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Abstract. Previous work has successfully used machine learning and natural 

language processing for the phenotyping of Rheumatoid Arthritis (RA) patients in 

hospitals within the United States and France. Our goal is to evaluate the adaptability 
of RA phenotyping algorithms to a new hospital, both at the patient and encounter 

levels. Two algorithms are adapted and evaluated with a newly developed RA gold 

standard corpus, including annotations at the encounter level. The adapted 
algorithms offer comparably good performance for patient-level phenotyping on the 

new corpus (F1 0.68 to 0.82), but lower performance for encounter-level (F1 0.54). 

Regarding adaptation feasibility and cost, the first algorithm incurred a heavier 

adaptation burden because it required manual feature engineering. However, it is 

less computationally intensive than the second, semi-supervised, algorithm. 
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1. Introduction 

Electronic Health Records (EHRs) enable secondary use of hospital data, and in 

particular the design and conduct of clinical studies. A first step of such studies is the 

definition of a cohort of patients who share a specific condition. This task is referred to 

as electronic phenotyping and is often more complex than a simple query [1,2]. Searching 

a unique phenotypic trait in EHRs usually requires covering both structured fields and 

unstructured texts in a specific time frame. Furthermore, phenotyping algorithms may 

not transfer well from one clinical setting to another because of variations in data 

collection, clinical practice, coding of medical acts, policies, or language used in clinical 

notes. In general, cohort definitions rely on phenotyping at the patient level, but a finer 

granularity is necessary in some cases, especially when monitoring chronic diseases, 

since a same patient’s encounters (i.e., visits) may or may not be related to the phenotype. 

In this work, we study the portability of phenotyping algorithms for Rheumatoid 

Arthritis (RA), a long-term autoimmune pathology that primarily affects joints. We 

explore with RA because it is relatively frequent, it poses clinical questions (e.g., what 

is a patient’s prognosis, or best treatment options) and because phenotyping algorithms 

for RA have been described in the literature [3,4]. In particular, we compare three RA 



 

 

 

phenotyping algorithms on unseen EHR data to address the following questions: Which 

one is the most efficient in terms of performance and speed? Which one is easier to adapt 

to a new hospital, here the University Hospital of Strasbourg (UHS), France? Which one 

is prone to performance decrease when transferred? 

2. Materials and Methods 

Records of patients with encounters in 2015-2020 and high probability of RA are 

extracted from the UHS health information system. Specifically, we select patients with 

at least one ICD-10 code related to RA and one reference to RA in a clinical text over 

this time period. ICD-10 codes for RA are M060*, M068*, M069*, M058*, M059*, 

M053*, M050*; and detection of RA in French texts is performed with the regex 

pol(i|y)arth?rites? *?rh?umat, searching for “polyarthrite rhumatoïde” and its variations 

due to typos. Clinical notes (discharge summaries, progress reports, etc.), diagnostic 

codes (ICD-10), drug prescriptions and laboratory results were extracted for these 

patients. We excluded encounters only associated with ICD-10 codes or prescriptions. 

We excluded notes with content limited to ICD-10 codes or antecedent. This study is 

listed on UHS study register and follows the hospital clinical study protocol. 

Data are split in three patient sets. 11% are randomly selected to form the exploration 

set, which is used to evaluate regex from Carroll’s algorithm. The remaining 89% is split 

in a customized way so 85% constitutes our train set and 4% our test set. The customized 

sampling strategy is performed to obtain balanced groups of patients in the test set. Both 

train and exploration sets are used to train the PheVis Algorithm. The test set is annotated 

and used to evaluate all different methods. 

For the evaluation of phenotyping algorithms, we manually annotated our test set 

both at the patient and encounter levels. Accordingly, each encounter is annotated by two 

distinct individuals (among one rheumatologist and two public-health physicians). Each 

encounter is annotated with one of the following four labels: RA+ if the encounter is due 

to RA : diagnosis, assessment of disease progression, therapeutic management of the 

disease, management of complications of the disease; RA- if the encounter is not related 

to RA, even if the patient has an active RA; doubtful if the encounter cannot be 

confidently classified in relation to RA. To reach consensus, encounters annotated with 

two distinct labels are identified and discussed during a meeting. Doubtful encounters 

are ultimately labeled as RA- for method assessments, as the classification task that is 

evaluated is binary. For patient-level annotations, if a patient has at least one encounter 

labeled as RA+, she/he is labeled as RA+ at the patient-level, and as RA- otherwise. 

