
HAL Id: hal-04069614
https://hal.science/hal-04069614v1

Submitted on 14 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical TFHE-Based Multi-Key Homomorphic
Encryption with Linear Complexity and Low Noise

Growth ⋆

Yavuz Akın, Jakub Klemsa, Melek Önen

To cite this version:
Yavuz Akın, Jakub Klemsa, Melek Önen. A Practical TFHE-Based Multi-Key Homomorphic Encryp-
tion with Linear Complexity and Low Noise Growth ⋆. ESORICS 2023, 28th European Symposium
on Research in Computer Security, Springer, Sep 2023, The Hague, Netherlands. �10.1007/978-3-031-
50594-2_1�. �hal-04069614�

https://hal.science/hal-04069614v1
https://hal.archives-ouvertes.fr

A Practical TFHE-Based Multi-Key Homomorphic
Encryption with Linear Complexity and Low Noise Growth⋆

Yavuz Akın1, Jakub Klemsa1,2(�), and Melek Önen1

1 EURECOM
Sophia-Antipolis, France

{yavuz.akin,jakub.klemsa,melek.onen}@eurecom.fr
2 Czech Technical University in Prague

Prague, Czech Republic

Abstract. Fully Homomorphic Encryption enables arbitrary computations over encrypted
data and it has a multitude of applications, e.g., secure cloud computing in healthcare or
finance. Multi-Key Homomorphic Encryption (MKHE) further allows to process encrypted
data from multiple sources: the data can be encrypted with keys owned by different parties.
In this paper, we propose a new variant of MKHE instantiated with the TFHE scheme.
Compared to previous attempts by Chen et al. and by Kwak et al., our scheme achieves
computation runtime that is linear in the number of involved parties and it outperforms the
faster scheme by a factor of 4.5-6.9×, at the cost of a slightly extended pre-computation.
In addition, for our scheme, we propose and practically evaluate parameters for up to 128
parties, which enjoy the same estimated security as parameters suggested for the previous
schemes (100 bits). It is also worth noting that our scheme—unlike the previous schemes—did
not experience any error in any of our nine experiments, each running 1 000 trials.

Keywords: Multi-key homomorphic encryption · TFHE scheme · Secure cloud computing

1 Introduction

For the first time publicly discovered in 2009 by Gentry [14], Fully Homomorphic Encryption (FHE)
refers to a cryptosystem that allows for an evaluation of an arbitrary computable function over
encrypted data. With FHE, a secure cloud-aided computation may proceed as follows:

– a user generates secret keys sk, and evaluation keys ek, which she sends to an untrusted cloud;
– the user encrypts her sensitive data d with sk, and sends the encrypted data to the cloud;
– the cloud employs ek to evaluate function f , homomorphically, over the encrypted user data

(without ever decrypting it), yielding an encryption of f(d), which it sends back to the user;
– finally, the user decrypts the result using sk, obtaining the desired result: f(d) in plain.

In such a setup, there is one party that holds all the secret keying material. In case the data origi-
nate from multiple sources, Multi-Key (Fully) Homomorphic Encryption (MKHE) comes into play.
First proposed by López-Alt et al. [19], MKHE is a primitive that enables the homomorphic evalu-
ation over data encrypted with multiple different, unrelated keys. This allows to relax the intrinsic
restriction of a standard FHE, which demands a single data owner.
⋆ This work was supported by the MESRI-BMBF French-German joint project UPCARE (ANR-20-CYAL-

0003-01), and by the Grant Agency of CTU in Prague, grant No. SGS21/160/OHK3/3T/13. This is the
full version of the paper.

2 Y. Akın et al.

Previous Work. Following the seminal work of López-Alt et al. [19], different approaches to design
an MKHE scheme have emerged: first attempts require a fixed list of parties at the beginning of the
protocol [12, 23], others allow parties to join dynamically [5, 25], Chen et al. [8] extend the plaintext
space from a single bit to a ring. Later, Chen et al. [6] propose an MKHE scheme based on the
TFHE scheme [11], and they claim to be the first to implement an MKHE scheme; in this paper, we
refer to their scheme as CCS. The evaluation complexity of their scheme is quadratic in the number
of parties and authors only run experiments with up to 8 parties. The CCS scheme is improved
in a recent work by Kwak et al. [18], who achieve quasi-linear complexity (actually quadratic, but
with a very low coefficient at the quadratic term). In this paper, we refer to their scheme as KMS.
Parallel to CCS and KMS, which are both based on TFHE, there exist other promising schemes:
e.g., [7], defined for BFV [4, 13] and CKKS [10], improved in [16] to achieve linear complexity, or
[21], implemented in the Lattigo Library [22], which requires to first construct a common public
key; also referred to as the Multi-Party HE (MPHE). The capabilities/use-cases of TFHE and other
schemes are fairly different, therefore we solely focus on the comparison of TFHE-based MKHE.

Our Contributions. We propose a new TFHE-based MKHE scheme with a linear evaluation
complexity and with a sufficiently low error rate, which allows for a practical instantiation with
an order of hundreds of parties, while achieving convenient evaluation times. More concretely, our
scheme builds upon the following technical ideas (k is the number of parties):

Summation of RLWE keys: Instead of concatenation of RLWE keys (in certain sense proposed in
both CCS and KMS), our scheme works with RLWE encryptions under the sum of RLWE keys
of individual parties, i.e., Z =

∑k
q=1 z

(q). As a result, this particular improvement decreases the
evaluation complexity from quadratic to linear.

Ternary distribution for RLWE keys: Widely adopted by existing FHE implementations [15,
22, 27, 28], zero-centered ternary distribution ζ : (−1, 0, 1)→ (p, 1− 2p, p) works well as a dis-
tribution of the coefficients of RLWE keys; we suggest p ≈ 0.1135. It helps reduce the growth of
a certain noise term by a factor of k, which in turn helps find more efficient TFHE parameters.

Avoid FFT in pre-computations: In our experiments, we notice an unexpected error growth for
higher numbers of parties and we verify that the source of these errors is Fast Fourier Transform
(FFT), which is used for fast polynomial multiplication. To keep the evaluation times low and to
decrease the amount of errors at the same time, we suggest to replace FFT with an exact method
just in the pre-computation phase. We also show that FFT causes a considerable amount of
errors in KMS, however, replacing FFT in its pre-computations is unfortunately not enough.

We provide two variants of our scheme:

Static variant: the list of parties is fixed – the computation cost is independent of the number of
parties, who provide their inputs, and the result is encrypted with all keys; and

Dynamic variant: the computation cost is proportional to the number of participating parties
and the result is only encrypted with their keys (i.e., any subset of parties can go offline).

The variants only differ in pre-computation algorithms, which in turn affect security assumptions.
Performance-wise, given a fixed number of parties, the variants are equivalent (it only depends on
the parameters of TFHE) and the evaluation complexity is linear in the number of involved parties.
The construction of our scheme remains similar to that of plain TFHE, making it possible to adopt
prospective advances of TFHE (or its implementation) to our scheme.

Next, we analyze and practically evaluate our scheme, and we compare it with previous attempts:

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 3

– We support our scheme by a theoretical noise-growth & security analysis. Thanks to the low
noise growth, we instantiate our scheme with as many as 128 parties. We also show that our
scheme is secure in the semi-honest model. In addition, we informally outline possible counter-
measures if there is a malicious party;

– We design and evaluate a deep experimental study, which may help evaluate future schemes.
In particular, we suggest to simulate the NAND gate to measure errors more realistically.
Compared to the KMS scheme, we achieve 4.5-6.9× better bootstrapping times, while using
the same implementation of TFHE and parameters with the same estimated security (100 bits).
The bootstrapping times are around 140ms per party (with an experimental implementation);

– We extend previous work by providing an experimental evaluation of the probability of errors.
For our scheme, the measured noises fall within the expected bounds, which are designed to
satisfy the rule of 4σ (probability of 1 in 15 787) – we indeed do not encounter any error in any
of our 9 000 trials in total.

Paper Outline. We recall the TFHE scheme in a form of a detailed technical description in
Section 2 and we present our scheme in Section 3. We analyze security, correctness & noise growth,
and performance of our scheme in Section 4, which is followed by a thorough experimental evaluation
in Section 5. We conclude our paper in Section 6.

2 Preliminaries

In this section, we recall the basic variant of the TFHE scheme [11]. Later in this paper, we refer to
some of the algorithms and/or definitions.

Symbols & Notation. Throughout the paper, we use the following symbols & notation:

– B: the binary Galois field GF2,
– T: the additive group R/Z referred to as the torus (i.e., real numbers modulo 1),
– Zn: the quotient ring Z/nZ (or its additive group),
– M (N)[X]: the set of polynomials modulo XN + 1, with coefficients from M and with N ∈ N,
– $: the uniform distribution,
– a

α←M : the draw of random variable a from M with distribution α (for α ∈ R, we consider the
zero-centered /discrete/ Gaussian draw with standard deviation α),

– E[X]: the expectation of random variable X,
– Var[X]: the variance of random variable X.

We use logarithm base 2 throughout this paper.

2.1 Overview of TFHE

In short, the TFHE scheme is based on the Learning With Errors (LWE) encryption scheme intro-
duced by Regev [26]. TFHE employs two variants, originally referred to as T(R)LWE, which stands
for (Ring) LWE over the Torus. The ring variant (later shortly RLWE; introduced in [20]) is defined
by polynomial degree N = 2ν (with ν ∈ N), dimension n ∈ N, noise distribution ξ over the torus, and
key distribution ζ over the integers (generalized to respective polynomials modXN+1). Informally,

4 Y. Akın et al.

to encrypt torus polynomial m ∈ T(N)[X], RLWE outputs the pair (b = m+ ⟨z,a⟩+ e,a), referred
to as the RLWE sample, where z

ζ← (Z(N)[X])n is a secret key, e ξ← T(N)[X] is an error term (aka.
noise), and a

$← (T(N)[X])n is a random mask. Internally, RLWE samples are further used to build
so called RGSW samples, which encrypt integer polynomials, and which allow for homomorphic
multiplication of integer-torus polynomials. It is believed that RLWE sample (b,a) is computation-
ally indistinguishable from a random element of (T(N)[X])1+n (later shortly random-like), provided
that adequate parameters are chosen. If a = 0 and e = 0, we talk about a trivial sample. The plain
variant (later shortly LWE) operates with plain torus elements instead of polynomials.

