)
Uall s 2y < CIZ2 N Ag (5, ) Ul 22 - (3.14)

We now need to bound the number of integral points in Ag o(k, k). It is not difficult to see that
Ag,o(k, ) is included in a rectangle of height 1 + x and width 1 4 3x?h. Moreover, the number of
integral points in any rectangle of height H and width W is bounded by C max(H, 1) max(W, 1). Hence
recalling kh < §, we have

1Z? N Ag o (r,h)| < C(1+ K)(1 + 36%h) < 3C(1 + k)(1+ K2h). (3.15)
By gathering (3.13), (3.14), (3.15) and (3.10), we obtain
4 4
lull paerzy < C(L+K)(L+ £2R) [l (e -
This concludes the proof of Proposition 3.5. O
From Proposition 3.5, we can now prove the resolvent estimate of Proposition 3.4.

Proof. We split the proof into two cases.
First case: R(1) < C. The proof combines an energy estimate coupled to a Sobolev embedding.
We start from
(=A+2i0 -V + 10> —7)u= f in T

After multiplying by %, integrating on T? and performing an integration by parts, we obtain
1 .
5”qu%2(?‘1) -+ 2’L<0 . VU,U>L2(T2) + (|9|2 — T)||u||2Lz(T2) = <f, U>L2(’H‘2)~

By applying Hodler’s inequality and Young’s inequality to the real and imaginary parts, we deduce
that

IVl 722y + 101 [ull 22 ry = R [ull72 002y < C llull pagrey 1l pars ey + C lull oy, (3:16)

ISl 2 rz) < Nl ocrsy 1 oss ey - (3.17)

10



Since |¥(7)| > 1, we get from (3.17) that
2
[l 22y < Mwllpagrzy 1 £l Lars ey -
Plugging (3.18) in (3.16), we obtain

2
[l (r2y < Cllull pagrzy 1l pars r2) -

The Sobolev embedding H'(T?) < L*(T?) enables us to conclude.
Second case: R(7) > C. First, let us define

Vf= Z fne™® e L2(T?), Py.f := Z I R ina

(&
nez? nez? (‘Tl - 0|2 o T)1/2

Let us prove that
Vf € L2(T2)7 ||P0,Tf||[,4(’]1‘2) < C Hf||L2(’]1'2) :

By calling u = Py ; f, we decompose u as follows

f e N f
D Rt RUCHINAD DRSNND DRV T o vk

[In—0]2—R(7)|<1 J=12i-1<||n—0|2—R(7)| <27

(3.18)

(3.19)

in-T

o w;
From Proposition 3.5 with x = 1 and h = (R(7)) /2, we get
||UOHL4(’JI‘2) <C ||U0||L2(1r2) <c ||fHL2(’I[‘2) :
For 1 < j < +oo0, from Proposition 3.5 with x = 29/2, h = (R(7)) /2, we get
HUJ'HL4(T2) <C(1+ “)1/2 <2/t HujHLz('ﬂﬂ) .

Therefore, by combining the three previous equations, we obtain

—+oo
H“||L4(1r2) < H“O||L4(11‘2) + Z ||uj||L4(1r2)
Jj=1
too
< Clfllp2erey + OZ 29/4 llwll 2 72
j=1
+ V2
X = |ful®
<Cflagen + | 227" SONIUND DR e e
= i=1  2i-1<||n—62—Re(r)|<2

< C|fll L2 ey

which concludes the proof of (3.19).
So, we deduce from (3.19) and [GV95, Lemme p.XVII-5] that

Vf S L4/3(T2)7 HPevTP;,TfHLéL('H‘Z) S C ||fHL4/3(T2) .

1/2

(3.20)

Moreover, it is not difficult to see that Py Py . coincides with (—A +2i6 -V +[0]> — 1)~ on C*(T?)

that is dense in L*/3(T?), hence (3.20) leads to (3.5).

3.2 A priori estimates for the group generated by Hy v

O

This section is devoted to present a priori estimates for the group generated by Hg,yv. In the first
subsection, we begin by introducing useful stability results holding in any dimension. In the second

and third section, we state Strichartz estimates in the one and two dimensional cases.
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3.2.1 Stability results in L? in T¢

We first focus on the d-dimensional setting, i.e. we consider for T' > 0

{ 0w =(=A+2i0-V+[02+V)v+f in(0,T)x T (3.21)

v(0,-) = vg in T9.

The next result relies on the conservation of the L?-norm and the well-posedness of (3.21).
Proposition 3.8. Let T > 0. For every vy € L*(T%), 0 € [0,1]% and V € L>(T% R), the solution v
to (3.21) with f = 0 satisfies

o)l L2 (ay = llvoll L2 pay vt € [0, T]. (3.22)

Moreover, for every vo € L*(T4), f € L'*(0,T; L?(T%)), 6 € [0,1]¢ and V € L>=(T%,R), the solution v
of (3.21) satisfies
vl oo 0,7:22(ra)) < ol p2eray + 1120, 7;02(10)) - (3.23)

The following result is a stability result according to the parameters 8 € [0,1]? and V € L>(T4).

Proposition 3.9. Assume that 0, — 6 in [0,1]% and V,, —=* V in L>=(T% R) as n — +oo, then we
have
Tt Honvay oy WMoV, in LX(T?),  Vte[0,T), Yo € L*(TY). (3.24)

n—-+o0o

Proof. This is a direct application of Trotter-Kato approximation theorem, see [Paz83, Theorem 4.2],
using the convergence of the resolvent already stated in Proposition 3.2. O
3.2.2 Strichartz estimates in T*

Now we focus on the 1-dimensional setting, i.e. we consider for 7' > 0

v(0,-) = vo in T!. (3.25)
Instrumental in the proof of the one-dimensional observability estimates for Schrodinger type equa-
tions are the following Strichartz type estimates, taken from [BBZ13, Proposition 2.1]:

Proposition 3.10 ([BBZ13, Proposition 2.1]). Let T > 0 and M > 0. There exists C = C(T,M) >0
such that for all 6 € [0,1], V € L*(T;R) with |V |~ < M and ug € L*(T),

He_img’quLw(T;L?(o,T)) < Cllullz2 (- (3.26)

{ i0pw = (=02 +2i00, + 0> + V)v+ f in (0,T) x T,

Notice that Proposition 3.10 is a slightly modified version of [BBZ13, Proposition 2.1]. First, the
potential is assumed to be in L>°(T), which is a sufficient assumption for our purpose. On the other
hand, we claim that the constant in (3.26) can be taken uniformly with respect to V' in Bpre (0, M).
This fact is clearly contained in the proof given by the authors of [BBZ13, Proposition 2.1].

The next result concerns Strichartz estimates for solutions to (3.25).

Proposition 3.11. Let T > 0 and M > 0. There exists C = C(T, M) > 0 such that for all 6 € [0,1],
V € L®(T;R) with ||V < M, vg € L*(TY) and f € L*(0,T; L*(TY)), the solution v to (3.25)
satisfies

1l e 0,75 L2 (T ELoe (3522 0,7 < € (H“0||L2(T1> + ”f”Ll(o,T;m(Tl))) : (3.27)
Proof. On the first hand, thanks to (3.23), we have for all vy € L?(T?),
vl oo, 7522(ry) < llvollzzcryy + | fllz1o, 522 ()

On the other hand, by using Duhamel’s formula, we have that

T
v(t) = e MoV, —|—/ 1S<te*i(t*5)H9’Vf(s)ds.
0

12



Then, by (3.22) and (3.26), we have
T . .
||”||Loo(1r;Lg(o,T)) <C <||U0L2(1r2) +/o He_zme’veuﬂg’vf(s)HLoo(qr;Lg(o,T)) ds)

T
<c (nvwmz) + / 7Y £ ()| 2 oy d8>

= C (ool 2oy + 1 lno ooy ) -

which leads to the second estimate of (3.27). O

3.2.3 Strichartz estimates in T?

Now we focus on the 2-dimensional setting, i.e. we consider for T > 0

. _ v 2 ; 2
{Zaty_( A+2i0-V+I[0>+V)v+f in(0,T) x T? (3.28)

v(0,-) = v in T2.
The next result concerns Strichartz estimates for solutions to (3.28).

Proposition 3.12. Let T > 0 and M > 0. There exists C = C(T, M) > 0 such that for every 0 €
[0,1]2, vg € L*(T?), V € L®(T%,R) with ||V |~ < M and f € L*3(T?;L?(0,T)) N L'(0, T; L*(T?)),
the solution v to (3.28) satisfies

HU||L°°(O,T;Lz('Jl‘z))ﬂL4(11‘2;L2((),T)) <C (HU0||L2(’]1‘2) + ||f||L4/3(11‘2;L2(O,T))le(o,T;H(T?))) :

Proposition 3.12 has already been proved in [BBZ13, Proposition 2.2] for § = 0. Here, the main
novelty is to get a uniform a priori estimate with respect to the parameter 6 € [0, 1]2.

Remark 3.13. [t is worth mentioning that the homogeneous case, i.e. f = 0 cannot be proved as
[BZ19, Remark (3) p.333]. Indeed, the starting point for obtaining such a case is the Zygmund’s
inequality (3.7). By setting vo = Y \sqvx with vy = Z|n—9|2:)\ cne™®, we have that for v, solution
to (3.28) with f =0 and V =0,

27
||U||i4(T2~L2(O 2m)) — / /
’ ’ T2 0

For 6 = 0, the right hand side of (3.29) can then be bounded as follows, using Parseval equality,
Hélder’s inequality and Zygmund’s inequality (3.7)

LAE

2

2 2 2 2 2 2

< @m) Y loallzaerey loullfagry < C D loallzecre) lvull 72y < C (Z IIUAILz(Tz)> < Clvollz2(pey -
A p A A

Z eit’\w\(z)

A

dt | dz. (3.29)

dt | dz = (27)’ / 2 (Z w(z)|2> dz = (2r)? / D loa(2)Plon(z) P
A A

Z eitAUA (Z)
A

On the other hand, for 8 # 0, one cannot use Parseval equality to first estimate the right hand side
of (3.29) because A > 0 is not an integer anymore. A natural strategy would be to employ an Ingham’s
inequality, see [Ing36]. But for obtaining such an estimate, one needs to prove a gap condition on the set
{In—012; n € Z?}, uniformly in 6. This turns to be false because |(1,0)—(01,62)*—(0,1)—(61,62)|* =
2(02791)%0 (1892701*)0.