Baseline Algorithm: Encounters are classified RA+ if they have at least one ICD-

10 code for RA and at least one mention of RA in a clinical text. Matching with ICD-10 

codes is performed according to the list of ICD-10 codes described in the Data Collection 

paragraph. Matching with clinical texts is performed with a dictionary-based NER tool, 

named IAMsystem [4]. In addition, we performed two filtering to avoid false positives, 

referred to as contextualization in the following. First filtering excludes parts of the text 

concerning medical history. To this aim, we use a house-made algorithm, for section 

segmentation. Second filtering consists in taking into account the context of RA 

mentions in clinical texts. To this aim, we use FastContext [5] and more specifically its 

implementation named IAMFastContext. With this tool, mentions of RA which are 

negated, hypothetical, historical or related to relatives or other persons are filtered out. 

Carroll’s Algorithm [6,7] uses pretrained penalized logistic regression. Carroll et al. 



 

 

 

provide parameters of the regression, to enable the reuse of the classifier on new data. 

This algorithm takes as input structured data (ICD-9 codes, drug prescriptions, lab 

results) and named entities found in clinical texts with a set of regex. To adapt this 

algorithm to the UHS, the ICD-9 codes are manually converted to ICD-10, drug 

prescriptions and laboratory results of the UHS are adapted to be consistent with the 

classifier, and finally, the set of regex provided in English is adapted to French. The 

original regex, their translations and adaptation to French are available at 

https://gitlab.inria.fr/heka/ra_phenotyping/. We apply Carroll’s algorithm with 

coefficients provided in the original article, and a probability threshold of 0.5 for 

classification of RA patients. PheVis Algorithm [4] leverages the PheNorm [8] method 

to classify patients following a semi-supervised approach. It classifies not only at the 

patient level, but also at the encounter level. PheVis is a two-stage approach, as it relies 

first on the definition of a silver standard of automatically annotated examples, that is 

used, second, to train a supervised model. PheVis takes as input ICD-10 codes and 

UMLS entities automatically extracted from EHR narratives with NLP. Our adaptation 

of the PheVis algorithm relies on the IAMSystem for entity extraction and normalization  

[9] to ensure comparability with the original PheVis study [4]. To test the portability of 

PheVis to the UHS setting, we test the best hyperparameters reported by PheVis authors.  

Evaluation metrics Phenotyping is assessed with precision, negative predictive value 

(NPV), specificity, recall (or sensitivity), balanced accuracy, accuracy, F1 score and 

Area Under the ROC Curve (AUC). Confidence intervals are computed using bootstrap. 

Experiments use R version 4.1 and a personal computer under Windows 10, with 64Gb 

of memory and an Intel(R) Xeon(R) CPU E3-1245 v5. 

3. Results 

We found 4,100 patients with at least one ICD-10 code for RA and one reference to RA 

in narratives. The 410 patients with the most recent first encounter were selected as a 

validation set for future work. Remaining 3,690 patients were split in 410 (11%), 3,140 

(85%) and 140 (4%) patients to constitute exploration, train and test sets. These include 

3,826, 33,007 and 1,552 distinct encounters with at least one clinical text. 

Of the 1,552 encounters selected for manual annotation, after consensus on the 

annotation, 1,146 were classified as RA-, 358 as RA+ and 48 as doubtful. Inter-annotator 

agreement was substantial (Cohen’s kappa = 0.80). At the patient level (n=140), 52 

(37%) were classified as RA+ and 88 (63%) as RA-. 

Table 1 and 2 summarize the results of our evaluation of phenotyping algorithms. 

Baseline Algorithm For hospital encounters classification, F1 was 0.60  [0.55-0.64] and 

0.61  [0.55-0.65] respectively for the basic algorithm without and with contextualization. 

For patient classification, F1 was 0.69  [0.60-0.78] and 0.73  [0.65-0.83] without and 

with contextualization of named entities. Contextualizing NERs improves performance, 

in particular precision. Carroll’s Algorithm For patient classification, F1 is 0.82  [0.75-

0.90] . Results are similar to those of Carroll et al.  [7] (AUC=0.94 vs. AUC=0.95), with 

a higher specificity (0.82 vs. 0.65) and a lower precision (0.75 vs. 0.90). Carroll’s 

algorithm is not available for encounter-level phenotyping. Phevis Algorithm For patient 

classification, results are lower than those reported in Phevis paper (AUC=0.87 vs 0.94), 

F1 =0.68  [0.59-079]). F1 is lower, 0.54  [0.50-0.58] for encounter-level. 

The baseline algorithm is fairly easy to implement. ICD-10 codes are easy to extract 

from structured data. Regex matching is also fast, taking less than 20 minutes in our 



 

 

 

setting. Implementing the Carroll’s algorithm took longer. About two working days was 

necessary to translate regex from English to French. It took one week to examine and 

modify regex with the exploration set. Searching to match all regex on the test set took 

about one hour. Implementing the logistic regression took half a day and the execution 

time of the logistic regression is almost instantaneous. The implementation of PheVis 

algorithm took more time. For data preparation, the NER with IAMsystem algorithm, 

took about two days to run on the exploration, train, and test datasets. Training a model 

took about 10 minutes. Once the classification algorithm is trained, application on new 

data is fast and takes about one minute.  