Bootstrapping. By its construction, (R)LWE is additively homomorphic: the sum of samples
encrypts the sum of plaintexts. There is however an issue: the error terms also add up, i.e., the
average noise of the result grows. To deal with this issue, TFHE (as well as other fully homomorphic
encryption schemes) defines a routine referred to as bootstrapping. In case of TFHE, bootstrapping
not only refreshes the noise of an input sample to a fixed level, it is also capable of evaluating
a custom Look-Up Table (LUT), which makes TFHE fully homomorphic. Find an illustration in
Figure 1.

{mi}
input

message(s)

LWE−−−→
encr.

{
(bi,ai)

}
fresh/

/bootstrapped
sample(s)

hom.−−−−−→
addition

∑
(bi,ai)

to be boot-
strapped

(high noise)

bootstrapping
(hom. LUT evaluation)︷ ︸︸ ︷

rounding−−−−−−→ (b̃, ã)
BlindRotate,−−−−−−−−→
KeySwitch

(b′,a′)

freshly
bootstrapped
(low noise)

−→ . . .

Fig. 1. The flow of TFHE: homomorphic addition and bootstrapping, which is composed from other oper-
ations. The output sample (b′,a′) may proceed to homomorphic addition, or to the output and decryption.

Decomposition. One of the cornerstone operations of TFHE’s bootstrapping is the decomposition
of torus elements into a series of (signed) integers. For this purpose, decomposition defines two
positive integer parameters: the decomposition base (denoted B; we only consider B as a power of
two) and the decomposition depth (denoted d). We denote g := (1/B, 1/B2, . . . , 1/Bd), referred to as
the gadget vector. Decomposition of µ ∈ T ∼ [−1/2, 1/2), denoted g−1(µ) ∈ [−B/2,B/2)d, returns
a vector of d signed digits, for which it holds∣∣µ− ⟨g,g−1(µ)⟩

∣∣ ≤ 1/2Bd, (1)

i.e., g−1(µ) gives the first d digits of base-B representation of µ in the alphabet [−B/2,B/2). For
k ∈ N, we denote

Gk := Ik ⊗ g, (2)

where Ik is identity matrix of size k and ⊗ stands for the tensor product, i.e., Gk ∈ Tkd×k, referred
to as the gadget matrix. We generalize g−1 to torus polynomials and we simplify G2 =: G.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 5

2.2 Description of TFHE

We provide a technical description of the TFHE scheme in a form of self-descriptive algorithms.
Parameters and secret keys are considered as implicit inputs.

◦ TFHE.Setup(1λ): Given security parameter λ, generate parameters for:

– LWE encryption: dimension n, standard deviation α > 0 (of the noise);
– LWE decomposition: base B′, depth d′;
– set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);
– RLWE encryption: polynomial degree N (a power of two), standard deviation β > 0;
– RLWE decomposition: base B, depth d;
– set up RLWE gadget vector: g← (1/B, 1/B2, . . . , 1/Bd).

Other input parameters of the Setup algorithm may include the maximal allowed probability of
error, or the plaintext space size (for other than Boolean circuits).

◦ TFHE.SecKeyGen(): Generate secret keys for:

– LWE encryption: s $← Bn;
– RLWE encryption: z $← B(N)[X], (alternatively zi

ζ← {−1, 0, 1} for some distribution ζ).

For LWE key s ∈ Bn, we denote s̄ := (1, s) ∈ B1+n the extended secret key, similarly for an RLWE
key z ∈ Z(N)[X], we denote z̄ := (1, z) ∈ Z(N)[X]2.

◦ TFHE.LweSymEncr(µ): Given message µ ∈ T, sample fresh mask a
$← Tn and noise e

α← T.
Evaluate b← −⟨s,a⟩+µ+e and output c̄ = (b,a) ∈ T1+n, an LWE encryption of µ. This algorithm
is used as the main encryption algorithm of the scheme. We generalize this as well as subsequent
algorithms to input vectors and proceed element-by-element.

◦ TFHE.RLweSymEncr(m, a = ∅, zin = z): Given message m ∈ T(N)[X], sample fresh mask a
$←

T(N)[X], unless explicitly given. If the pair (a, zin) has been used before, output ⊥. Otherwise,
sample fresh noise e ∈ T(N)[X], ei

β← T, and evaluate b ← −zin · a + m + e. Output c̄ = (b, a) ∈
T(N)[X]2, an RLWE encryption of m. In case a is given, we may limit the output to only b.

◦ TFHE.(R)LwePhase(c̄): Given (R)LWE sample c̄, evaluate and output ϕ ← ⟨s̄, c̄⟩, where s̄ is
respective (R)LWE extended secret key.

◦ TFHE.EncrBool(b): Set µ = ±1/8 for b true or false, respectively. Output LweSymEncr(µ).

◦ TFHE.DecrBool(c̄): Output LwePhase(c̄) > 0, assuming T ∼ [−1/2, 1/2).

◦ TFHE.RgswEncr(m): Given m ∈ Z(N)[X], evaluate Z← RLweSymEncr(0), where 0 is a vector of
2d zero polynomials (i.e., Z ∈ (T(N)[X])2d×2). Output Z+m ·G, an RGSW sample of m.

6 Y. Akın et al.

◦ TFHE.Prod
(
BK, (b, a)

)
: Given RGSW sample BK of s ∈ Z(N)[X], and RLWE sample (b, a) of

m ∈ T(N)[X], evaluate and output:

(b′, a′)←
(
g−1(b)
g−1(a)

)T

· BK =: BK⊡ (b, a), (3)

which is an RLWE sample of s ·m ∈ T(N)[X]; in TFHE also referred to as the external product.

◦ TFHE.BlindRotate
(
c̄, {BKi}ni=1, tv

)
: Given c̄ = (b, a1, . . . , an) ∈ T1+n, an LWE sample of µ ∈ T

under key s ∈ Bn; (BKi)
n
i=1, RGSW samples of si under RLWE key z (aka. blind-rotate keys); and

RLWEz(tv) ∈ T(N)[X]2, (usually trivial) RLWE sample of tv ∈ T(N)[X] (aka. test vector), evaluate:
1: b̃← ⌊2Nb⌉, ãi ← ⌊2Nai⌉ for 1 ≤ i ≤ n

2: ACC← X b̃ · RLWE(tv)
3: for i = 1, . . . , n do
4: ACC← ACC+ Prod

(
BKi, X

ãi · ACC− ACC
)

▷ ACC or X ãi · ACC if si = 0 or si = 1, resp.

Output ACC = RLWEz(X
ϕ̃ · tv), an RLWE encryption of test vector “rotated” by ϕ̃, where ϕ̃ =

⌊2Nb⌉+ s1⌊2Na1⌉+ . . .+ sn⌊2Nan⌉ ≈ 2N(s̄ · c̄) ≈ 2Nµ.

◦ TFHE.KeyExtract(z): Given RLWE key z ∈ Z(N)[X], output z∗ ← (z0,−zN−1, . . . ,−z1).

◦ TFHE.SampleExtract(b, a): Given RLWE sample (b, a) ∈ T(N)[X]2 of m ∈ T(N)[X] under RLWE

key z ∈ Z(N)[X], output LWE sample (b′,a′) ← (b0, a1, . . . , aN) ∈ T1+N of m0 ∈ T (the constant
term of m) under the extracted LWE key z∗ = KeyExtract(z).

◦ TFHE.KeySwitchKeyGen(): For j ∈ [1, N], evaluate and output a key-switching key for zj and
s: KSj ← LweSymEncr

(
z∗j · g′), where z∗ ← KeyExtract(z). KSj is a d′-tuple of LWE samples of

g′-respective fractions of z∗j under the key s.

◦ TFHE.KeySwitch
(
c̄′, {KSj}Nj=1

)
: Given LWE sample c̄′ = (b′, a′1, . . . , a

′
N) ∈ T1+N (extraction of

an RLWE sample), which encrypts µ ∈ T under the extraction of an RLWE key z∗ = KeyExtract(z),
and a set of key-switching keys for z and s, evaluate and output

c̄′′ ← (b′,0) +

N∑
j=1

g′−1(a′j)
T · KSj , (4)

which is an LWE sample of the same µ ∈ T under the LWE key s.

◦ TFHE.Bootstrap
(
c̄, tv, {BKi}ni=1, {KSj}Nj=1

)
: Given LWE sample c̄ of µ ∈ T under LWE key s, test

vector tv ∈ T(N)[X] that encodes a LUT, and two sets of keys for blind-rotate and for key-switching
(aka. bootstrapping keys – the evaluation keys of TFHE), evaluate:
1: c̄′ ← BlindRotate

(
c̄, {BKi}ni=1, tv

)
;

2: c̄′′ ← KeySwitch
(
SampleExtract(c̄′), {KSj}Nj=1

)
.

Output c̄′′, which is an LWE sample of—vaguely speaking—“evaluation of the LUT at µ”, under the
key s, with a refreshed noise. Details on the encoding of the LUT are out of the scope of this paper.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 7

◦ TFHE.Add(c1, c2): Output c1 + c2, which encrypts the sum of input plaintexts. Using just “+”.