Actually, even for fized 0, this gap fails to hold. Indeed, let us consider 6 = (61,02), where 61 and
0> are Q-linearly independent. It is well-known that, in that case, the set 17 + 057 is dense in R.

13



For any € > 0, we can therefore find two integers k,l € Z such that 0 < |kfy + (02| < §. By defining
n=(k+2l,1—2k) and m = (21 — k, -1 — 2k), we obtain

0< Hn —0)*> — |m — 9\2| = 4|k6; +102| < e.
This prevents {In — 0|* ; n € Z*} to satisfy a gap.

Instrumental in the proof of Proposition 3.12 are the resolvent estimates (3.4) given by Proposition
3.3.

Proof of Proposition 3.12. Let 6 € [0,1]%, vo € L*(T?) and f € L*3(T?; L?(0,T)) N L*(0, T; L?(T?)).
Let v be the solution of (3.28). We split the solution into two parts, i.e.
t
o) = ey 1 [ eI f(s)ds =i () + o).
0
First step: Bound on vy (t). The goal of this step is to obtain

HUI(t)||Loo(o,T;Lz(TZ))mL4(T2;L2(o,T)) <C ”UOHL2(T2) . (3.30)
Firstly, from (3.22), we have |[v1(¢)|| Lo (0.7, r2(r2)) = [[V0ll p2(p2)-
The second bound of (3.30) comes from a “I'T* argument”. More precisely, we set
T : v € L*(T?) +— ;.

In order to prove that T is a bounded operator from L2?(T?) to L*(T?; L%(0,T)), it suffices to prove
that TT* is a bounded operator from L*/3(T2; L?(0,T)) to L*(T?; L?(0,T)), see for instance [GV95,
Lemme p.XVII-5].

First, a straightforward computation gives that

T
T f = /0 eisHov f(s)ds € L2(T?),  Vf e LY3(T% L*(0,T)),

SO
TT* f = / e_l(t_s)H"’Vf(s)ds = / e_’(t_S)Heva(s)ds —|—/ e_’(t_s)H"»Vf(s)ds =T\f+Tf.
0 0 t

It remains to prove that 77 and T are bounded operators from L*/3(T?; L2(0,T)) to L*(T?; L?(0,T)).
We will only do it for 77 because the same arguments apply for treating T5.

Setting y = T1f, we observe that y(t,-) solves the Schrodinger equation (3.28) with vg = 0, so
setting Y (t) := e 119 100)(t)y(t) and F(t) := e~" f(t)1(o,r)(t), the following equation is satisfied in
the distributional sense

i0Y +iY = (~A+2i0 -V + 0>+ V)Y + F in (0, +o0) x T2 (3.31)

Therefore, taking the Fourier transform in the time variable of (3.31), we obtain the equation satisfied
by Y,

(~A+2i0-V+ |02 +V+7—i)Y(r)=-F(r) VvreR (3.32)
Therefore one can apply (3.4) to (3.32), using that Im(7 — ) = 1 to get
Yy <C|F : :
17| P 17| posy TTER (3.33)

Hence, using Parseval equality, and reversing time integration and space integration because 4 > 2 >
2/3, we get from (3.33) that

ITiflas sy < €IV Iascezaenn = O (7] o < CNP | pamnmnceny

<c|# < ClIFasqreqeay < C I llasepaomy)

<clf
L2(R,;L4/3(T2)) L4/3(T2,L2(R,))
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which proves that T is bounded from L*/3(T?; L?(0,T)) to L*(T?; L?(0,T)). This concludes the proof
of the second bound of (3.30) hence the first step.
Second step: Bound on vy(t). The goal of this step is to obtain

[v2ll pow (0,722 2y L2 222 00,m)) < C Nl L1,z (r2)nner2 (r2,220,)) -

The first bound is obtained as follows, for every ¢ € [0, T,

T T
loa@lgacey < [ | 1@< [N aacrny < W sioiaaceny

L2(T?

The second bound exactly comes from the boundedness of T} from L*/3(T?; L?(0,T)) to L*(T?; L?(0,T)),
see the previous step.
This concludes the proof of the second step then the proof of Proposition 3.12. O

4 Observability estimates in T?: from highly oscillating initial
data to L? initial data

The goal of this section is to prove that it is sufficient to establish observability inequalities for highly
oscillating initial data to deduce the observability of L? initial data. Note that this step holds for
all multi-dimensional torus T¢. The first part consists in obtaining a weaker observability estimate,
i.e. the expected observability estimate up to a compact term by using a dyadic decomposition,
see Proposition 4.1 below. Then, the second part is devoted to remove this compact term by using
a compactness-uniqueness argument, see Proposition 4.2 below. Here, because we are considering
measurable observation sets, some arguments have to be changed as the unique continuation property
satisfied by the elliptic operator Hg . It is worth mentioning that while Proposition 4.1 focuses on a
subset of L*>° potentials, Proposition 4.2 considers a compact subset of L>° potentials.

4.1 Weaker observability estimate
Let d > 1. For 6 € [0,1]%, V € L>(T¢,R) and p > 0, we define for all h > 0,

hQHQ’V — 1)
— ] Uo,

Ix,p0,vu0 = X (
p

where x € C°((—1,1),R) is equal to 1 in a neighborhood of 0.

Proposition 4.1. Let b € L>(T¢,R) be a non-negative real-valued function and S C L (T4, R) be a
bounded subset. If for any T > 0 there exist some positive constants C = C(T,S) > 0, po = po(T,S) >
0 and ho = ho(T,S) > 0 such that for all 0 € [0,1]? and V € S, we have

Y0 < h < ho,V0 < p < po,Yug € L*(T%),

T
—q 2
||Hh»P797VUO||iQ(T4) < C/O /Td b(z) |€ tHe'V(Hh,p,e,vuo)(Z” dzdt, (4.1)

then for any T > 0 there exists a positive constant C' = C'(T,S) > 0 such that for all 6 € [0,1]¢ and
Ves,

T
—i 2
Vg € AT, Jtol2a(eu < O (/ [ b e )| dzdt+uo|%qz<w)>-
0 T

Proof. Let us assume that (4.1) holds for any time T' > 0.
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Let us show that the following weaker observability estimates hold: for any T" > 0 there exists a
constant C’ > 0 such that for all § € [0,1]? and V € S,

T
—q 2
Yug € LQ(Td)7 ||UO||i2(1rd) < C/ /d b(z) }e tHe,v’u,o(z)} dzdt + CH’LL()H%{,Q(TG;). (4.2)
0 T

The weaker observability estimate (4.2) will be deduced from the observability estimate for highly
oscillating initial data (4.1). The strategy is crucially inspired by [BZ19, Section 3.1]. Let us describe
in an heuristic way the strategy.

We first decompose dyadically the initial data, the low frequencies are then putting into the H ~2-
norm of the initial data, whereas (4.1) is applied to high frequencies. Moreover, in order to reconstruct
the solution, in the right hand side of (4.2), the natural idea is to commute v/b and Hgy that does
not work. This is why here we will crucially use that Dye~ %0V = —Hy e~ MoV with D, = 9,/i.
Therefore, one can use Dyvb = vbD,. Finally, because we are observing the solution in the interval
time (0, T), one should commute 1(g,7y and Dy, that does not work. This is why, before applying the
observability estimate, one may introduce a cut-off function 1, whose support is contained in (0,7),
then apply semi-classical calculus in the time variable in order to commute ¢ and D;. The remainder
terms would be put in the H2-norm of the initial data.

Let T > 0. By assumptions, there exist pg > 0, hg > 0 such that (4.1) holds. Fix R > 1 such that
(R"Y,R)c{reR; x((r—1)/po) = 1}. Then from [BCD11, Proposition 2.10], one can find a dyadic
partition of the unity as follows, there exist pg € C°((—1,1);[0,1]) and ¢ € C°((R™1, R);[0,1]) such
that, denoting ¢y (1) = p?(R~*r) for k > 1,

+oo
vr € RY, @2(r) + Z or(r) = 1. (4.3)
k=1

Notice that, since S is a bounded subset of L°°(T%), there exists M > 0 such that
YV e S, HV”Loo(Td) < M.

We therefore deduce from (3.1) that for every s € R, there exist ¢}, c5 > 0 such that for every 6 € [0,1]¢
and V €8S,

+oo +oo
s 2 2 s 2
D0 B ok (Hov ol fanay < Nuollzseray < b 3 R oMo ooy (44)
k=0 k=0

Let ¢ € C2°((0,7); [0, 1]) that satisfies ¢(t) = 1 on (T'/3,2T/3). Let us choose K > 1 large enough
such that R~ < hZ. Then, we have that for every k > K + 1, setting h = R7F/2 oy, (Ho,v) coincides
with Iy ,0.0,v¢%(He,v). One can then use (4.1) on the time interval (7'/3,27/3) to obtain

2

dt  Vk>K+1.  (45)

liow (o, )u(T/3)|[242) < C / v ()? |[Veer(How Ju(t) L (ra)

Now using that Dyu = —Hg vu and Db = VbDy, we deduce from (4.5) that

2

ey Ju(T/3) 12 < C |[VoU(Eion (Do) Vh > K 41, (4.6)

L2(Ry xT2)

Let ¢ € C°((0,T);[0,1]) such that ¥ =1 on supp(¢)). Setting h = R~¥/2, the semi-classical
parameter, from the semi-classical calculus on R, see Theorem A .4, (A.3) and (A.4), the asymptotic
expansion holds

w(t)s%(Dt) = T/J(t)SDQ(th)
= p()@? (hD) () + () (hDy) (1 — (1))
= p()@* (MD)W (t) + E(t, hDe)(1 + [¢2) "1 (1 + [hD,|?) 7, (4.7)
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where

E(t,hDy) = opp(c), c€ S(R*) and  sup  |(1+t*)*(1+72)°0]0%c(t,7)| < Capy.6h®, @, B,7,0 € N.
(t,7)ERXR

Then, by using (4.6), (4.7), Theorem A.1, (A.1) and again Diu = —Hp yu in (0,7) we have
2
H@k(He,V)U(T/?’)”m(Td)

<c Voo, .
2

+ CRO||(1+ )71 (1 + [AD2) " ult) |12z, vy

< € |[er(D0)d(e)Voul

+CORO ||(1+ )7 (1 + [hHe, v ?) ! VE> K +1.