Table 1. Performances for RA phenotyping at the patient level. PheVis setting is ω= 5, half-life = Inf 

Table 2. Performances for RA phenotyping at the encounter level. PheVis setting is ω= 5, half-life = Inf 

Methods Prec. NVP Spe. Rec. bal Acc. Acc. F1 AUC 

Baseline algo. 0.62 0.88 0.89 0.58 0.75 0.82 0.60 (0.55-0.64) N/A 

Baseline algo. 0.66 0.87 0.92 0.55 0.76 0.83 0.60 (0.55-0.64) N/A 

Baseline algo., plus context 0.71 0.87 0.94 0.53 0.79 0.84 0.61 (0.56-0.65) N/A 

PheVis  0.43 0.89 0.72 0.71 0.66 0.72 0.54 (0.50-0.58) 0.79 (0.76-0.82) 

4. Discussion 

Porting phenotyping algorithms from one setting to another remains a challenge. On 

UHS data, PheVis appears to have lower performance to Carroll’s and baseline 

algorithms for patient phenotyping. Our adaptations of algorithms yield performance 

slightly lower than those reported in the literature (Table 1). The better results achieved 

so far may be due to the definition of RA+ patients, i.e. those with a history of RA or 

active RA. A recent study makes the same observation about the difficulty of adaptation 

and highlights the difficulty of defining the phenotyping task [10]. One originality of our 

study is the evaluation of algorithms at the encounter level. Although the authors of 

PheVis considered phenotyping encounters, their algorithm was evaluated only at the 

patient level. Our study suggests that PheVis is not superior to other algorithms at the 

encounter level. The rather good results we observed with the baseline algorithm, 

regarding what is reported in literature, may be attributed to an improvement of the 

coding in French hospitals.  

For patient phenotyping, the majority of false positive predictions are due to our 

definition of RA+ patients. Majority of the false positives are patients with a history of 

RA. Contextualization improves precision by removing part of the patient’s history, but 

redundancies between encounters are found even if they are not directly related to the 

chronic disease [11]. Reducing this should reduce the number of false positives.  

Methods Prec. NPV Spe. Rec. bal Acc. Acc. F1 AUC 

 ICD-10 alone (≥1 code) 0.55 0.91 0.56 0.90 0.73 0.69 0.68 (0.58-0.77) N/A 

Baseline algo. 0.58 0.88 0.64 0.85 0.73 0.71 0.69 (0.60-0.78) N/A 

Baseline algo., plus context 0.67 0.87 0.76 0.81 0.77 0.78 0.73 (0.65-0.83) N/A 

Carroll's algo. 0.75 0.94 0.82 0.90 0.84 0.85 0.82 (0.75-0.90) 0.94 (0.89-0.99) 

PheVis  0.62 0.84 0.72 0.77 0.73 0.74 0.68 (0.59-0.79) 0.87 (0.81-0.93) 

Caroll, reported et al. 0.90 N/A 0.65 N/A N/A N/A N/A 0.95 

Phevis, reported et al 0.65 0.96 0.94 0.74 N/A N/A N/A 0.943 



 

 

 

In this initial study of RA phenotyping in French EHRs, our goal was to use state-of-the-

art algorithms validated in previous studies on new patient data. For Carroll’s algorithm, 

differences between languages in terms of sentence construction make it difficult to 

translate complex regex from one language to another. PheVis phenotyping performance 

is good at the patient level. Adjusting the hyperparameters to the local context and 

pathology would allow for even better results. Unsurprisingly, encounter-level 

performance is underwhelming, as it is a harder task. Results may be improved by using 

more complex unsupervised machine learning classifiers like Phe2vec  [12]. 

The Phevis method requires as little expert knowledge as the rule-based algorithm, 

this method can be used across hospitals, provided a suitable NER algorithm is available. 

Carroll’s algorithm is more difficult to adapt to another phenotype. Feature extraction 

could be easily adapted; however, the availability of an annotated dataset to train the 

classifier is a bottleneck.  

5. Conclusion 

The two algorithms tested for RA phenotyping are transferable to the context of the 

UHS. In both cases, adaptation required a significant amount of time, whether for the 

translation of regular expressions or the implementation of a NER algorithm. The 

performance gain compared to a baseline algorithm relying solely on ICD-10 codes is 

surprisingly low. Previous studies did not always consider the baseline in their evaluation 

and encounter-level phenotyping needs to be better considered. More advanced machine 

learning algorithms, taking into account redundancy or more specific silver standard, 

could improve performance in future work. 
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