◦ TFHE.NAND
(
c1, c2, {BKi}ni=1, {KSj}Nj=1

)
: Given encryptions of bools b1 and b2 under LWE key s,

and bootstrapping keys for s and z, set the test vector as tv ← 1/8 · (1 +X +X2 + . . . +XN−1).
Output c̄′′ ← Bootstrap

(
1/8−c1−c2, tv, {BKi}ni=1, {KSj}Nj=1

)
, which is an encryption of ¬(b1∧b2)

under the key s.

3 Our TFHE-Based Multi-Key Scheme

In this section, we first recall the concept of Multi-Key Homomorphic Encryption (MKHE) and
we describe our two variants of MKHE. Then, we summarize ideas and changes that lead from the
standard TFHE scheme [11] towards our proposal of MKHE – we outline the format of multi-key
bootstrapping keys, and we comment on a ternary distribution for RLWE keys. Finally, we provide
a technical description of our scheme, which we denote AKÖ (by authors’ initials).

3.1 MKHE and Our Variants

In addition to the capabilities of a standard FHE scheme, given in the introduction, an MKHE
scheme:

(i) runs a homomorphic evaluation over ciphertexts encrypted with unrelated keys of multiple
parties (accompanied by corresponding evaluation keys); and

(ii) requires a collaboration of all involved parties, holding the individual keys, to decrypt the result.

Note that there exist multiple approaches to reveal the result: e.g., one outlined in [6], referred to
as Distributed Decryption, or one described in [21], referred to as Collective Public-Key Switching.

For our scheme, we propose two variants:

Static variant: the list of parties is fixed at the beginning of the protocol, then evaluation keys
are jointly calculated – no matter how many parties join a computation, the evaluation time is
also fixed and the result is encrypted with all the keys; and

Dynamic variant: after a “global” list of parties is fixed, evaluation keys are jointly calculated,
however, only a subset of parties may join a computation – the computation cost is proportional
to the size of the subset and the result is only encrypted with respective keys (i.e., the remaining
parties can go offline). If some party joins later, a part of the joint pre-calculation of evaluation
keys needs to be executed in addition, as opposed to CCS [6] and KMS [18].

Note that in many practical use-cases—in particular if we require semi-honest parties—the (global)
list of parties is fixed. In addition, the pre-calculation protocol is indeed lightweight.

3.2 Towards the AKÖ Scheme

As outlined in the introduction, our scheme is based on the three following ideas:

(i) create RLWE samples encrypted under the sum of RLWE keys of individual parties,
(ii) use a ternary (zero-centered) distribution for individual RLWE keys, and
(iii) avoid Fast Fourier Transform (FFT) in pre-computations.

Below, we discuss (i) and (ii), leaving (iii) for the experimental part (Section 5).

8 Y. Akın et al.

(R)LWE Keys & Bootstrapping Keys. First, we outline the structure of the secret (R)LWE
keys, which are unrelated and owned by multiple parties, based on which we propose a structure
of respective bootstrapping keys. Note that the secret keys are never revealed to any other party,
however, the description of AKÖ involves all of them.

The underlying (and never reconstructed) LWE key is the concatenation of individual keys, i.e.,
s :=

(
s(1), s(2), . . . , s(k)

)
∈ Bkn, where s(p) ∈ Bn are secret LWE keys of individual parties. We refer

to s as the common LWE key. For RLWE keys, we consider their summation, i.e., Z :=
∑

p z
(p),

which we refer to as the common RLWE key. Note that this particular improvement decreases the
computational complexity (as well as the blind-rotate key sizes) from O(k2) to O(k).

For bootstrapping keys, we follow the original construction of TFHE, where we use the common
(R)LWE keys. For blind-rotate keys, this means to generate an RGSW sample of each bit of the
common LWE key s =

(
s(1), . . . , s(k)

)
, under the common RLWE key Z =

∑
p z

(p). In addition, any
party neither leaks its own secret, nor requires secrets of others. For this purpose, we employ RLWE
public key encryption [20]. Below, we outline the desired form of a blind-rotate key for bit s:

BKs =

(
b∆ + s · g a∆

b□ a□ + s · g

)
, BKs ∈

(
T(N)[X]

)2d×2
, (5)

where (b∆,a∆) and (b□,a□) hold d+d RLWE encryptions of zero under the key Z; cf. TFHE.Rgsw-
Encr. For key-switching keys, we need to generate an LWE sample of the sum of j-th coefficients of
individual RLWE secret keys z(p), under the common LWE key s, for j ∈ [0, N − 1]. Here a simple
concatenation of masks (values a) and a summation of masked values (values b) do the job. With
such keys, bootstrapping itself is identical to that of the original TFHE.

Ternary Distribution for RLWE Keys. For individual RLWE keys, we suggest to use zero-
centered ternary distribution ζp : (−1, 0, 1) → (p, 1 − 2p, p), parameterized by p ∈ (0, 1/2), which is
widely adopted in the main FHE libraries like HElib [15], Lattigo [22], SEAL [27], or HEAAN [28].
Although not adopted in CCS nor in KMS, in our scheme, a zero-centered distribution for RLWE
keys is particularly useful, since we sum the keys into a common key, which is then also zero-
centered. This helps reduce the blind-rotate noise from O(k3) to O(k2), which in turn helps find
more efficient TFHE parameters.

It is worth noting that for “small” values of p, such keys are also referred to as sparse keys (in
particular with a fixed/limited Hamming weight), and there exist specially tailored attacks [9, 30].
At this point, we motivate the choice of p solely by keeping the information entropy of ζp equal
to 1 bit, however, there is no intuition—let alone a proof—that the estimated security would be
at least similar (more on concrete security estimates in Section 5.1 and Appendix C.2). For the
information entropy of ζp, we have

H(ζp) = −2p log(p)− (1− 2p) log(1− 2p)
!
= 1, (6)

which gives a numerical solution of p ≈ 0.1135. For zi ∼ ζp, we have Var[zi] = 2p ≈ 0.227.

3.3 Description of AKÖ

We provide a technical description of AKÖ in the same form as for the TFHE scheme in Section 2.2. We
mark algorithms that differ fundamentally from their TFHE counterparts with •, existing algorithms
(possibly slightly modified) are marked with ◦. Algorithms with index q are executed locally at
respective party. We remind that encryption algorithms naturally generalize to vector inputs.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 9

Static Variant of AKÖ. Below, we provide algorithms for the static variant of AKÖ:

• AKÖ.Setup(1λ, k): Generate and distribute to all k parties the same parameters as generated by
the TFHE.Setup(1λ) algorithm (n.b., k is taken into account, hence the parameters differ from
those given by TFHE.Setup(1λ)), and a common random polynomial (CRP) a

$← T(N)[X].

◦ AKÖ.SecKeyGenq(): Generate secret keys s(q)
$← Bn and z(q) ∈ Z(N)[X], s.t. z(q)i

ζp← {−1, 0, 1}.

◦ AKÖ...: (R)LweSymEncrq, (R)LwePhaseq, DecrBoolq, KeyExtract, Prod, BlindRotate, Sample-
Extract, KeySwitch, Add, Bootstrap, and NAND are the same as in TFHE.

◦ AKÖ.RLwePubEncr
(
m, (b, a)

)
: Given message m ∈ T(N)[X] and public key (b, a) ∈ T(N)[X]2

(an RLWE sample of 0 ∈ T(N)[X] under key z ∈ Z(N)[X]), generate temporary RLWE key r(q),
s.t. r(q)i

ζ← {−1, 0, 1}. Evaluate b′ ← RLweSymEncrq(m, b, r(q)) and a′ ← RLweSymEncrq(0, a, r
(q)).

Output (b′, a′), which is an RLWE sample of m under the key z.

◦ AKÖ.RLweRevPubEncr
(
m, (b, a)

)
: Proceed as RLwePubEncr, with a difference in the evaluation of

b′ ← RLweSymEncrq(0, b, r
(q)) and a′ ← RLweSymEncrq(m, a, r(q)), where only m and 0 are swapped,

i.e., m is added to the right-hand side instead of the left-hand side.

• AKÖ.BlindRotKeyGenq(): Calculate and broadcast public key b(q) ← RLweSymEncrq(0, a), using

the CRP a as the mask. Evaluate B =
∑k

p=1 b
(p) (n.b., (B, a) is an RLWE sample of zero under

the common RLWE key Z =
∑k

p=1 z
(p), hence it may serve as a common public key). Finally, for

j ∈ [1, n], output the blind-rotate key (related to s
(q)
j and Z):

BK
(q)
j ←

 RLwePubEncrq
(
s
(q)
j · g, (B, a)

)
RLweRevPubEncrq

(
s
(q)
j · g, (B, a)

)
 , (7)

which is an RGSW sample of the j-th bit of s(q), under the common RLWE key Z.

• AKÖ.KeySwitchKeyGenq(): For i ∈ [1, N], broadcast [b
(q)
i |A

(q)
i]← LweSymEncrq

(
z
(q)∗
i · g′), where

z(q)∗ ← KeyExtract(z(q)). Aggregate and for i ∈ [1, N], output the key-switching key (for Zi =∑
p z

(p)
i and s = (s(1), . . . , s(k))):

KSi =
[k∑
p=1

b
(p)
i

bi

∣∣∣ A(1)
i ,A

(2)
i , . . . ,A

(k)
i

Ai

]
, (8)

which is a d′-tuple of LWE samples of g′-respective fractions of Z∗
i under the common LWE key s.

Here Z∗
i is the i-th element of the extraction of the common RLWE key Z =

∑
p z

(p), i.e., Z∗ =
KeyExtract(Z).

10 Y. Akın et al.

Changes to AKÖ towards the Dynamic Variant. For the dynamic variant, we provide modified
versions of BlindRotKeyGen and KeySwitchKeyGen, other algorithms are the same as in the static
variant. Note that in case we allow a party to join later, all temporary keys need to be stored per-
manently and both algorithms need to be (partially) repeated. This causes a slight pre-computation
overhead over CCS and KMS.