2
L2(Ry xT4) u(t)HLQ(RMTd)
Therefore, by summing for k > K + 1 the preceding estimate, remembering that h = R™%/2, we get
from (3.1), (3.22), (4.3) and (4.4)

—+o0

~ 2
> low(How)u(T/3)2epa) g/Rw(tyHﬁu(t)”m(w)dt+0}|(l+|H97V|2)71u(t)||2Lm(Rt;L2(Td))
k=K+1

T 2
< C/O Hﬁu(t)HLz(Td)dtJrc||(1+ [Ho v ) o3 ey

T 2
2
<c [ |[Vout)], 4 C luolscon (18)
To sum up, we then have from (4.4) and (4.8)
2 «— 2 2 « ; 2
ol Facray = D I (How ol pay < C llol-agray + D ™/ ™¥ oo ool | ,
k=0 k=K+1 ()
2 — 2 T 2 2
<Clluslisen + Y lor(lo /D iaen <€ [ Vo)), , dt+Clluoliyscrs.
k=K+1 0 (™)

which concludes the proof of (4.2). O

4.2 Remove the compact term in the weaker observability estimate

Proposition 4.2. Let b € L>=(T%) be a non-negative real-valued function and S C L*>(T¢ R) be a

compact subset for the weak”™ topology. If for any T > 0 there exist some positive constants C =
C(T,S) > 0 such that for all § € [0,1]? and V € S, we have

T
4 2
Vg € L¥(T9), ||uo||iz<w>sc'</ [ o) e er (o) dzdt+||uo||zz<w>>- (4.9)
0 T

then for any T > 0 there exists a positive constant C' = C'(T,S) > 0 such that for all 0 € [0,1]¢ and
Ves,

Yug € L(T9), HuoHiQ(W) <’ /OT y b(2) |eﬂ'”'£9v"uo(z)|2 dzdt.
Proof. Let us assume that (4.9) holds for any time T' > 0.
First step: an unique continuation property. Let us consider the following space
Nrgy = {u € LA(T%); b(x)e "Hovy(z) =0 on [0,T] x ']Td} ,

with 6 € [0,1]? and V € S. First of all, let us show that the Hilbert space (N7g,v, || - || £2(ra)) is a finite
dimensional space. Thanks to (4.9), we have that the norms || - [[z2(pay and || - || y—2(ay are equivalent.
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As a consequence, one can readily show that the unit closed ball By (ay(0,1) N N9 v is compact,
thanks to the Rellich Theorem. In particular, the Riesz Theorem provides that the dimension of N g v
is finite.

Let us now show that Mgy = {0}. To that end, we proceed by contradiction and assume
Nrgyv # {0}. We begin by noticing that N gy is invariant by the action of Hgy. Indeed, if

uw € Nrg,v, then forall 0 <e < T, u. = % belongs to Nr_. 9,v. Thus, by applying (4.9) at
time T' — ¢, we obtain that for all 0 < e < T,

uellz2(ray < C'llue || g—2(1ay,

for some positive constant C’ > 0. Since u. — Hovu in D'(T?) and H-2(T?), it follows that
e—0 '

u € D (Hg,v) (see for instance [Paz83, Section 1.1]) and
[Ho,vullp2(ray < C”||ullL2(1ay,

for some positive constant C” > 0. Moreover, since u. belongs to Np_. gy for all 0 < ¢ < T, we
deduce that Hg yu € Np_s9,v for all 0 < § < T. Then, Ho,vu € N1 v and N1 gy is invariant by the
action of Hg 1. As a consequence, since ’Hg)vl Nrov is a self-adjoint operator on the finite dimensional

Hilbert space (N7,9,v, || - [|p2(re)), there exists a nontrivial function ¢ € L*(T%) and A € R such that
(~A+2i0-V+0>+V)p=Xp and ¢ € Nrgy.

In particular, ¢ is an eigenfunction of (—A + 2if - V + [0 + V') which vanishes on a set of positive
measure. By the unique continuation result from [Reg01, Theorem 1.2], we deduce that ¢ = 0. This
provides a contradiction and consequently, N7 gy = {0}.

Second step: we remove the H™2-norm in the weak observability estimate. By now, we establish
that there exists a positive constant C’ = C’(T, M) > 0 such that for all § € [0,1]¢ and V € S,

T
Yug € L?(TY), ||u0||i2(']1‘d) < C// / a(z) ‘e‘it%9="uo(z)}2 dzdt.
o Jrd

Once again, we proceed by contradiction and it provides sequences (ty)nen C L2(T?) with [|up || z2(re) =
1 for all n € N, (6,)nen C [0,1]% and (V,,)nen C S, such that for all n € N*,

/ ' / b(z) |e=Hon v, (2)|? dedt < (4.10)
0 Td

1
n

Since (U, )nen is bounded in L2(T9), there exists f € L%(T?) such that, up to a subsequence, (u,)nen
weakly converges to f in L?(T?) and strongly converges to f in H~2(T?). Thanks to the weak observ-
ability estimate (4.9), it follows that

L< Ol -2 p0)- (4.11)

On the other hand, since (6, )nen is bounded and S is weakly* compact in L>(T4), there exist 6 €
[0,27]? and V € S such that, up to a subsequence:

0 — 0 and V, —* Vin L=(TY).

n—+4o0o —+4oc0
We then get that for all ¢t € [0, T,

efii?‘[gn‘vn Up j efitHG,Vf Weak]y in L2 (412)
n—-+oo

Indeed, for obtaining (4.12), we proceed as follows, for ¢ € L2(T9),

<e_it’H9nan Uy — e—l’t’Heyv f’ ()0> — <(e_it’H9nan _ e—it%e,v)un, SO> + <e—itH9,Vun _ e—it?‘[eyv f, s0>

= <um (eitHB"'V" - eitﬂe’v)@> + <un - f eitHQ’VSD>v
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the first term goes to 0 as n — 400 according to the stability result (3.24) and the second term goes
to 0 as n — +o0o0 by weak convergence.
From (4.12) and (4.10), we then deduce that for all ¢ € [0, T,

T T
/ / b(z) ‘e_m’“”‘/f(z”2 dzdt < lim inf/ / b(z) }e‘imen"’n un(z)’2 dzdt = 0,
0 Td 0 Td

n—-+oo

that implies that f € Ny gy = {0}. This contradicts (4.11) and ends the proof of Proposition 4.1. []

5 Proof of the uniform observability inequality on T?

This section is devoted to the proof of Theorem 1.4. It is adapted from the one given by Burq and
Zworski in [BZ19], in the case V' = 0 and § = 0. Let us recall that two main differences appear
in comparison with [BZ19]: the presence of the parameter § € [0,1]? and the bounded potential
V € L°(T?) in the operator Hg . These difficulties have already been handled in Sections 3 and 4.
Here, we continue keeping track of 6 to ensure that the observability constants do not depend on 6.

In a first part, we prove one-dimensional observability estimates (for highly oscillating data) thanks
to semi-classical defect measures. The second part consists in proving two-dimensional observability
estimates (also for highly oscillating data) using semi-classical defect measures and a reduction of the
dimension argument based on ergodicity arguments.

Before continuing, let us state a useful easy lemma, that will be used in the next two parts. It
enables us to pass from L>-observable sets to L'-observable sets in the multi-dimensional setting.

Lemma 5.1. Let T >0 and S C L>(T?). Assume that for every B € L>(T¢,R,)\ {0}, there exists
a positive constant C' > 0 such that for all § € [0,27]% and V € S,

T
Vug € LA(TY),  uo)2agpa) < C / B(x) |e~ ™o ug ()| dudt. (5.1)
0 T

Then, for every b € L' (T4, R, )\ {0}, there exists a positive constant C > 0 such that for all § € [0, 2r]¢
andV € S,

T
Yug € L*(T%), ||Uo||2L2(Td) < C/ / b(x) ‘e_m{(’*"uo(ac)’2 dxdt. (5.2)
0 Jrd

Proof. Indeed, if b € L*(T?,Ry) \ {0} then, there exists R > 0 such that |{z € T% b(z) < R}| > 0.
Thus, B = 1o gy(b)b € L>°(T%) \ {0} and for all uy € L*(T?), we have that

T T
/ B(x) ’.e_im‘“’uo(x)‘2 dxdt S/ b(x) |e_im9*"uo(x)|2 dxdt.
0 Td 0 Td
Conjugating the previous estimate with (5.1) leads to (5.2). O

5.1 One dimensional observability estimates

This section is devoted to prove the following one dimensional weak observability estimates for smooth
potentials.

Proposition 5.2. Let b € L°°(T*) \ {0} be a non-negative function, M > 0 and T > 0. There exists
a positive constant C > 0 such that for all 0 € [0,1] and V € C*(T",R) with |V||z~ < M,

T
Yug € LQ(Tl), ||UQHQL2(T1) < C/O /El b($> ‘e—itﬂevvuo(q;)’2 dxdt + C||uo||%72(qr1)-

Recall the notation of the operator Hgy = —02 + 2i0 - 9, + |0|?> + V(x) that will be used in the
sequel of this part.
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Proof. Thanks to Proposition 4.1, it is sufficient to establish that there exist some positive constants
C=C(T,M) >0, po=po(T) >0 and hg = ho(T) > 0 such that for all § € [0,1] and V € C=(T,R)
with |V~ < M, we have

Y0 < h < hg,V0 < p < po,Yug € L*(TY),

T
i 2
||Hh,p,9,VUO||i2('ﬂ-1) < C/o /11‘1 b(x) }e tHe’V(Hh,p,97vuo)(z)| dxdt.