• AKÖ.BlindRotKeyGen_dynq(): Calculate and broadcast public key b(q) as described in the AKÖ
.BlindRotKeyGenq() algorithm. Then, for j ∈ [1, n]:

1: generate two vectors of d temporary RLWE keys r(q)j and r′
(q)
j (with coefficients distributed ∼ ζp);

2: for p ∈ [1, k], p ̸= q, output b
∆(p)
q,j ← RLweSymEncrq(0, b

(p), r
(q)
j);

3: output b
∆(q)
q,j ← RLweSymEncrq(s

(q)
j · g, b(q), r

(q)
j);

4: output a∆q,j ← RLweSymEncrq(0, a, r
(q)
j);

5: for p ∈ [1, k], output b
□(p)
q,j ← RLweSymEncrq(0, b

(p), r′
(q)
j);

6: output a□q,j ← RLweSymEncrq(s
(q)
j · g, a, r′

(q)
j);

To construct the j-th blind-rotate key of party q, related to subset of parties S ∋ q, evaluate

BK
(q)
j,S ←

∑
p∈S b

∆(p)
q,j a∆q,j∑

p∈S b
□(p)
q,j a□q,j

 , (9)

which is an RGSW sample of s(q)j under the subset RLWE key ZS =
∑

p∈S z(p). N.b., BK(q)
j,S is only

calculated at runtime, once S is known.

• AKÖ.KeySwitchKeyGen_dynq(): Proceed as AKÖ.KeySwitchKeyGenq(), while instead of outputting
aggregated KSi’s, aggregate relevant parts at runtime, once S is known. I.e.,

KSi,S =
[∑
p∈S

b
(p)
i

∣∣∣ (A(p)
i

)
p∈S

]
. (10)

Possible Improvements. In [6], authors suggest an improvement that decreases the noise growth
of key-switching, which can also be applied in our scheme; we provide more details in Appendix A.

4 Analysis of Our Scheme

In this section, we provide a theoretical analysis of our AKÖ scheme with respect to security, cor-
rectness (noise growth) and performance.

4.1 Security

We assume that all parties follow the protocol honestly-but-curiously (i.e., we assume the semi-
honest model). Before we comment on each algorithm that may leak secrets, let us recall what is
secure and what is not in LWE (selected methods; also holds for RLWE):

✓ re-use secret key s with fresh mask a and fresh noise e;

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 11

✓ re-use common random mask a with multiple distinct secret keys s(p) and fresh noises e(p);
✗ publish ⟨s,a⟩ in any form (e.g., release the phase ϕ or the error e);
✗ re-use the pair (s,a) with fresh noises ei.

Note that rather than formal security proofs, we provide informal sketches. In selected cases, we also
briefly discuss what issues may rise with a malicious party and we outline possible countermeasures.

Public Key Encryption. In AKÖ, there are two algorithms for public key encryption: RLwe(Rev)-
PubEncr

(
m, (b, a)

)
. Basically, they re-use a common random mask (the public key pair (b, a)) with

fresh temporary key r(q). Provided that b and a are indistinguishable from random (random-like),
it does not play role to which part the message m is added/encrypted, i.e., both variants are secure.

Blind-Rotate Key Generation (static variant). Provided that CRP a is random-like, which
is trivial to achieve in the random oracle model, we can assume that (our) b(q) is random-like.
Assuming that other parties act honestly, also their b(p)’s are random-like, hence the sum B is
random-like, too. With (B, a) random-like, public key encryption algorithms are secure, hence
AKÖ.BlindRotKeyGenq is secure, too.

Blind-Rotate Key Generation (dynamic variant). In this variant, party q re-uses temporary
secret key r(q) for encryption of zeros using public keys b(p) of other parties, and for encryption of
own secret key s(q). This is secure provided that b(p)’s are random-like, i.e., generated honestly.

Key-Switching Key Generation (both variants). The AKÖ.KeySwitchKeyGen(_dyn)q algo-
rithms employ the standard LWE encryption, hence they are secure.

Summary. We have shown that if all parties act semi-honestly, our scheme is secure in both of its
variants. We also outline possible countermeasures if there is a malicious party. However, we leave
a rigorous discussion on threat models that involve malicious actors for the future work.

On the Presence of a Malicious Party. Although we assume that all parties are semi-honest,
we comment briefly and informally on the possible presence of a malicious party. First, note that
there is another insecure thing in LWE:

✗ use malicious common mask a (in particular in RLWE).

For this issue, let us outline an RLWE key recovery attack, given an encryption oracle:

1. the attacker provides malicious common mask (public key) a′ = 1/4 + 0 ·X + . . .+ 0 ·XN−1;
2. the victim encrypts 0 with her secret key z as (b = −z · a′ + e, a′) = (−1/4 z + e, 1/4);
3. the attacker rounds the coefficients of 4b ∈ [−2, 2)(N)[X] to integers, yielding the secret key z.

Blind-Rotate Key Generation (static variant). In case there is malicious party p′, it may wait for
others and collect their b(p)’s, then it may publish malicious b(p

′) = 1/4 −∑
p ̸=p′ b(p), i.e., B = 1/4

(cf. the attack outlined before). However, such an attack can be mitigated easily: each party p first
commits on b(p) before publishing it, i.e., before learning b’s of others. Then, even if some b’s are
malicious, the aggregate B can be considered random-like: indeed, it is sufficient that one party
(us) provides an unpredictable random-like b(q).

12 Y. Akın et al.

Blind-Rotate Key Generation (dynamic variant). In case there is malicious party p′, an attack with
b(p

′) = 1/4 (or similar) could be mounted; let us outline a possible mitigation:

– parties generate and distribute all keys normally;
– a series of bootstraps with some dummy data is performed;
– the results are checked for correctness: the protocol halts unless everything is correct.

Recall that this is just a proposal of a possible countermeasure and we only provide a brief reasoning:
To generate malicious and functional b(p

′), i.e., b(p
′) of a specific form (e.g., 1/4) and b(p

′) = −z(p′) ·a+
e, the attacker p′ would need to find short vectors/polynomials z(p

′) and e that solve the equation,
which is considered intractable. If the attacker finds some solution to z(p

′) and e, which is not short,
the noise growth is expected be enormous, hence it is very likely to destroy the correctness and the
protocol halts.

4.2 Correctness & Noise Growth

The most challenging part of all LWE-based schemes is to estimate the noise growth across various
operations. First, we evaluate estimates of the noise growth of blind-rotate and key-switching, next,
we combine them into an estimate of the noise of a freshly bootstrapped sample. Finally, we identify
the maximum of error, which may cause incorrect bootstrapping. By default, we evaluate all noises
for the static variant, while for the dynamic variant, we provide more comments in the proofs.

Noise Growth of Blind-Rotate. In the following lemma and theorem, we provide an estimate
of the noise growth during blind-rotate, without considering any implementation aspects.

Lemma 1 (Correctness & Noise Growth of AKÖ.Prod). Given RGSW sample BK generated
by the AKÖ.BlindRotKeyGen algorithm, which encrypts constant polynomial s ∈ Z(N)[X] under the
common RLWE key Z =

∑
p z

(p), and RLWE sample c̄ = (b, a) that encrypts m ∈ T(N)[X] under
the same key, the AKÖ.Prod algorithm returns RLWE sample c̄′ = (b′, a′) that encrypts s ·m under
Z with additional noise eProd, given by

〈
Z̄, c̄′

〉
= s ·

〈
Z̄, c̄

〉
+ eProd, for which

Var[e Prod] ≈ NdVBβ
2
(
3 + 6pkN

)
BK error

+ s2ϵ2
(
1 + 2pkN

)
decomp. error

, (11)

where

– ϵ2 := 1/12B2d is the variance of (real-valued) uniform distribution on [−1/2Bd, 1/2Bd),
– VB := (B2+2)/12 is the mean of squares of (integer valued) uniform distribution on [−B/2,B/2)

(assuming B is even),
– other notation and parameters are as per the AKÖ.Setup algorithm, and
– we refer to the two terms as the blind-rotate key error and the decomposition error, respectively.

If this error is sufficiently small, it holds ⟨Z̄, c̄′⟩ ≈ s · ⟨Z̄, c̄⟩, i.e., the AKÖ.Prod algorithm is indeed
multiplicatively homomorphic.

Proof. Find the proof in Appendix B.1. For the dynamic variant, we have (3 + k · 6pN) →
(
1 +

k(2 + 6pN)
)

in the BK error term, which we consider practically negligible as 6pN ≈ 700.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 13

Theorem 1 (Noise Growth of Blind-Rotate). The AKÖ.BlindRotate algorithm returns a sam-
ple with noise variance given by

Var[⟨Z̄,ACC⟩] ≈ kn ·NdVBβ
2(3 + 6pkN) + 1/2 · kn · ϵ2(1 + 2pkN) + Var[tv]︸ ︷︷ ︸

usually 0

. (12)

The resulting ACC encrypts X⟨s̄,(b̃,ã)⟩ · tv.

Proof. Find the proof in Appendix B.2. For the dynamic variant, (3+6pkN)→ (1+2k+6pkN).

Noise Growth of Key-Switching. In the following theorem, we provide an estimate of the noise
growth during key-switching, which holds for both variants.

Theorem 2 (Noise Growth of Key-Switching). The AKÖ.KeySwitch algorithm returns a sam-
ple that encrypts the same message as the input sample, while changing the key from Z∗ to s, with
additional noise eKS, given by

〈
s̄, c̄′′

〉
=

〈
Z̄∗, c̄′

〉
+ eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNϵ′2

decomp. error

. (13)

If the error is sufficiently small, it holds ⟨s̄, c̄′′⟩ ≈ ⟨Z̄∗, c̄′⟩.

Proof. Find the proof in Appendix B.3. For the dynamic variant, key-switching keys are structurally
equivalent, hence this estimate holds in the same form.

Noise of a Freshly Bootstrapped Sample. In the following corollary, we combine noise esti-
mates of blind-rotate and key-switching, yielding a noise estimate of a freshly bootstrapped sample.
For the dynamic variant, the BK error term is changed according to Theorem 1.

Corollary 1 (Noise of a Freshly Bootstrapped Sample). The AKÖ.Bootstrap algorithm re-
turns a sample with noise variance given by

V0 ≈ kn · 3NdVBβ
2(1 + 2pkN)

BK error

+ 1/2 · kn · ϵ2(1 + 2pkN)

b.-r. decomp.

+Nkd′VB′β′2

KS error

+ 2pkNϵ′2

k.-s. decomp.

. (14)

Maximum of Error. During homomorphic evaluations, freshly bootstrapped samples get ho-
momorphically added/subtracted, before being bootstrapped again (e.g., in the NAND algorithm).
Before a sample gets blindly rotated, it gets scaled and rounded to Z2N ; cf. line 1 of BlindRotate.
In the following lemma, we evaluate the variance of such a rounding error.

Lemma 2 (Rounding Error of Blind-Rotate). The rounding step on line 1 of the AKÖ.Blind-
Rotate algorithm introduces an additional error with variance (in the torus scale) given by

Var
[
1/2N · (b̃, ã)− (b,a)

]
=

1 + kn

48N2
=: Vround(N,n, k). (15)

Proof. Each of the 1+ kn values of (b,a) gets rounded to the closest multiple of 1/2N, i.e., the error
is uniform on the interval (−1/4N, 1/4N]. The result follows.

14 Y. Akın et al.

After rounding, the test vector gets blindly-rotated. It follows that the maximum of error across
the whole computation appears right after rounding of the sample to-be-bootstrapped. This sample
is typically a sum (more generally a linear combination) of multiple independent, freshly boot-
strapped samples. In the following corollary, we evaluate the variance of the maximal error through-
out the calculation and we define quantity κ, which is a scaling factor of normal distribution N(0, 1).

Corollary 2 (Maximum of Error). The maximum average error throughout homomorphic com-
putation is achieved inside the AKÖ.Bootstrap algorithm by the rounded sample 1/2N · (b̃, ã). Its
variance is given by

Vmax ≈ max
{∑

k2i

}
· V0 + Vround, (16)

where ki are coefficients of linear combinations of independent, freshly bootstrapped samples, which
are evaluated during homomorphic calculations, before being bootstrapped (e.g.,

∑
k2i = 2 for the

NAND gate evaluation). We denote

κ :=
δ/2√
Vmax

=
δ

2σmax
, (17)

where δ is the distance of encodings that are to be distinguished (e.g., 1/4 for encoding of bools).

We use κ to estimate the probability of correct blind rotation (CBRot). E.g., for κ = 3, we
have Pr[CBRot] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ), however, we rather lean to κ = 4 with
Pr[CBRot] ≈ 1/15 787. Since the maximum of error is achieved within blind-rotate, it dominates the
overall probability of correct bootstrapping (CBStrap), i.e., we assume Pr[CBStrap] ≈ Pr[CBRot].

4.3 Performance

Since the structure of all components in both variants of AKÖ is equivalent to that of plain TFHE
with only n→ kn (due to LWE key concatenation), we evaluate the performance characteristics very
briefly: AKÖ.BlindRotate is dominated by 4d · kn degree-N polynomial multiplications, whereas
AKÖ.KeySwitch is dominated by Nd′·(1+kn) torus multiplications, followed by 1+kn summations of
Nd′ elements. Using FFT for polynomial multiplication, for bootstrapping, we have the complexity
of O(N logN · 4dkn) +O(Nd′ · (1 + kn)).

For key sizes, we have |BK| = 4dNkn · |TRLWE| and |KS| = d′N(1 + kn) · |TLWE|, where |T(R)LWE|
denotes the size of respective torus representation.

5 Experimental Evaluation

For a fair comparison, we implement our AKÖ scheme3 side by side with previous schemes CCS [6] and
KMS [18]. These are implemented in a fork [29] of a library4 [24] that implements TFHE in Julia. For
the sake of simplicity, we implement only the static variant on AKÖ – recall that performance-wise,
the two variants are equivalent, for noise growth, the differences are negligible.

In this section, we first comment on errors induced by existing TFHE implementations. Then,
we introduce type-1 and type-2 decryption errors that one may encounter during TFHE-based
homomorphic evaluations. Finally, we provide three kinds of results of our experiments:
3 Available at https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe as the 3gen variant.
4 As noted by the authors, the code serves solely as a proof-of-concept.

https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 15

1. for all the three schemes (CCS, KMS and AKÖ) and selected parameter sets, we measure the
performance, the noise variances, and the amount of decryption errors of the two types,

2. we demonstrate the effect of FFT during the pre-computation phase of AKÖ with 32 parties,
3. we compare the performance of all the three schemes with a fixed parameter set tailored for 16

parties, with different numbers of actually participating parties (i.e., the dynamic variant).

We run our experiments on a machine with an Intel Core i7-7800X processor and 128GB of RAM.

Implementation Errors. The major source of errors that stem from particular implementation
of the TFHE scheme is Fast Fourier Transform (FFT), which is used for fast modular polynomial
multiplication in RLWE. Also the finite representation of the torus (e.g., 64-bit integers) changes the
errors slightly, however, we neglect this contribution as long as the precision (e.g., 2−64) is smaller
than the standard deviation of the (R)LWE noise. Note that these kinds of errors are not taken into
account in Section 4.2, which solely focuses on the theoretical noise growth of the scheme itself.

The magnitude of the FFT error depends on (i) the finite torus representation (i.e., the precision
of coefficients of multiplied polynomials), and on (ii) particular FFT implementation (e.g., what
float representation is chosen); find a study on FFT errors in [17].

Due to an excessive noise that we observe for higher numbers of parties with our scheme, we
suggest to replace FFT in pre-computations (i.e., in blind-rotate key generation) with an exact
method. This leads to an increase of the pre-computation costs (n.b., it has no effect on the boot-
strapping time), however, in Section 5.2, we show that the benefit is worth it – the pre-computation
time indeed shows to be slower, yet it is not prohibitive.

Types of Decryption Errors. The ultimate goal of noise analysis is to keep the probability of
obtaining an incorrect result reasonably low. Below, we describe two types of decryption errors,
which originate from bootstrapping, and which we measure in our experiments. N.b., the principle
of BlindRotate is the same in all the three schemes, hence it is well defined for all of them.

Note 1. For the notion of correct decryption, we always assume symmetric intervals around en-
codings. E.g., for the Boolean variant, which encodes true and false as ±1/8, we only consider the
“correct” interval for true as (0, 1/4), although (0, 1/2) would work, too. Hence in the Boolean variant,
actual incorrect decryption & decoding would be half less likely than what we measure/evaluate.

Fresh Bootstrap Error. We bootstrap (ideally) noiseless sample c of µ, i.e., BlindRotate rotates
it “correctly”, meaning that ϕ̃/2N ≈ µ selects the correct position from the test vector. Then, we
evaluate the probability of the resulting phase ϕ′ = ⟨s̄, c̄′⟩ falling outside the correct interval. We
refer to this error as the type-1 error, denoted Err1. Note that this probability relates to the noise
of a correctly blind-rotated, freshly bootstrapped sample. It can be estimated from V0; see (14).

Blind Rotate Error. Let us consider a sum of two independent, freshly bootstrapped samples. We
evaluate the probability that the sum, after rounding inside BlindRotate, selects a value at an
incorrect position from the test vector. We refer to this error as the type-2 error, denoted Err2. It
can be estimated from Vmax; see (16). To simulate the NAND gate, we evaluate:

fresh c1
Bootstrap−−−−−−→ c′1

fresh c2
Bootstrap−−−−−−→ c′2

}
(1/8− c′1 − c′2)→ eval. ϕ̃ of BlindRotate→ check ϕ̃/2N

?∈ (0, 1/4). (18)

16 Y. Akın et al.

5.1 Experiment #1: Thorough Comparison of Performance & Errors

For the three schemes – CCS, KMS and AKÖ – we measure the main quantities: the bootstrapping
time (median), the variance V0 of a freshly bootstrapped sample (defined in (14)), the scaling factor
κ (defined in (17)), and the amount of errors of both types. We extend the previous work – there is
no experimental evaluation of noises/errors in CCS nor KMS. In all experiments, we replace FFT in
pre-computations with an exact method. For CCS and KMS, we employ the parameters suggested
by the original authors, and we estimate their security with the lattice-estimator by Albrecht
et al. [1, 2]. We obtain an estimate of about 100 bits, therefore for our scheme, we also suggest
parameters with estimated 100-bit security. We provide more details on the security estimates of
the parameters of CCS and KMS, and those of AKÖ in Appendix C.1 and C.2, respectively. The
parameters and results for CCS, KMS and AKÖ can be found in Table 1, 2 and 3, respectively.

In the results for CCS, we may notice that for 2 to 8 parties, the measured value of κ, denoted
κ(m), agrees with the calculated value κ(c), whereas for 16 parties (n.b., parameters added in KMS
[18]), the measured value κ(m) drops significantly, which indicates an unexpected error growth.

In the results for KMS, we may notice a similar drop of κ – here it occurs for all numbers of
parties – we suppose that this is caused by FFT in bootstrapping (more on FFT later in Section 5.2).
For both experiments, we further use κ(m) and Z-values of the normal distribution to evaluate the
expected rate of Err2, which is in perfect accordance with the measured one.