To that end, let us proceed by contradiction. Assume that there exist some sequences (hy,)n>0 C (0, 1],
(Pn)n>0 C R, (Vi)nzo C C°(TY,R), (65)n>0 C [0,1] and (upn)p>0 C L*(T') satisfying:

hnvpn j 0; ||Vn||L°° é M» Un = th,pnﬁn,Vnun with ||vnHL2 =1
and
T A )
/ / b(z) |e” " Hon Vau,, (2)| dedt — 0. (5.3)
0 T1 n—-+oo

By definition, the family (u,),>0 satisfies the (h,,)- oscﬂlatmg property (A.6). By applying Proposi-
tion A.8, there exists a finite measure p € L>(R, M4 (T*T)) such that, up to a subsequence: for all
¢ € LY(R) and a € C(T x R),

tim [ () opy, (@)e™ om0, Pt amundt = [ plO)ala, Oult.d,de)dt, - (5.4)
RxT*T1

n—-+o0o R

and the measure p satisfies

VseR, o, // a(@ + 5€, E)plt, d, d€)dt = 0, (5.5)
T*Tl

for all ¢ € L'(R) and a € C°(T x R). Moreover, the following properties hold

Vto,t1 € R, p([to,t1] x TP x R) = [t; —to| and Suppu € R x T' x {—1,1}.

(dz) = /OT /Rg u(t, da, de)dt

As a consequence of Proposition 3.10, we show that

Let us define the measure

/b(x)uT(dac) =0.
T

To that end, let us first check that there exists f € L>(T) such that ur = f(z)dz. Indeed, we obtain
from (5.4) and (3.26) that for all a € C*(T)

/ a(z)pr(de) = lim // ~itHon Vg, ’ z)dzdt < C|la| g1 (r)
T

n—)+oo

and then, pr € (Ll(T))/ = L>°(T). Now, let (b,)pen € C°°( )N be a sequence converging to bin L*(T).
Notice that since pur = f(z)dx € L>, we readily have [} b(z)pr(de) = limy_, o [3 bp(2)pr(dz). On

the other hand,
/ / by (@) [eHon Vo, | (2)dwdt

[tz
T
< lim / /b(x”efimew Voo, | z)dzdt + C|[b— byl L1 (1)
T

n—-+oo 0

= lim
n—-+oo
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We deduce from the last inequality and (5.3) that

/b(m)uT(dx) = lim =0.
T

p——+oo

[ twteuran)
T

Finally, let us notice that the invariance property (5.5) leads to
Ozt = 0.

Let us check this fact. Thanks to the fact that

Suppu € R x T! x {~1,1},
it is sufficient to prove that for all a € C°(T! x R) with

(Suppa) N (T* x {~=1,1}) € T* x {-1} or (Suppa)n (T* x {-1,1}) c T* x {1},
and for all ¢ € L}(R),
| [ otosate oute.de.ag) o

For example, let us deal with the case when (Suppa) N (T! x {=1,1}) € T! x {1}. Thanks to the
invariance property (5.5), we have for all ¢ € L!(R) and for all s € R,

L oot aute iy = [ [ ownate -+ eoute de. de

RJTtx{1}

By using anew the invariance property (5.5) and the fact that dya(x + s,1) = dsa(x + s, 1), it follows
that

/ / (D)0, €)dp(t, dz, d€) = / / o(0)duale + 5, E)u(t, de, de)
R JT1xR R JT!x{1}
=0 [ [ olbate s seutdnde)

/ / d(t)pa(z, &)du(t, dz, d€) = 0.
R JT1xR

This proves that d,ur = 0, which means that ur = cdx, with ¢ > 0 since up(T!) =T > 0.
This implies, in particular, that

lbllzs (x = /Tb(x)uT(x) 0,
This is a contradiction since b £ 0 and this ends the proof of Proposition 5.2. O

Thanks to Proposition 5.2, we can establish the following result which provides one-dimensional
observability estimates for Schrodinger equations with L°°-potential and source term:

Corollary 5.3. Let b € L*(T*,Ry) \ {0} be a non-negative function, M > 0, and T > 0. There
exists a positive constant C' > 0 such that for all 0 € [0,1], V € L>®(TY;R) with ||V peo(r r) < M,
ug € L?(TY) and f € L*((0,T), L*(T')), the mild solution u to

i0u = (=02 +2i0 -0, + 0> +V(z))u+ f in (0,T) x T,
u(0,-) = up in T!.

satisfies the observability estimate
T
\|U||%oo((o,T);L2(1r1)) <cC </o /Tl b(x)|u(t, ) |*dedt + ||f||2L1((o,T),L2(1r1))> :
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Proof. Let us first deal with the case f =0 and b € L*(T!,R,) \ {0}. According to Proposition 4.2,
since Bre (0, M) is weakly* compact in L>(T*), it is sufficient to show that there exists C' > 0 such
that for all 6 € [0,1] and V € L*°(T*,R) with ||V pec (1) < M,

Vug € LTV, uol2aemsy < C / [ @ lutt.)Pde de+ Clualfy-s o

From Proposition 5.2, there exists a positive constant C' > 0 such that for all 6 € [0,1], V € C=(T,R)
with ||V||z= < M and ug € L*(T?!),

. 2
Jetoll2 <C/ /1 o200 OV (@) 0oy dadt + Cllug||3-2(1)- (5.6)
T

Let V € L°°(T*,R). One can find a sequence (V,,)neny C C®(T!, R) satisfying

VneN, [[Vulpem)<M and V, — V for the weak” topology of L™

n—-+oo

Moreover, we obtain from (5.6) that for all n € N, 6 € [0,1] and uy € L?(T!,R),

luoll2smr, < C / /
Tl

We therefore deduce from the above estimates, together with the stability result given by Proposi-
tion 3.24 and the dominated convergence Theorem, that for all 6 € [0,1] and ug € L?(T?),

T ) _ 2
Huolliz(Tl) < C/ /1 b(x) ‘e—zt(—a§+219.am+|0\2+v(x))u0(x)‘ dadt + Clluol| g2 (o)
0 T

Since Bre(0, M) is weakly” compact in L°(T!), we are now able to conclude from Proposition 4.2
that for all § € [0,1], V € L>®(T*, R) with ||V||z~ < M and ug € L?(T?'),

T ) ) 2
||u0||2L2(T1) < C/O /Tl b(x) ‘e—zt(—é’ﬁ+2@0~8m+\0|2+\/(x))u@(x)‘ dxdt. (5_7)

Notice that, thanks to Lemma 5.1, the observability estimates (5.7) holds true for b € L(T!, R )\ {0}.
Let us now consider the general case. We split u into two terms, the one coming from the initial
data and the second coming from the source term, we have

t
u(t) = e~ Moy + / eI f(s)ds. (5.8)
0

Taking the square of the L?(T!)-norm on both sides of the previous equality, we have that

t
/ e*i(tfs)Hgyv f(S)dS
0

Then, from the Minkowski inequality, the conservation of the L?-norm (3.22) and the observability
inequality for the homogeneous equation (5.7), we deduce that

2
Oy < 2™ ] +2]

L2(T') .

t 2
2 2
[z 1y < 2uollzz(rr) +2 (/O 1 () 2y dS)

T
S C/ / b(l’)|€72t H"*V’uo|2dt/d$ + CHf”%l((O,T),LQ(Tl))'
’1'[‘1
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Now we plug the Duhamel formula (5.8) in the right hand side of the previous estimate, using Fubini
theorem, we obtain for all ¢t € (0,T)

2
()2

< C/OT/TI b(z)|u(t')|2dt’dx+C/OT/Tl b()

t/
/ e_i(t/_s)Hg'Vf(S)dS
0

t/ 2
/ Bii(t 78)H9'Vf(8)d5 dt/ddf + C”fH%l((O,T),L2(T1))

0

2

T
<[ [ wlute)ards+C bl + O oimy ooy

Lo (T*;L2(0,T))

Moreover, the Strichartz estimates (3.27) given by Proposition 3.11 shows that

Then, it follows that

2

/

t
/ e_i(t/_s)He'Vf<S>dS

0 < CIf 72 0.1y, L2 (T1) -

Le=(THL2(0,1))

T
2
[ullpoe (0,712 (11)) < C/o /Tl b(x)|u(t)|2dtdx+CHf”%l((O,T),L?(Tl))?

which concludes the proof of Corollary 5.3. O

5.2 Two-dimensional observability estimates

This section is devoted to the proof of Theorem 1.4. It is divided into two parts. The first one
establishes uniform observability estimates for smooth potentials, belonging to a relative compact
subset of L*(T?). In the second part, we deduce the observability estimates for L>-potentials from
the smooth case and the stability result of Proposition 3.9. Without loss of generality, according to
Lemma 5.1, we can assume that b € L>(T?).

5.2.1 Observability estimates for smooth potentials

In this section, we prove the following proposition which provides weak observability estimates for
smooth potentials:

Proposition 5.4. Let T > 0, M > 0, b € L*(T? R) \ {0} be a non-negative function and K C
C>®(T2) N Br(0, M) be a relatively compact subset of L*(T?,R). There exists a positive constant
C = C(T,b,M,K) > 0 such that for every real-valued potential V € K, § € [0,1)? and vy € L?(T?),

T
oo )12 r2y < C/ b(z)|e™" eV (t, 2)Pdzdt + Clluolf-2(ze)-
o Jr2
Let M > 0, T > 0 and K C C°°(T?) N BL=(0, M) be a relatively compact subset of L*(T? R).
Thanks to Proposition 4.1, it is sufficient to establish that there exist some positive constants C' =
C(T,b,M,K) >0, po = po(T) > 0 and hg = ho(T') > 0 such that for all § € [0,1]* and V € K, we have
Y0 < h < ho,V0 < p < po, Vug € L*(T?),
2 T i 2
IMnp.0,vtoll g2 (pzy < C /0 5 b(2) |e "0 (I, 0,1 u0) (2)|” dzdt,

where Ho v = —A +2i0 -V + 0> + V.