For our AKÖ scheme, the results do not show any error of any type. Regarding the values of κ (also
V0), we measure lower noise than expected – this we suppose to be caused by a certain statistical
dependency of variables – indeed, our estimates of noise variances are based on an assumption that
variables are independent, which is not always fully satisfied. We are able to run AKÖ with up to
128 parties, while the only limitation for 256 parties appears to be the size of RAM. We believe
that with more RAM (>128GB) or with a more optimized implementation, it would be possible to
practically instantiate the scheme with more parties. For this purpose, we provide parameter sets
for 256 and even for 512 parties, where other technical limits are reached: in particular the speed
of the lattice-estimator and the size of a machine word, which efficiently implements the torus.

5.2 Experiment #2: The Effect of FFT in Pre-computations

As outlined previously, polynomial multiplication in RLWE—when implemented using FFT—intro-
duces additional error, on top of the standard RLWE noise. In this experiment, we compare noises
of freshly bootstrapped samples: once with FFT in blind-rotate key generation (induces additional
errors), once without FFT (we use an exact method instead). For this comparison, we choose our
AKÖ scheme with 32 parties; find the results in Figure 2. Note that within bootstrapping, we still
employ FFT, i.e., the performance of evaluation is not affected.

In the plot, we may notice a tremendous growth of the noise of a freshly bootstrapped sample
in case FFT is employed for blind-rotate key generation: in almost 4% of such cases, even a freshly
bootstrapped sample gets decrypted incorrectly (i.e., Err1 ≈ 4%), which corresponds to violet bars
outside the interval delimited by the red dashed lines. On the other hand, such a growth does not
occur for lower numbers of parties, hence we suggest to verify whether in particular case the effect
of FFT is remarkable, or negligible, and then decide accordingly – recall that pre-computations
with FFT are much faster (e.g., for 64 parties, we have 33 s vs. 212 s of the total pre-computation
time).

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 17

−3s(w)
0

−3σ0 +3σ0 +3s
(w)
0

−4s(n)max −3s(n)0 +3s
(n)
0 +4s

(n)
max

estimate
with FFT
w/o FFT

Fig. 2. Noises of freshly bootstrapped samples of the static variant of AKÖ with 32 parties (parameters
as per Table 3), comparing blind-rotate keys generated with and without the use of FFT, running 2 000

bootstraps. Red dashed lines mark the boundaries of the correct interval; cf. Note 1. The values s
(·)
0 and

s
(·)
max refer to the sample standard deviation of a freshly bootstrapped sample and that of a rounded sample

within blind-rotate (cf. (16); calculated from respective s0), respectively. Labels (w) and (n) refer to with
FFT and no FFT, respectively. N.b., the values ±4s

(w)
max are far outside the graph.

Unexpected Error Growth in KMS. For the KMS scheme, we observe an unexpected error
growth (cf. Table 2), which we suppose to be caused by FFT in bootstrapping (i.e., evaluation).
We replace all FFT’s in the entire computation of KMS—including bootstrapping—with an exact
method, and we re-run Experiment #1 with the KMS scheme, using the same setup. Due to
a prohibitively slow evaluation (∼ 40× slower), we only re-run the experiment for 2 parties. We
obtain V

(m)
0 ≈ 5.58 · 10−4, which is still much more than the expected value V

(c)
0 ≈ 0.458 · 10−4,

but it already makes the standard deviation about 30% smaller, compared to the “with FFT in
bootstrapping” case. Also it increases the value of κ(m) : 2.60 → 3.73 and it results in no type-2
errors. At least partially, this confirms our hypothesis that the unexpected error growth in KMS is
caused by FFT in evaluation.

A possible theoretical explanation can be found in the design of KMS: in the blind-rotate of
KMS, we may observe that there are (up to) four nested FFT’s: one in the circled ⋆ product,
followed by three inside ExtProd: one in the ⊙ product and two in NewHbProd. Compared to AKÖ,
where there is just one level of FFT inside blind-rotate in Prod, this is likely the most significant
practical improvement over KMS.

18
Y

.A
kın

et
al.

Table 1. Parameters, bootstrapping times (tB ; median), noises and errors of the CCS scheme [6], with original parameters and without
FFT in pre-computations (i.e., using precise calculations); parameters for 16 parties and key sizes taken from [18]. Labels (c) and (m) refer
to calculated and measured values, respectively. Running 1 000 trials, i.e., evaluating 2 000 bootstraps; cf. (18). N.b., the actual error rate
of a NAND gate would be approximately half of Err2; cf. Note 1.

k
LWE RLWE UniEnc |keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m) Err1,2 Exp.

n α B′ d′ N β B d [MB] [s] [10−4] [10−4] [‰] Err2

2

560 3.05 · 10−5 22 8 1 024 3.72 · 10−9

29 3 95 .58 16.2 14.6 2.19 2.30 1 24 21

4 28 4 108 2.4 19.1 18.6 2.01 2.04 3 41 41

8 26 5 121 10 6.36 6.27 3.39 3.41 0 0 .65

16 22 12 214 86 2.15 34.5 5.07 1.49 29 128 136

Table 2. Parameters, bootstrapping times (tB ; median), noises and errors of the KMS scheme [18], with original parameters and without
FFT in pre-computations (key sizes taken from [18]). Running 1 000 trials.

k
LWE RLWE RGSW RLEV UniEnc |keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m) Err1,2 Exp.

n α B′ d′ N β B d B d B d [MB] [s] [10−4] [10−4] [‰] Err2

2

560 3.05 · 10−5 22 8 2 048 4.63 · 10−18

213 3 27 2 210 3 215 .61 .458 11.5 12.7 2.60 1.5 12 9.3

4 28 5 28 2 26 7 286 2.1 .915 15.3 8.97 2.26 4 29 24

8 211 4 26 3 24 8 251 5.4 1.83 17.1 6.34 2.13 3 35 33

16 29 5 26 3 24 9 286 15 3.66 32.0 4.49 1.56 22.5 122 119

32 28 6 27 3 22 16 322 35 7.32 30.1 3.17 1.60 23 109 110

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 19

Table 3. Parameters, key sizes (calculated), bootstrapping times (tB ; median), noises and errors of the
static variant of AKÖ, without FFT in pre-computations. Running 1 000 trials, no errors of type Err2 (let
alone Err1) experienced. ∗For 256 and 512 parties, we exceed the limit of RAM (128GB). ∗∗For 512 parties,
better parameters could be found – the practical size of the torus representation (64-bit) poses the limit.

k
LWE RLWE |keys| tB V

(c)
0 V

(m)
0

κ(c) κ(m)

n log2(α) B′ d′ N log2(β) B d [GB] [s] [10−4] [10−4]

2 520 −13.52 23 3

1 024 −30.70

27 2 .08 .19 4.69 4.18 4.04 4.27

3 510 −13.26 22 5 27 2 .13 .31 4.64 4.40 4.04 4.14

4 510 −13.26 22 5 26 3 .24 .56 3.96 2.02 4.33 5.93

5 520 −13.52 22 5 26 3 .31 .73 3.76 1.91 4.41 6.00

8 540 −14.04 22 5 24 4 .66 1.2 4.43 4.20 4.01 4.11

16 590 −15.34 23 4

2 048 −62.00

226 1 .93 1.8 4.56 1.02 4.04 7.90

32 620 −16.12 23 4 226 1 2.0 4.3 3.58 1.21 4.38 6.78

64 650 −16.90 23 4 225 1 4.1 8.6 3.41 1.80 4.20 5.25

128 670 −17.42 23 5 224 1 9.1 18 2.40 .486 4.15 5.47

256∗ 740 −19.24 22 8 218 2 37 – .187 – 4.00 –

512∗∗ 730 −18.98 23 5 4 096 −62.00 227 1 80 – 2.53 – 4.01 –

5.3 Experiment #3: Performance Comparison

We extend the performance comparison of CCS and KMS, presented in Figure 2 of KMS [18]
(which we re-run on our machine), by the performances of our AKÖ scheme. Note that the setup of
that experiment corresponds to the dynamic variant – recall that performance-wise, the dynamic
variant is equivalent to the static variant, which is implemented in our experimental library. For
each scheme, we employ its own parameter set tailored for 16 parties (cf. Table 1, 2 and 3), while we
instantiate it with different numbers of actually participating parties; find the results in Figure 3.

5.4 Discussion

The goal of our experiments is to show the practical usability of our AKÖ scheme: we compare its
performance as well as the probability of errors with previous schemes – CCS [6] & KMS [18].

In terms of bootstrapping time, AKÖ runs faster than both previous attempts (cf. Figure 3). Also
the theoretical complexity of AKÖ is linear in the number of parties (cf. Section 4.3), as opposed to
quadratic and quasi-linear for CCS and KMS, respectively.

To evaluate the amount of errors that may occur during bootstrapping, we propose a new
method that simulates the rounding step of BlindRotate (cf. (18)), which is the same across all
the three schemes. Our experiments show that both CCS and KMS suffer from a considerably high
error rate (cf. Table 1 and 2, respectively): for CCS, the original parameters are rather poor; for
KMS, it seems that there are too many nested FFT’s in bootstrapping – we show that FFT in
evaluation—at least partially—causes the unexpected error growth.

20 Y. Akın et al.

0

4

8

12

16

2-party
4-party

8-party
16-party

22

84 4.5× 5.7× 6.5× 6.9×

B
o
o
ts
tr
ap

p
in
g
ti
m
e
[s
]

CCS
KMS
ours

Speed-up of our scheme over KMS

Fig. 3. Comparison of median bootstrapping times of the CCS scheme [6], the KMS scheme [18] and our
AKÖ scheme. 100 runs with respective parameters for 16 parties were executed.

To sum up, AKÖ significantly outperforms both CCS & KMS in terms of bootstrapping time
and/or error rate. The major practical limitation of the CCS scheme is the quadratic growth
of the bootstrapping time, whereas the KMS scheme suffers from the additional error growth in
implementation. A disadvantage of AKÖ is that it requires (a small amount of) additional pre-
computations if a new party decides to join the computation in the dynamic variant. Also AKÖ does
not enable parallelization, as opposed to KMS.