To that end, let us proceed by contradiction. Assume that there exist some sequences (hy,)nen C
(07 1]a (pn)nEN - Ri, (Vn)neN - ’C, (en)nEN C [07 1]2 and (un>n€N - LQ(TQ) satisfying:

hn;pn » 0, v, = th,pnﬂn,\/nun with HU7L||L2 =1
n—-+oo
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and

T
/ b(z) e Honvn v, ()| dedt — 0. (5.9)
T2

n—-+oo

Since K is relatively compact in L*(T?), up to a subsequence, (V;,)nen is a Cauchy sequence in L*(T?).
Let us consider a small parameter § > 0, to be chosen later. There exists ps € N such that

HVn — Vp5HL4(’H‘2) ) Vn > ps. (5.10)

By definition, the family (vy,),en satisfies the (h,,)-oscillating property (A.6). We can therefore apply
Proposition A.8 which provides a finite measure pu € L (R, M, (T*T?)) such that, up to a subsequence:
for all p € L'(R) and a € C°(T? x R?),

lim go(t)(ophn(a)e_im“’n"’nvn,e_im""f‘/"vnﬁz(p)dt:/ p(t)alz, &) u(t,dz,d¢)dt. (5.11)
RXT*T2

n—-+oo R

Moreover, the measure u satisfies

Vs eR, 0O // a(z + s¢, Q)u(t,dz,d¢)dt = 0, (5.12)
*TQ

for all ¢ € L'(R) and a € C2°(T? x R?). Furthermore, the following properties hold
Vto,t1 € R, u([to,t1] x T? x R?) = [t; —to| and Suppu C R x T? x S*.

Let us define the measure ur € M (T*T?) by

T
pr(dz,d6) = [ e, dz. dC)i
0
We divide the remainder of the proof into six steps.

First step: reqularity property for pr.
We have from (5.11), together with Proposition A.8 assertion (ii), that for all a € C2°(T?),

| a0 = i / [ el im0 dec.
2 «R2 n o0 2

Consequently, we obtain for all a € C2°(T?),
—itHe,, v, 2
/ / nVnu, (2)|” dz
T2

7717‘[()” R

/ a(z)pr(dz,d¢) ' lim
T2 xR2

n—-+oo

< lallzar [l vﬂvn||i4m,L2<o,T>>

< Crllal|2(r2),

where the last inequality follows from the Strichartz type estimates given by Proposition 3.12. It
follows from the Riesz representation Theorem that there exists a non-negative function g € L?(T?)
such that for all a € C2°(T?),

/TzXRz alz)pur(dz,d¢) = /T a(2)gr(z)d=.

Now, let (b,)pen € C°(T?)N be a sequence converging to b in L?(T?). Notice that since g7 € L?,
we readily have [, b(z)gr(2)dz = limp,_, o [ bp(2)gr(2)dz. On the other hand,

T
‘/ z)dz| = / /bp(z) ’e‘”HGn Y, ’ z)dzdt
o Jr

T
< lim / /b(z) |677'.t,H9" Vg, | z)dzdt + C||b — by || L1 (T2)-
T

n—-+oo 0

= lim
n——+o0o

24



We deduce from the last inequality and (5.9) that

/ b(z)ur(dz,dC) = / b(z)gr(z)dz = 0. (5.13)
T2 xRR?

T2
Second step: Ergodicity property. We define the set Yg\q of irrational directions on the torus T?
Srig = {(2,0) € T'T% [¢| =1, Z N {¢} = {0}},

and Xg = E]f{\@ the set of rational directions. The set Yg\q is clearly invariant by the flow:

V(2,¢) € Zp\@, Vs €R, (2 +5(,() € Ep\g- (5.14)
Let us show that pp(Xr\g) = 0. Let (by)pen C C°(T?; RT) such that by, s b in L%(T?). Clearly,
we have
b o (B

where (b) = [ b(x)dz. Since (b) = ||b]|L1(12) > 0, for p sufficiently large, we have (b,) > W)HL+T2) > 0.
Furthermore, by unique ergodicity of the flow z — z 4 s(, the following convergence holds: for all
peN,

1 S
W(2,0) € S (bp)s(2:0) ::E/O bp(z+ s)ds _—_{by).!

—+0o0

Consequently, we obtain from the Fatou’s lemma that

0 < jir(Sing) (by) = /

Zr\Q

(bphpur(dz, dC) = / lim inf (b,) 5 (2, Opr (dz, dC)

Teve S—4o00

< lim inf (bp)s(z, Q)pr(dz,d). (5.15)
S—4o0 PR

By (5.12) and (5.14), pur(dz,d¢) and ¥g\q are invariant by the flow, it follows that for all S > 0,
1 S
[ s ourdzde =g [ [ b s Our@andd) = [ b, (510)
Zmo 0 Jime Zr\Q
On the other hand, (5.13) shows that

0<

/ bp(z)uT(dz,d()‘: / by (=) — b(=)pr(dz, dO)| < / 1by(2) — b(2)|gr(z)dz —> 0.
Zr\0 Zr\o T2 P

—+o0

(5.17)
Finally, by gathering (5.15), (5.16) and (5.17), we obtain that

0 < pr(Er\@) — 0,

p——+oo

[ b
Yr\

S PR
16l 1

providing pr(3r\g) = 0. Consequently, pur(3g) = T > 0 and since {¢ € S'; 3z € T2, (2,() € S} is
a countable set, there exists (; € R? such that

(n,m)

Third step: a change of variables. This step is devoted to show that, up to a change of variables,
we can assume that (o = (0,1). Let F': R? — R? be the isometry defined by

pr(T? x {}) >0 and (= for some (n,m) € Z2.

V(21,22) € R?,  F(x1,32) = 315 + 2200,

ITo prove this convergence, one can check it for trigonometric polynomials and then conclude by a density argument.
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where (3~ = \(/;;17:22

the function F*u is periodic with respect to (AZ)%, with A = 2mv/n2 +m2. Moreover, if u(t,-) is
solution to the Schrédinger equation:

One can readily verify that for any function u periodic with respect to (27Z)?,

i0u = (—A+2i0-V+102+V(y)u in (0,T) x T?,
u(0, ) = uo in T2,

then, v(t,-) = F*u(t,) is solution to the Schrédinger equation posed on R?/(AZ)%:

10w = (A +2F~1(0) -V +10)> + F*V(y))v in (0,T) x R?/(AZ)?,
s A 5 (5.18)
v(0,-) = F*ug in R?/(AZ).
As a consequence, if we define w,, = F*v,, then,
VicR. F* (efit(fA+2i0n-V+\0n\2+Vn)vn> — (A2 T (00) V0P F V)
In the following, the new torus R?/(AZ)? is still denoted T2. Up to a subsequence, associated to this

family of solutions of the Schrédinger equation (5.18) with initial data (wy,)nen is a semiclassical defect
measure v € L°°(R, M (T*T?)) satisfying:

o for all tg,t; € R, v([to,t1] x T? x R?) = A%|t; —to| and Suppr C R x T? x S,
e vr(T? x {(0,1)}) > 0, with vp(dz,d¢) = fo v(t,dz,d¢)dt.

In other words, we are in the same situation as in the second step, with (o = (0,1). For the sake
of conciseness, we keep in the remainder of the proof the notations adopted in the second step and
assume that (o = (0, 1).

Fourth step: localization around the rational direction (y. In this step, we localize the semiclassical
defect measure p around the rational direction o = (0,1). For m € N*| we define the following set of
rational directions

8:2{( OE']I‘QXS1 C—\/I(%)qzy P +q <m, Png(p7Q):1}'

Let € > 0 be a small positive real number, to be chosen later. By denoting Eﬁg\(@ = (28)6, we have

20 = Umen- 20 %0 Zr\@ = 2§ = Npen- (Z8)¢ = Minen- ER\@s With Eﬁ’\(@l C Xp\g for all m € N*.
Then, the second step shows that

lim  pp (Zﬁg\(@) = ur (ZR\@) =0.

m——+0o0

In particular, this provides a positive integer m. € N* such that pr (Efg\@) < &. Since the projection

of Xg° onto S' is a discrete set, we can choose x. € C°(R?) such that
Xe((0,1)) =1, Suppx. C B((0,1);¢) and Xg< N (T? x Suppx.) = T* x {(0,1)},
where B((0,1);¢) stands for the Euclidean ball of R? centered at (0,1) with radius e.

Fifth step: a normal form argument. This step consists in applying a normal form argument in
order to reduce the study to a Schrodinger equation with a one-variable potential. The following
proposition is an adaptation of [BBZ13, Proposition 4.4] (see also [BZ12, Corollary 2.6]).

Proposition 5.5. There exist three bounded families (Qn.s)nen, (Bn.s)nens (Wa.s)nen in L(L*(T?))
such that for all m € N,

(I + hnczn,é)}tt%l,Vp(s Xs(hnD) - (H9m<vp5>y (I + thn,ﬁ) + han,5Dm)Xs(hnD) + han,éa

26



where (Vps)y(2) = [0 Vos (2, y)dy and D = D, = (D,, D)) = +V. More precisely, there exist a positive

7

constant C' > 0 independent on & and a positive constant Cs > 0 such that for all n € N,
1Qnsllcey <O, IWasllewey <Cs and  ||Ry sl < Cs.

Let us mention that, contrary to [BBZ13, Proposition 4.4], our symbols depend on the semiclassical
parameters h,,. For that reason, we need to carefully estimate each commutators appearing in the proof
of Proposition 5.5.

Proof of Proposition 5.5. Let o € C°(R\ {0}) be equal to 1 near to the projection of Supp x. onto
{0} x R (such a function can be chosen independently with respect to €.). Let us define
- o(hnDy)

Vos——

Qn,é = hnDy )

i
2
with V,,, (z,y) = J5 Vs (2, 94') = (Vos )y (2)dy’. The family (Q.s)nen is uniformly bounded (with respect
to 6) in L(L?(T?)) since ||Vp, ||z < 2M. With this choice, we obtain

(I + hnQn6) Mo, v, Xe(hn D) = Ho, (v, .y, (I + hnQn.s)Xe(hnD)
= (hn [Qn,éu _A] + 27fhn [Qn,&; en . V] + Vp5 - <‘/;75> + thn,5Vp5 - hn<Vpa>Qn,6)Xe(hnD)

. ~ h, D
= <—hnl(DwVpa)Dwa(hDy)> Xe(hnD) + hn(Rn,é,l + Rn,5,2)a
nty

with Rmé,l = (Qn,&vp(s - (‘/;75>Qn,5)X6(hnD) and

1

~ hyn D ' nD
Rn,572 _ <—D5(Vpa)a( y) U(h y)

) 2
ThaD, gl Pyt 2V

+ VP& — <VP5>Z/
haD, B

N =

5 ) Xz (hnD).

We can readily check that the family (R, s1)nen is bounded in £(L?*(T?)). Furthermore, by direct
computations, we have

i, = olh,D,) - o(hyDy) i - Vs — (Vs )
Rn,5,2 = (2(Avpa)hnl)yy =20, - (VVIHS)TZ); - E(Dyvpé)a(hnDy) + pahinps Xs(hnD)
_ 3 = o(hnDy) . 5 0(haDy) | Vs — (Vi) _
= (5at) TR <o, (wi) T e Bl o(h,D,)) ) xe ()
_(PAT o (hnDy) _ =\ 0(hnDy)

since i(Dy V) = Viy — (Vp, )y and (1 — o) x. = 0. We obtain that the family (R, 52)nen is bounded in
L(L?(T?)). Finally, we obtain that

(I+thn,6)H0n,Vp5 XE(hnD) _Hen,<Vp§)y (I+thn,6)Xa(hnD) = han,éDwXE(hnD)+hn(Rn,57l +Rn7(572)7

with
1 - 0(hn,Dy)

Once again, the family (W, s)nen is bounded in £(L?(T?)). This ends the proof of Proposition 5.5. [

Sixth step: reduction to the one-dimensional case. This steps consists in reducing the study to the
one-dimensional case, in order to conclude thanks to Corollary 5.3. We begin by defining for all ¢t € R
and n € N, wy 5(t) = (I + hnQns)Xe(hnD)vn(t). First of all, we show that there exists a constant
~ > 0, independent on ¢ and ¢, such that

0<~y< lﬁgl}rlg ||wn,5||L2((07T)><T2)-
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Indeed, i

< C then, we have
lim inf ||wn 5| 20,1y x12) = Hminf || xe (R D)vnl| £2((0,1)x12) — Umsup hy, Cllvnl 220,77y xT2)
n—-+oo n—-+oo n—+o00

= IT}QE;E | xe(hnD)vn || L2((0,1) xT2)-

Moreover, thanks to (5.11), we have

T
lim inf HXE(hnD)Un||2L2((O,T)><’]I‘2) = liminf/ <Xg(hnD)vn(t),vn(t)>L2(Tz)dt

n——+o0o n—-+4oo 0

:/ X2 ()pr(de,d€) > pr (T? x {(0,1)}) .
T2 xR2

1
This implies that liminf,,, oo [[wn,sll2(0,7)xT2) =7 > 0, with v = pr (T2 x {(0,1)})* > 0.
Furthermore, notice that, thanks to Proposition 5.5, wy, s solves the following Schrédinger equation

(0,5 (t) = (A + 2i0p - V 4 0, ]% + (Vo )y (€)1 5 (8) + fre,5(t) + Gn,e.(t)
with

fn,s75(t) = han,5vn( ) (I+ h Qn 5>[X6<h D) pa]vn(t)
gn,a,é(t) - han,éDzXE(hnD)vn( ) (I+ thn,&)Xs(hnD)(Vpg - Vn)“n(t)

Let us show that (f,.c.6)nen converges to 0 in L?((0,7) x T?). On the first hand, since (v,,(t))nen
is bounded in L>((0,7T), L*(T?)) and (Ry.s)nen is bounded in £(L?(T?)), the first term on the right
hand side goes to 0 in L?((0,7) x T?). On the other hand, to deal with the second term on the right
hand side, it is sufficient to show that ([xz(hnD), Vp;])nen converges to 0 in £(L?(T?)). This is a
consequence of (A.7) together with the Calderon-Vaillancourt Theorem (A.5).

Regarding the sequence (g ¢,5)nen, we have that there exist a constant Cs > 0, independent on e,
and a constant C’ > 0, independent on € and ¢, such that

hmbupHgnE(;HLz((o T)xT?) < 056 —|—052 (519)

n——+o0o

Indeed, since sup,,cy [|@Qn.sllz(z2) < C and (W, 6)nen is bounded by a constant Cs > 0 in £(L?*(T?)),
we have

lim sup [|gn. 51172 (0.1 x72)
n—-+oo

T
< 2Cslim Sup/ 7o Do X (hin D)oy (8)]| 7 2 (2t + 2hmiuP [(Vps — Vn)vnH2L2((O,T)><'JF2) :
0 n——+oo

n—-+oo
On the first hand, by using the fact that Supp x. C {(£1,&) € R?; |&1| < e}, it follows that
T
hrﬁiul)/ ”hanXE(hnD)Un(t)l‘%,?(T?)dt < 82HUnHQL?((O,T)xT?) = ¢T.
n 0 Jo

On the other hand, since limsup,, , ;. [|[Vp; — Vallz4(r2) < 0 by (5.10), it follows from the Strichartz
type estimates given by Proposition 3.12 that

. 2
limsup ||(Vp, — Vn)vn||L2((o,T)><T2) < Vps — Vn”%‘l('ﬂ‘?)||UHH%4('J1‘2,L2(O,T)) < 0/52’

n—-+oo

where C’ > 0 is a new positive constant provided by Proposition 3.12. We therefore obtain (5.19).
By now, we use the Fourier series Theory in the y-variable. We can write

ik ik
wn5(t, 2) = E W5kt x)e™,  fres(t,z) = E Fresr(t2)e™, g, o5t 2) = E Gn,e,sk(t,x)e™,
kez kez kez
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for z = (z,y) € T?. Since (V},), does not depend on y, we obtain that for all integers k and n, wy, sk
solves the following one-dimensional Schrédinger equation posed on T':

104wy 5.1(t) = (=02 + 2001 1, - O + |0n|* + (Vs ) (@) + k2 + 2020 k) w0 6.1(t) + Frc.60 () + Gnesn(t),

where 0,, = (01 n,02.0)-
We can now apply the one-dimensional observability estimates, given by Corollary 5.3, to the
solutions wy, 5, with potential (V},), and observable (b),. By Parseval’s Theorem, we obtain

/ ||’U)n 5( )||L2('[[‘2 dt = Z/ |wn5k ||L2 Tl)dt

kEZ
<c§j/ L@ st )P dadt + €3 e + gnesallagomyers
kez T kez

where C' > 0 is a positive constant, independent on 6 > 0, provided by Corollary 5.3. It follows that

T T
0<9?< liginf/ ||wn,5(t)||2Lg(Tz)dt < limsup/ ||wn,5(t)||2LQ(Tz)dt (5.20)
n oo 0
hmsup/ / ) |wn 5(t, 2)|2dzdt + CCse® + CC'6%.
n—-+4oo T2

It remains to estimate the first term of the right hand side. Let (b,)pen C C*°(T?, Ry ) be a sequence
converging to b in L?(T?) and satisfying ||b, ||~ < ||b||z=, for all p € N. We have, for all p,n € N,

/ / )| w5 (t z)\ dzdt
']1‘2
/ / — by)y(2)|wn,s(t, 2)] dzdt+/ / z)|wn 5(t, 2)[Pdzdt.  (5.21)
T2 T2

On the first hand, thanks to the Strichartz type estimates given by Proposition 3.12, there exists an
other constant C’ > 0 such that for all p,n € N,

//b—b D)lns(t, 2) dzdt < (6 by)y | 2
T2

(0,7))
< C 16 = Bphy gy (1m0, Ty
Thus, we have for all p € N|
limsup/ (b = by)y (@)l 5 (1, 2)Pdzdt < Cls b= byl ape) (5.22)
n—-+4oo T2

for a new positive constant C;(; > 0. On the other hand, thanks to (5.11), we have for all p € N,

MW/A (@t 2Pzt = [ () @elQ) Pz, d0

n—-+oo

= //S o Body (@)X (O (d2, dC) + / (bp)y (2)|x=(C) |2 (dz, dC).

Y

Let us recall that 3g= N (T? x Supp x:) = T x {(0,1)} and ,uT(ZR\E@) < e. We deduce that

limsup/ /2 ) w5 (t, 2)[Pdzdt < / (bp)y(x) 7 (dz,dC) + ||by|| Loo (T2)€- (5.23)
T

n—-+o0 T2 {(0,1)}
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Moreover, since T? x {(0,1)} and pr(dz,d¢) are invariant under the flow (2, &) — (2 +s(, () for s € R,
we have

/ (bp)y (@)pir(dz, dC) = / by(2)dpr (dz, d¢) < / by(2)gr (2)dz, (5.24)
TQX{(O,I)} 'JI‘2><{(0,1)} T2

where g7 € L?(T?) is introduced in the first step. Finally, by gathering (5.20), (5.21), (5.22), (5.23)
and (5.24), we obtain

0< 72 < C'Cé’(;Hb — bp||L2(T2) + é/p bp(z)gT(z)dz + C'prHLoo(Tz)E + 6'0552 +CC'8%

Since sup,ey byl < [|bllL>, by o bin L*(T?) and [, b(2)gr(z)dz = 0, by passing to the limit
when p — 400, we first have

0 <~ < CO||b||p~e + CCse? + CC'S.
Then, letting € go to 0 leads to

0< %2 < CC'5%.