6 Conclusion

We propose a new TFHE-based MKHE scheme named AKÖ in two variants, depending on whether
only a subset of parties is desired to take part in a homomorphic computation. We implement
AKÖ side-by-side with other similar schemes CCS and KMS, and we show its practical usability in
a thorough experimentation, where we also suggest secure & reliable parameters. Thanks to its low
noise growth, our scheme can be instantiated with hundreds of parties; namely, we tested up to 128
parties in our experiments. Compared to previous schemes, AKÖ achieves much faster bootstrapping
times, however, a slight overhead of pre-computations is induced. For KMS, we show that FFT errors
are prohibitive for its practical deployment – unfortunately, replacing FFT in pre-computations is
not enough.

Besides benchmarking, we suggest to emulate (a part of) the NAND gate to achieve a more
realistic error analysis: the measured amount of errors shows to be in perfect accordance with the
expected amount. This method may help future schemes to evaluate their practical reliability.

Future Work. We plan to extend the threat model to assume malicious parties, formally. For
implementation, we would like to experimentally verify the improvement of key-switching proposed
by [6] (discussed in Appendix A). Another interesting topic might be to extend the message space
to more than Boolean.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 21

References

1. Albrecht, M.R., contributors: Security Estimates for Lattice Problems. https://github.com/malb/
lattice-estimator (2022)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal of
Mathematical Cryptology 9(3), 169–203 (2015)

3. Booth, A.D.: A signed binary multiplication technique. The Quarterly Journal of Mechanics and Applied
Mathematics 4(2), 236–240 (1951)

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In:
Annual Cryptology Conference. pp. 868–886. Springer (2012)

5. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key fhe with short ciphertexts. In: Annual
International Cryptology Conference. pp. 190–213. Springer (2016)

6. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from tfhe. In: International Con-
ference on the Theory and Application of Cryptology and Information Security. pp. 446–472. Springer
(2019)

7. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed cipher-
texts with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 395–412 (2019)

8. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key fhe from ring-lwe with compact ciphertext
extension. In: Theory of Cryptography Conference. pp. 597–627. Springer (2017)

9. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle attack on sparse
and ternary secret lwe. IEEE Access 7, 89497–89506 (2019)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate
numbers. In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 409–437. Springer (2017)

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over
the torus. Journal of Cryptology 33(1), 34–91 (2020)

12. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning with errors. In: Annual
Cryptology Conference. pp. 630–656. Springer (2015)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint
Arch. p. 144 (2012)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual
ACM symposium on Theory of computing. pp. 169–178 (2009)

15. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library. IBM Research
(Manuscript) 6(12-15), 8–36 (2013)

16. Kim, T., Kwak, H., Lee, D., Seo, J., Song, Y.: Asymptotically faster multi-key homomorphic encryption
from homomorphic gadget decomposition. Cryptology ePrint Archive (2022)

17. Klemsa, J.: Fast and error-free negacyclic integer convolution using extended fourier transform. In:
Cyber Security Cryptography and Machine Learning. pp. 282–300. Springer (2021)

18. Kwak, H., Min, S., Song, Y.: Towards Practical Multi-key TFHE: Parallelizable, Key-Compatible,
Quasi-linear Complexity (2022), https://eprint.iacr.org/2022/1460

19. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium
on Theory of computing. pp. 1219–1234 (2012)

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In:
Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp.
1–23. Springer (2010)

21. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption
from ring-learning-with-errors. Proceedings on Privacy Enhancing Technologies pp. 291–311 (2021)

22. Mouchet, C.V., Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Lattigo: A multiparty homo-
morphic encryption library in go. In: Proceedings of the 8th Workshop on Encrypted Computing and
Applied Homomorphic Cryptography. pp. 64–70. No. CONF (2020)

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://eprint.iacr.org/2022/1460

22 Y. Akın et al.

23. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 735–763. Springer
(2016)

24. NuCypher: TFHE.jl. https://github.com/nucypher/TFHE.jl (2022)
25. Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Theory of cryptography conference. pp.

217–238. Springer (2016)
26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of

the thirty-seventh annual ACM symposium on Theory of computing. pp. 84–93 (2005)
27. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023), Microsoft Research
28. SNUCrypto: HEAAN (release 1.1). https://github.com/snucrypto/HEAAN (2018)
29. SNUPrivacy: MK-TFHE. https://github.com/SNUPrivacy/MKTFHE (2022)
30. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret lwe and application to he param-

eters. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. pp. 11–20 (2019)

https://github.com/nucypher/TFHE.jl
https://github.com/Microsoft/SEAL
https://github.com/snucrypto/HEAAN
https://github.com/SNUPrivacy/MKTFHE

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 23

Appendix

A Possible Improvement of Key-Switching

In [6], authors suggest to pre-compute multiples of key-switching keys: the aim is to decrease the
contribution of noise from the key-switching keys. On the one hand, the performance may improve
by choosing more efficient parameters, on the other hand, the size of key-switching keys may grow
significantly.

Instead of encrypting z
(q)∗
i g′, authors suggest to encrypt its multiples by integers in [1,B

′
/2].

Then, in the KeySwitch algorithm, instead of multiplication of a key-switching key KSi by de-
composition digits of g′−1(a′i), cf. (4), an appropriate pre-computed multiple of KSi is used (with
appropriate sign). In case B′ is “too big” for practical considerations, we rather suggest to encrypt
multiples of z(q)∗i g′ only by powers of two in [1,B

′
/2], and then combine these multiples to reach

the digits of g′−1(a′i). For this purpose, we suggest to employ a signed binary representation with
the lowest Hamming weight, also referred to as the Non-Adjacent Form (NAF; [3]).

B Proofs of Noise Analysis

B.1 Noise Growth of Homomorphic Product

Lemma 1. Given RGSW sample BK generated by the AKÖ.BlindRotKeyGen algorithm, which en-
crypts constant polynomial s ∈ Z(N)[X] under the common RLWE key Z =

∑
p z

(p), and RLWE

sample c̄ = (b, a) that encrypts m ∈ T(N)[X] under the same key, the AKÖ.Prod algorithm re-
turns RLWE sample c̄′ = (b′, a′) that encrypts s ·m under Z with additional noise eProd, given by〈
Z̄, c̄′

〉
= s ·

〈
Z̄, c̄

〉
+ eProd, for which

Var[e Prod] ≈ NdVBβ
2
(
3 + 6pkN

)
BK error

+ s2ϵ2
(
1 + 2pkN

)
decomp. error

, (19)

where

– ϵ2 := 1/12B2d is the variance of (real-valued) uniform distribution on [−1/2Bd, 1/2Bd),
– VB := (B2+2)/12 is the mean of squares of (integer valued) uniform distribution on [−B/2,B/2)

(assuming B is even),
– other notation and parameters are as per the AKÖ.Setup algorithm, and
– we refer to the two terms as the blind-rotate key error and the decomposition error, respectively.

If this error is sufficiently small, it holds ⟨Z̄, c̄′⟩ ≈ s · ⟨Z̄, c̄⟩, i.e., the AKÖ.Prod algorithm is indeed
multiplicatively homomorphic.

Proof. We unfold the construction of BK and multiplication within the AKÖ.Prod algorithm:

c̄′ =
(〈

g−1(b),−r ·B+ s · g + e1

〉
+

〈
g−1(a),−r ·B′ + e′1

〉
,〈

g−1(b),−r · a+ e2

〉
+

〈
g−1(a),−r · a′ + s · g + e′2

〉)
. (20)

24 Y. Akın et al.

Then we write〈
Z̄, c̄′

〉
=

〈
g−1(b),−rB+ sg + e1

〉
+

〈
g−1(a),−rB′ + e′1

〉
+

+ Z
〈
g−1(b),−ra+ e2

〉
+ Z

〈
g−1(a),−ra′ + sg + e′2

〉
=

=
〈
g−1(b), r

k∑
p=1

z(p)a− r

k∑
p=1

e(p) + sg + e1

〉
+

〈
g−1(a), r

k∑
p=1

z(p)a′ − r

k∑
p=1

e′
(p)

+ e′1

〉
+

+
〈
g−1(b),−Zra+ e2

〉
+
〈
g−1(a),−Zra′ + Zsg + Ze′2

〉
=

=
〈
g−1(b), sg − r

k∑
p=1

e(p) + e1 + e2

〉
+

〈
g−1(a), Zsg − r

k∑
p=1

e′
(p)

+ e′1 + Ze′2

〉
=

= s
(〈

g−1(b),g
〉

≈b

±b
)
+ Zs

(〈
g−1(a),g

〉
≈a

±a
)
+

+
〈
g−1(b),−r

k∑
p=1

e(p) + e1 + e2

〉
+

〈
g−1(a),−r

k∑
p=1

e′
(p)

+ e′1 + Ze′2

〉
=

= s · (b+ Za

⟨Z̄,c̄⟩

) +

+ s ·
(Var[·]=ϵ2︷ ︸︸ ︷
⟨g−1(b),g⟩d − b+Z

(Var[·]=ϵ2︷ ︸︸ ︷
⟨g−1(a),g⟩d − a

)
decomp. errors

)
− (21)

− r

k∑
p=1

⟨g−1(b), e(p)⟩d − r

k∑
p=1

⟨g−1(a), e′
(p)⟩d + (22)

+ ⟨g−1(b), e1 + e2⟩d + ⟨g−1(a), e′1 + Ze′2⟩d. (23)

Note that

– the decomposition error has a uniform distribution on [−1/2Bd, 1/2Bd), hence variance of ϵ2;
– decomposition digits have a uniform distribution on [−B/2,B/2), hence mean of squares of VB .