Since § > 0 can be chosen arbitrary small, this last inequality provides a contradiction. This ends the
proof of Proposition 5.4.
5.2.2 From smooth to rough potentials

In this section, we end the proof of Theorem 1.4. Let 7' > 0 and K C L°(T?,R) be a compact subset.
Since K is compact, there exists M > 0 such that K C Br=(0,M). Let (pn)nen C C®(T?) be an
approximation of unity. From /C, we define the following set of real-valued smooth potentials:

K' :={p,*V; Vek,neN}.

It can be readily checked that K' C C>(T?) N B (0, M) is relatively compact in L*(T?). Thanks
to Proposition 5.4, there exists a positive constant C = C(T,M,K’) > 0 such that for all n € N,
6 10,12, V € K" and ug € L?(T?),

T A , 2 2
||uo||2Lz(T2) < C’/O /T2 b(z) ‘e*’bt(*A+210-V+\9| Vo (2)| dzdt + CHU()H?LI—2(’]I‘2)' (5.25)

Let V € K. Since p, * V - V in L*(T?), we then have p, * V. —* V in L>(T?), so one can
n—-+0oo

use Proposition 3.9 to pass to the limit as n — +oco in (5.25) to finally get for all § € [0,1]?> and
Ug € L2(T2),

T 2
. 0. 2
HUOH%%T?) < C/ / b(z) ‘e—zt(—A-‘rQLG V+|6] +V)UO(Z) dZdt+C||U0||2H72(T2).
0 T2

Since K is compact in L>(T?), we can apply Proposition 4.2 to conclude the proof of Theorem 1.4.

A Appendix

A.1 Semiclassical quantization on Euclidean spaces

This section is devoted to present few facts about semiclassical analysis on Euclidean spaces. We follow
the presentation of [Zwo12, Chapter 4].

In this section, h > 0 denotes a positive parameter and a € S(R?9), a = a(x, ) is called a symbol.
The Weyl quantization of a is the operator opy,(a) acting on u € S(R?) by the formula

opp(a)u(z) = Flhd /Rd /Rd e (e=ul)g (x ; y7£> u(y)dyd§.
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We first present a result that tells us how the Weyl quantization acts on the Schwartz space S(R9),
on tempered distributions S’'(RY) and on L?(R%).

Theorem A.1. We have the following continuity results.

1. [Zwo12, Theorem 4.1]. Assume a € S(R?*?). Then, op,(a) can be extended as an operator
mapping S'(R?) to S(RY).

2. [Zwo12, Theorem 4.2]. Assume a € S'(R??). Then, op,(a) can be extended as an operator
mapping S(R?) to S'(R%).

3. [Zwo1?2, Theorem 5.1]. Assume a € C3°(R??) := {a € C°(R?) ; [0%all foc (g2ay < Ca Vo € N2d}.
Then, opy,(a) can be extended as an operator mapping L?>(R?) to L?(R?). Moreover, we have

lopy (@)l z(z2@ay) < C llall oo gzay + O(R'?). (A.1)

The third point of Theorem A.1 is usually called Calderon-Vaillancourt Theorem. Note that [Zwol2,
Theorem 4.23] telling us that

llopn(a)llz(r2mayy < C Z 10%all poe (2 » (A.2)

lo|<Md

would not be sufficient for our purpose. Actually, the useful bound (A.1) comes from (A.2) and a
tricky scaling argument. It is also worth mentioning that one can derive a better bound than (A.1).
Indeed, [Zwo12, Theorem 13.13] states that

llops(@)llc(z2@ay) = llall oo goay + O(R).

We have this straightforward result, that enables to compute explicitly the operator op,(a) for
particular symbols a.

Lemma A.2. We have
1. [Zwo12, Equation (4.1.6)]. If a(x,&) = &%, then opy(a)u(z) = h*D%u(z), where D* = (1/i)0%,
2. [Zwo1?2, Theorem 4.3]. If a(z,€) = a(x) € S'(R?) then op,(a)u(r) = a(z)u(z).

We now state the well-known Garding inequality that roughly indicates that if the symbol is non-
negative then the associated operator is almost non-negative.

Theorem A.3. [Zwol?2, Theorem 4.32]. Assume a € C{°(R?*?) and a > 0 in R??. Then there exist
constants C > 0 and hg > 0 such that

(opp(@)u,u) > —~Chllull}2gay Y0 < h < ho, Vu e L*(R?).

Roughly speaking, the next result tells us first that the composition of two pseudodifferential
operators is also a pseudodifferential operator and we can give an exact formula. Secondly, we present
the asymptotic expansion of such a symbol with respect to h.

Given z = (7,&), w = (y,n) in R2¢, define their symplectic product

U(va) = <£»y> - <CU»77>'

Theorem A.4. [Zwol2, Theorem 4.11 and 4.12].
Suppose that a,b € S(R??). Then, there exists c € S(R*?) such that

opy(a)opy,(b) = opy,(c),

where o
c(x,€) = €27 P PeLuDn) (a2, )by, ) (y.m)=(0,6) -
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Moreover, we have
c=ab+ %{a, b} + Os(h?),
and L
[opn(a), opy (0)] = =opy({a, b}) + Os (h?). (A.3)
If we assume further that supp(a) Nsupp(b) = 0, then
¢ = O0s(h™). (A4)
In the previous result, the notation ¢ = Os(h*) means that for all multiindices a, 3,7, d,

sup |(1+ [2[)*(1+ [€]*)P 0100 a(w,€)| < Capy.sh".
(z,£)eR2d

A.2 Semiclassical quantization on the torus

We need to extend the semiclassical quantization to the torus T¢. First, one can identify the torus T¢
with the fundamental domain

T~ {2 = (x1,...,2,) ; 0<a; <1, V1 < < d}.
We likewise identify functions in T¢ with periodic functions on R?
u(z + k) = u(zx) vk € 74

Symbols @ on T*T¢ = T x R? are similarly identified with symbols a € R?? that are periodic with
respect to the variable z € R?,

alz + k&) =a(x,&)  Vkezd
Operators obtained by quantizing such symbols satisfy
(op(a)u)(z + k) = (opy,(a)u(- + k))(x).

From the previous results, established in the Euclidean case R??, one can deduce the analogue in
the torus.

Theorem A.5. Suppose that a,b € C°(T*T?).

1. The operator op,(a) can be extended as an operator mapping L?(T¢) to L?(T4). Moreover, we
have
llopr (@)l zr2(ray) < Cllall oo (peray + O(n'?). (A.5)

2. If a > 0, then there exist constants C > 0 and hg > 0 such that

(op,(a)u,u) > —Ch ||u||2Lz(Td) Y0 < h < hg, Yu € L*(T?).

3. There exists c € S(R??), periodic with respect to x € R, such that

opy,(a)opy,(b) = opy(c),

where .
c(x, &) = €27 P PeDuDn) (a2, )by, 0))| (yn)=(2.6)- (A.6)

Moreover, we have
h
c=ab+ 27,{@, b} + Os(h?),

and

[opy,(a), opy, (b)] = %Oph({a, b}) + Os(h?). (A7)
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4. Given a polynomial function P of degree 2, we have
h
[opn(a), op, (P(€))] = ~ 0p (VP (£) - Vaa) (A.8)

Proof. We only prove the fourth point. From the exact formula (A.6), the terms of order bigger than
h in the asymptotic expansion only involve derivatives of order more than three so they all vanish.
Therefore, we have [opy(a),op,(P(§))] = %oph({a,P(E)}) = %oph(ng(é) - Vza), which concludes
the proof. O

A.3 Semiclassical measures for Schrodinger equations

This section is devoted to recall useful results concerning semiclassical measures for Schrédinger equa-
tions.

Let (hn)nen C (0,1] be a sequence of real positive numbers tending to 0. Let (6,,),en C [0,1]¢ and
(Vi)nen C C°(T%) be a sequence of smooth real-valued potentials satisfying

sup ||Vn||Loo(’]I‘d;R) < 4o00.
neN

To simplify, we denote by H,,(= Hg,,,v,) the Schrédinger operator given by
Hp = —A+2i0, -V + |0,> + Vo,
with n € N.
Definition A.6. A bounded family (u,)nen C L?(T?) is said to be (h,)-oscillating if and only if

. . . 2 ) _
RgrfoolgiggHﬂ(R,+oo>(han)unlle(w> 0.

The following lemma shows that a (h,)-oscillating family is actually also (hj,)-oscillating with
respect to the free Schrodinger operator —A.

Lemma A.7. Let (un)nen € L2(T?) be a bounded family. This family is (hy,)-oscillating (with respect
to Hy,) if and only if

R, lim sup 1R +00) (—hi A)tin]| L2 (xay = 0. (A.9)
Proof. Let us prove that if (un)nen is (hyn)-oscillating (with respect to H,) then (A.9) holds. The
converse can be proved in the same manner. By using the facts that

]1(R7+oo)(_hiA) = ]I(R,+OO)(_h'31A)]1(\/§7+oo)(hfbH"L) + ]I(R,+oo)(_hiA)]1(_oo7\/§) (h%Hn)
and for all R > 4 and v € L?(T%),
1

R—-2VR

thanks to functional calculus, we deduce that for all R > 4 and n € N, taking v = ]1(_007 \/ﬁ)(h%’H,n)un,

||]I(R+OO)(_h$LA)’UH%2(Td) S <]1(R,+oo)(_h$1A)h31(_A + 2297’7, : V)U’ U>L2(Td) )

o) (=12 A2y < 20107 4oy 021t 22

2 2 - 2 2
+ m <hn(fA + 27,97, . v)]l(—oo,\/ﬁ)(hn}ln)u“’ ]l(—oo,\/ﬁ) (han)un>

Moreover, we have that for all n € N,

L2(Td)

2 . 2 2
(B2 (=2 +2i6, - D ) (B3 Ha)un, 1, \/E)(han)un>L2(Td)

< VERllunlZapay + 52 (d+ Vol oo ) lunl 22 pa)-
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We therefore deduce from the previous lines, together with the facts that (V;,)nen is L*°-bounded and
(tun)nen is L2-bounded, denoting M = sup,,cy ||un||2Lz(Td),

VRM
. 2 2 : 2 2
1711111)_5&5) (R, +00) (=R A)tn |7 2(pay < 171113_?1;5 (R 400) (he Hn ) un T2 (pay + R—onVi

We can now apply the (hy)-oscillating assumption to conclude that

VRM
. 2 2 : 2 2
I;IE_S&) (R 400 (—Tn A)tin| 2 (pay < lirgilif 1R 400) (P Hn ) un 22 (pay + B ovE Bt

This concludes the proof of Lemma A.7. O

The following proposition is the main result of this section. It provides a generalisation of results
established in [Mac09] by Macia. More precisely, [Mac09, Theorem 1 & 2] studied semiclassical defect
measures for solutions to Schrodinger equations associated to an operator H = —A+ V. The following
result extends [Mac09, Theorem 1 & 2] to the operators H,, = —A + 2i,, - V + |0,|?> + V,,, which are
allowed to vary according to n € N. The proof follows the very same lines as the ones given in [Mac09].
For the convenience of the reader, the proof is entirely recalled.