We evaluate the variance for each term and the result follows:

(21): Var[·] = s2ϵ2
(
1 + 2pkN

)
, since we multiply the second term by Z =

∑
p z

(p), which is a sum
of k polynomials, each with N coefficients with variance of 2p and zero mean;

(22): Var[·] = 2 · 2pkN2dVBβ
2, since there are two identical independent terms, where we multiply

a polynomial r, which has N coefficients with variance of 2p, with a sum of k independent
terms, each of which is an inner product of size d, where we multiply two polynomials of N
coefficients: one of them has VB mean of squares and the other has variance of β2 and zero
mean5;

(23): Var[·] = (3+ 2pkN)NdVBβ
2, since we sum four independent error terms with variance of β2,

one of which is multiplied by Z (a sum of k polynomials of N coefficients with variance of 2p).

For the dynamic variant, we exchange e1 →
∑

p e
(p)
1 , respectively for e′1, in the proof. Here,

∑
p e

(p)
1

emerges from the sum of b∆(p)
q,j ; cf. (9). This changes (3 + 2pkN)→ (1 + 2k + 2pkN) in (23).

5 It holds Var[X · Y] = E[X2] · Var[Y] for independent variables with E[Y] = 0.

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 25

B.2 Noise Growth of Blind-Rotate

Theorem 1. The AKÖ.BlindRotate algorithm returns a sample with noise variance given by

Var[⟨Z̄,ACC⟩] ≈ kn ·NdVBβ
2(3 + 6pkN) + 1/2 · kn · ϵ2(1 + 2pkN) + Var[tv]︸ ︷︷ ︸

usually 0

. (24)

The resulting ACC encrypts X⟨s̄,(b̃,ã)⟩ · tv.
Proof. In the AKÖ.BlindRotate algorithm, the (usually noiseless) sample tv gets gradually multi-
plied by BK’s, we write: 〈

Z̄,ACC+ AKÖ.Prod(BK, Xa · ACC− ACC)
〉
=

=
〈
Z̄,ACC

〉
+ s ·

〈
Z̄, Xa · ACC− ACC

〉
+ e Prod(s) =

=
〈
Z̄, Xs·a · ACC

〉
+ e Prod(s), (25)

i.e., with each step, the noise grows by the additive term e Prod(s). The length of the common LWE
key s is kn, the mean of squares of si is 1/2, hence the result follows.

B.3 Noise Growth of Key-Switching

Theorem 2. The AKÖ.KeySwitch algorithm returns a sample that encrypts the same message
as the input sample, while changing the key from Z∗ to s, with additional noise eKS, given by〈
s̄, c̄′′

〉
=

〈
Z̄∗, c̄′

〉
+ eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNϵ′2

decomp. error

. (26)

If the error is sufficiently small, it holds ⟨s̄, c̄′′⟩ ≈ ⟨Z̄∗, c̄′⟩.
Proof. We write (for clarity with indexes that indicate the length of inner products):

⟨s̄, c̄′′⟩ =
〈
(1, s), (b′,0) +

N∑
j=1

g′−1(a′j)
T · KSj

〉
1+kn

=

= b′ +

N∑
j=1

〈(
1, s

)
,g′−1(a′j)

T ·
[
−Ajs+ Z∗

jg
′ +

k∑
p=1

e
(p)
j

ej

∣∣∣ Aj

]〉
1+kn

=

= b′ −
N∑
j=1

〈
g′−1(a′j),Ajs

〉
d′ +

N∑
j=1

Z∗
j

(〈
g′−1(a′j),g

′〉
d′ ± a′j

)
+

N∑
j=1

〈
g′−1(a′j), ej

〉
d′ +

+

N∑
j=1

〈
s,g′−1(a′j)

T ·Aj

〉
kn

=

= b′ + ⟨Z∗,a′⟩N
⟨Z̄∗,c̄′⟩

+

N∑
j=1

Z∗
j

(〈
g′−1(a′j),g

′〉
d′ − a′j

decomp. error

)
+

N∑
j=1

〈
g′−1(a′j), ej

〉
d′ , (27)

while the decomposition error term has variance of 2pkNϵ′2 and the other term has variance of
Nkd′VB′β′2 (n.b., ej is a sum of k error terms), where ϵ′2 := 1/12B′2d′ and VB′ := (B′2+2)/12 are
respectively analogical to ϵ2 and VB , introduced in Lemma 1. The result follows.

26 Y. Akın et al.

C Security Estimates of (R)LWE Parameters

C.1 Parameters of CCS [6] and KMS [18]

We outline the usage of the lattice-estimator [1] for the purpose of security estimation of parame-
ters of (R)LWE over the torus, considering a finite representation of the torus (the base-line Julia im-
plementation [24] employs 32 bits for LWE and 64 bits for RLWE). As the final security estimate, we
take the largest rop value – the documentation of the estimator (e.g., in /estimator/lwe_guess.py)
states:

rop: Total number of word operations (approx. CPU cycles)

Below, we present a sample output of the estimator on the LWE parameters that are shared by CCS
and KMS:

sage: from estimator import *
from estimator.lwe_parameters import LWEParameters
from estimator.nd import NoiseDistribution as ND

sage: LWE.estimate(LWEParameters(n=560, q=2^32, Xs=ND.Uniform(0,1),
Xe=ND.DiscreteGaussianAlpha(3.05*10^(-5), 2^32), m=sage.all.oo))

bkw :: rop: approx. 2^144.3, m: ...
usvp :: rop: approx. 2^103.2, red: ...
--- other lines with rop higher than 100 ---
dual_hybrid :: rop: approx. 2^99.4, mem: ...

from which we read 99.4 ≈ 100 bits of security. For the RLWE parameters of CCS and KMS, we
obtain 106.7 and 110.6 bits, respectively, both for the dual_hybrid attack.

C.2 Parameters of Our Scheme

We generate our parameters using our highly experimental tool6, therefore, we provide the parame-
ters “as-is”, with no guarantees on their optimality. In our tool, we set the target security at 100 bits,
which we verify with the lattice-estimator [1]. Recall that for RLWE keys, we suggest to use
a ternary distribution ζp : (−1, 0, 1)→ (p, 1− 2p, p) with p ≈ 0.1135; see Section 3.2, where we also
mention some recent attacks on sparse keys [9, 30], both of which are considered by the estimator.

In case a new attack on sparse keys occurs, we suggest to increase the value of p, until the
key is not “sparse” – e.g., in the lattice-estimator (e.g., in estimator/nd.py), authors consider
“sparse” keys as follows:

We consider a~distribution "sparse" if its density is < 1/2.

Then, new parameters would need to be generated to reflect this change, however, we believe that
this would pose no obstacle. Indeed, the most important property of the ternary keys with respect
to the noise growth is that they are zero-centered, which remains untouched.

Below, we provide an output of the estimator for our RLWE parameters, taking into account the
ternary distribution with p = 0.113546, which corresponds to 116.27 out of 1 024:

6 Available at https://gitlab.eurecom.fr/fakub/tfhe-param-testing in the mk-tfhe branch.

https://gitlab.eurecom.fr/fakub/tfhe-param-testing

A Practical TFHE-Based MKHE with Linear Complexity and Low Noise Growth 27

-- N = 1024 --
sage: LWE.estimate(LWEParameters(n=1024, q=2^64, Xs=ND.SparseTernary(1024, p=116.27),

Xe=ND.DiscreteGaussianAlpha(2^(-30.7), 2^64), m=sage.all.oo))
usvp :: rop: approx. 2^99.9 (other /higher/ values omitted)

We also check the estimate for uniform binary key distribution, replacing the ternary distribution,
and we obtain rop: approx. 2ˆ98.3, i.e., the estimate is actually higher for the ternary distribu-
tion. Next, for N = 2048, we obtain:

-- N = 2048 n.b., runs around 4 hours! ---------------------------------
sage: LWE.estimate(LWEParameters(n=2048, q=2^64, Xs=ND.SparseTernary(2048, p=2*116.27),

Xe=ND.DiscreteGaussianAlpha(2^(-63.0), 2^64), m=sage.all.oo))
bdd :: rop: approx. 2^101.2
bdd_hybrid :: rop: approx. 2^101.2

Then, for selected LWE parameters, we obtain:

-- n = 520 ---
sage: LWE.estimate(LWEParameters(n=520, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-13.52), 2^64), m=sage.all.oo))
dual_hybrid :: rop: approx. 2^100.2 (other /higher/ values omitted)

We verify with q=2ˆ32, so that we may represent torus in LWE with a 32-bit type:

sage: LWE.estimate(LWEParameters(n=520, q=2^32, Xs=ND.Uniform(0,1),
Xe=ND.DiscreteGaussianAlpha(2^(-13.52), 2^32), m=sage.all.oo))

dual_hybrid :: rop: approx. 2^100.2

Other selected parameters give:

-- n = 510 ---
sage: LWE.estimate(LWEParameters(n=510, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-13.26), 2^64), m=sage.all.oo))
dual_hybrid :: rop: approx. 2^99.8
with q=2^32 also rop: approx. 2^99.8

...

-- n = 670 ---
sage: LWE.estimate(LWEParameters(n=670, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-17.42), 2^64), m=sage.all.oo))
dual_hybrid :: rop: approx. 2^104.9
with q=2^32 also rop: approx. 2^104.9

-- n = 740 ---
sage: LWE.estimate(LWEParameters(n=740, q=2^64, Xs=ND.Uniform(0,1),

Xe=ND.DiscreteGaussianAlpha(2^(-19.24), 2^64), m=sage.all.oo))
dual_hybrid :: rop: approx. 2^106.7

For all parameter combinations, the lattice-estimator gives around or more than 100 bits of
security, even with q=2ˆ32.

	 A Practical TFHE-Based Multi-Key Homomorphic Encryption with Linear Complexity and Low Noise Growth