Proposition A.8. Let (u,)nen be a bounded family in L?(T9). If (un)nen is (hn)-oscillating then there
exists a subsequence, still denoted (u,)nen and a finite measure p € L (R, M4 (T*T4)) satisfying:
(i) For every o € L*(R) and every a € C°(T*T4),

Hm [ o(t)(op,, (a)e " Mru,, e ruy) papaydt = / o(t)a(z, &) u(t, do, d€)dt
RxT*Td

n—-+oo R

(ii) For every ¢ € L*(R) and every a € C°(T?),

lim o(t)a(z)|e” T, (z)|?dt :/R - o(t)a(x)u(t, de, dE)dt

n—-+oo R

(i4i) The measure ju is invariant under the geodesic flow: for every ¢ € L*(R), a € C°(T*T%),

Vs € R, (dt,dzx, d€) dt,dx,d
sere [ [ ettt seonatdnds) = [ [ otaeoutat.dz.ac).
Proof. Let ¥, (t,x) = e” My, (2).

First step: subsequence for time-space Wigner distribution.
Let us introduce the time-space Wigner distribution W,, € D’(R x T¢ x R x R9), given by

Vb € CSO(R X Td xR x Rd)a <Wn7 b> = <Ophn (bn)wnvwn>L2(Rx’ﬂ‘d)v

where by, (t, z, 7,§) := b(t,z, h,T,§).

Thanks to the Caldéron-Vaillancourt Theorem (A.1), for every b € D'(R x T x R x R?), the family
(W,,,b) is bounded. Since the space (D'(R x T¢ x R x RY), || - || ») is separable, it follows that, up to a
subsequence, (W,,)nen converges to i € D'(R x T?¢ x R x R?). By using anew the Caldéron-Vaillancourt
Theorem, we have for every b € C2°(R x T? x R x R?),

(W, B)| < C bl o + O(B3/?),
and by passing to the limit as n — +oo, we obtain that
Vb e CP(R x T? x R x RY),  {(fi,b)prp < C||b]| -

The above estimate therefore ensures that /i is a Radon measure on R x T¢ x R x R?. Moreover, by
the Garding inequality, for a non-negative test function b € C=°(R x T x R x R?),

(Wh;b) = =Chy [lun| 12 pa) -
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Then, as n — +oo,
Vbe C®(R x T x R x RY),  (f1,b) >0,

and [1 is therefore a positive Radon measure.

Second step: semiclassical defect measure for iy,.
By now, we define the following positive Radon measure on R x T? x R?

w(dt, dx, d€) :2/ a(dt, dx, dr, d§).

R,
We first establish that p is well-defined, u € L (R, M (T¢xR%)) and that (i) holds. Let ¢, x € C>°(R)
with 0 < x <1 and y(_1,1) = 1. For all a € C°(T*T?) and R > 0,

/R@(t)<0phn (@)thn, ) p2(raydt = (Wh, b) 4+ 10 (R), (A.10)

with b(t,x,7,&) = o(t)x(7/R)a(z,§) and

rn(R) = / @(t)(opp, (@)tn, ¥n) 2 (raydt — (0pp,, (0n)Vn, ¥n) L2(RxTd)-
R
Moreover, from the third assertion in Theorem A.5, we have that

0Py, (bn) = opyz (9()X(7/R))opy, (a) = p()x(h, Di/R)opy, (@) + Og(r2) (7).

This implies that

(B) = [ (0 (1= XD/ R))obs, (@) ) gy + OB,

and
Irn(R)] < /Rsﬂ(t)llophn (a)(1 = x(h% D1/ R)) b || 2(paydt + O(R3).

Moreover, since
(1 = x(hiDe/R)y = (1 = x(hi;Hn/ R))tbn,
we deduce from the (hy,)-oscillation property that

limsup [lopy,, (a)(1 — x (k3 D¢/ R))¥nl| p2(ray < C'liIEJSFUP (1 = x(hiHn/R))Unl 12(ra) ot 0.

n——+oo
This shows that
lim limsup |r,(R)| = 0. (A.11)

R—+00 n—s+too

By gathering (A.10) and (A.11), we obtain

lim @(t) <Ophn (an wn>L2('H‘d)dt = / @(t)a(x, f)M(dta dl‘, df)

n—+oo Jp RxTd x Rd

Observe that, since for every n € N, [y, || oo (r, L2(T4)) = 1, we have

Vn € N,Vy € C°(R),Va € C*(T*T?), /R@(t)<0phn(a)¢n’¢n>L2(Td)dt < Cllellzr @ llall Loo (emay-

It follows that u € L°(R, M, (T*T%)) and the above convergence holds for all ¢ € L!'(R). Notice
that, at this step, we have for all real numbers to < t1, u([to, t1] x T*T¢) < t; — to, since for all t € R,

¥ (t, M L2(ray = 1.
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Third step: proof of assertion (ii). Let x € C°(R) with x =1 on (—1,1). For R > 1, we define
xr = X(-/R). Thanks to the previous step, we deduce that for all R > 1, ¢ € L*(R) and a € C2°(T9),

lim [ o(t){opy,, (arR)Vn, ¥n) p2(Ta)ydlt = / e(t)a(z)xr(§)p(dt, dx, d) (A.12)
R RxTdxRd

n—-+oo

with ag(z, &) = a(z)xr(E)-
By the dominated convergence theorem, we have the following convergence

[ eta@w(@ntdtdnde) — [ pbaa(dtdde).
RXT?xR4 0 JRXTExRE

On the other hand, thanks to the third assertion of Theorem A.5, we have for all R > 1
[ oAb, any ) o
= /Rw(t)@b(l“)%, Yn) L2 (raydt + /R e(t)(a(@)(Xr(hnDz) — 1)tn, ¥n) L2(raydt + O(hy).  (A.13)

Moreover, by using the (h,,)-oscillating property and Lemma A.9, we obtain

| Jim sup / o(t)(@(@) (xR(n D) — D), ) p2cray ]

n——+00
<timsup [ [GOId(1 = Xl D)o acroy 0 (A1)
n—+oo JR R—+o00

Thanks to (A.12), (A.13) and (A.14), we deduce that

lim @(t) <a(m)wn7 wn>L2(’Ed)dt = /]R L)O(t)a’(x):u’(dta dz, df)

n—+oo Jp
This concludes the proof of assertion (4i).

Fourth step: semiclassical defect measure and geodesic flow.
It remains to show that the semiclassical defect measure is invariant under the geodesic flow. As a
first step, let us notice that it is sufficient to establish that

Vi € C°(R), Ya € C(T*TY), / / P()€ - Vaale, Oult, de, de)dt = 0. (A.15)
T*Td

Indeed, if (A.15) holds, then it follows that for all ¢ € C°*(R),a € C°(T*T?), and s € R,

//*Td al@ + s, E)u(dh, dw, dE) = //T 0 - Vaas(x, u(t, dx, dE)dt

where ag(x,&) = a(x + s£,&). To conclude, let us show that (A.15) holds. Let ¢ € C*(R) and
a € C*(T*T?). Thanks to (A.8) and the second step of this proof, we obtain

n—-+o0o

/ / P(0)E - Voale, E)p(t,dr,de)dt = lim | o(t)(opy. (€ - Voa)dns du) pa(raydt
R JT*Td R

n—-+o0o

= lim hni/Rgo(t)<[ophn(a),fA]¢n,¢n>L2(Td)dt. (A.16)

Moreover, by using the evolution equation satisfied by ¢,, we deduce from integration by parts, the
following identity

[0 Glopn, 00,816, 00) syt = [ 00) i, (@) Halon ) sy -+ O (1)
:/ ( ) C;Zt<0ph ( )¢nv¢n>L2(Td)dt+0n—>+oo(1)

— / &/ (1) (0P, ()b Bu) gy dE + Ons o (1).
R
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In particular, this provides

[ 900 (10Pn, (@) ~J61.04) 1y = O (1),

and therefore (A.16) implies (A.15). O
We end this section by a useful example:

Example A.9. Let (hy)nen C (0,1] and (pn)nen C RY be two sequences tending to 0 and (un)nen be
a bounded sequence in L?(T4) such that

]1[17/)”,1+pn] (hiHn)un = Up.

Then, the sequence (U )nen is (hy)-oscillating and any semiclassical defect measure p € L™= (R, M, (T%))
provided by Proposition A.8 satisfies

Supp pu € R x T4 x §%71.

Proof of Example A.9. Let x € C°(RY) be a nonnegative test function supported in R? \ S9~! and
to,t1 € R with ty < t;. By assumption, there exists § > 0 such that for all £ € Supp ¥,

€[> — 1] > .
Without loss of generality, we can assume that [£|?> — 1 > 6, for £ € Supp x. We have

() 20 0)

L3(T4)

OS/1<X(hnD)Un(t)7un(t)>L2(Td)dtS/

to to

ty
< P T 0 = D8 Y (0,0 () 30t + Olh) < Ol + ).

Eventually, this provides

t1
[, x©utt.ds.dee=o.
to Td x R4

and then, Suppp C R x T4 x S41. O
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