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April 2, 2023

Abstract

In this paper, we study the vulnerability of forest ecosystems perturbed by extreme events, such
as those arising from climate change. To investigate the complex interactions between the biological
dynamics of the forest and the climatic activity, we construct an original hybrid model, obtained by
coupling a continuous reaction-diffusion system, which describes the spatio-temporal dynamics of
the forest ecosystem, with a discrete probabilistic process, which models the possible occurrences
of extreme events. Properties of ecological interest are considered: invariance of the persistence
equilibrium, attraction to the extinction equilibrium and emergence of degraded states. Those
properties of the hybrid model are verified through an extension of the Statistical Model Checking
framework. We establish the existence of a threshold above which the persistence equilibrium of
the forest ecosystem is compromised and give a numerical assessment of this threshold in terms of
the probability and intensity of extreme events. We also present non-trivial parameter conditions
for which the forest ecosystem converges to a degraded savanna-like state.

Keywords. Hybrid model, model-checking, forest, climate change, reaction-diffusion.

1 Introduction
In the summary for policymakers of its sixth assessment report [39], the Intergovernmental Panel on
Climate Change (IPCC) pays particular attention to extreme events arising from climate change, their
recent increase in frequency and intensity and their multiple impacts on the equilibrium of both human
and natural environments:

“Widespread, pervasive impacts to ecosystems, people, settlements, and infrastructure have
resulted from observed increases in the frequency and intensity of climate and weather ex-
tremes, including hot extremes on land and in the ocean, heavy precipitation events, drought
and fire weather. Increasingly since Assessment Report 5, these observed impacts have been
attributed to human-induced climate change particularly through increased frequency and
severity of extreme events. These include increased heat-related human mortality, warm-
water coral bleaching and mortality, and increased drought related tree mortality.”

Farther in the IPCC report, the cross-chapter dedicated to tropical forests returns in detail on the
increased “tree mortality” resulting partly from these extreme events:

“Climate change is expected to increase temperatures across the tropics, with attendant
variability in rainfall, and more extreme events such as intense storms, droughts and wild-
fires. This could be expected to have structural and functional impacts on tropical forest
biomes.”
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Indeed, global tropical forests are double-impacted by the effects of both climate change and human
pressures related to land cover changes, such as deforestation, fires, over exploitation, or land man-
agement practices [17, 34, 35, 43, 46]. Repeated extreme events such as droughts and floods can have
an aggregated, nefarious effect on forest ecosystems by disrupting biogeochemical cycles [13, 41], and
increasing their vulnerability to fire spread [6, 45, 47]. Hence, when facing the scientific challenge to
better understand the complex dynamics of forest ecosystems, an additional layer of difficulty consists
of the overlapping of long-term climate trends (small but steady increase in temperature, for example)
and temporally “local” (relative to a long-time frame) events such as recurrent droughts or floods. As
extreme events are expected to be more frequent in the context of climate change, the question arises
on the capacity of ecosystems to adapt [50], and whether this can lower a tipping point threshold, that
is, a change in which a forest ecosystem would irreversibly “tip over”, for example, to a savanna-like
one [30, 31, 41]. Consequently, a combination of experiments, observations and process-based models
is necessary to improve our understanding of forest resilience and tipping points under both global
climate and land cover or land use changes [38, 54]. A great deal of work has already been done in
this regard. For instance, the impacts of drought-driven wildfires have been studied for the Central
Amazonian forest in [37]; the role of forest ecosystems in the fluxes of carbon have been analyzed in
[5], [11] or [51]; hydrological services of the forests are investigated in [9] or in [10]; interactions with
wildlife and biodiversity are studied in [33]; original models coupling the dynamics of trees and grass
have also been analyzed in [4], [15], [24] or in [42], and it has been proved that their spatial struc-
ture well reproduces ecologically relevant patterns. Finally, the dynamics of transition from forest to
savanna have been investigated for instance in [18], [28], [49]. Numerous other relevant papers could
be here cited as well. Nevertheless, challenges still remain to be taken up, both on the observational
constraints of tipping point indicators as well as constraints regarding the intrinsic stochastic nature
of the forest ecosystem.

In this paper, we aim at contributing to this understanding by modeling the vulnerability of forest
ecosystems to extreme events arising from climate change, using an innovative hybrid model that com-
bines deterministic and probabilistic components for trajectory projections of tipping points. Indeed,
the deterministic part of the hybrid model, that we construct for this study, is given by a continuous
spatio-temporal model which takes the form of a reaction-diffusion system; this reaction-diffusion sys-
tem, firstly presented in [25], reproduces the biological dynamics of the forest in absence of extreme
events. Several properties of this continuous forest model have been already analyzed in [26], [7], [8]
and [22]; in particular, the existence of non trivial stationary solutions, which take the form of dis-
continuous patterns, and their interpretation as the formation of ecotones have been well described; a
non-spatial version of this model which takes into account the unpredictability resulting from environ-
mental, ecological and biological disturbances has also been studied in [48]. However, the continuous
reaction-diffusion model is incapable of reproducing the impacts of extreme events on the dynamics
of the forest, hence needs to be significantly improved. To remedy this lack, our choice is to couple
the initial deterministic reaction-diffusion system with a discrete probabilistic process, so as to take
into account the possible occurrences of localized extreme events. In this probabilistic process, the
times at which extreme events occur, as well as their geographical position, are the results of discrete
random variables; moreover, the frequency and the intensity of extreme events are integrated in the
model as free parameters, which allows us to test several quantitative scenarios of increase of such
events. In this way, our hybrid model is obtained by coupling two spatial scales – regional scale for
the biological dynamics of the forest ecosystem and local scale for the occurrence of an extreme event
–, and two modeling formalisms – continuous-deterministic formalism for the forest dynamics and
discrete-probabilistic formalism for extreme events. To the best of our knowledge, such a multi-scale
and multi-formalism parametric model has never been considered for studying the complex interactions
between the biological dynamics of a forest ecosystem and climatic perturbations. The design of this
hybrid model represents the first significant contribution of our work. With this innovative hybrid
model in hand, we are in position to investigate how extreme events arising from climate change affect
the equilibrium and health of forest ecosystems, as highlighted in the IPCC assessment report cited
above. The questions we ask mainly concern the stability of the forest-climate ecosystem: How and to
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what extent can extreme events destabilize the biological persistence of a forest? Is there a threshold, in
terms of frequency and intensity of the extreme events, above which this persistence is compromised?
If the persistence of the forest is lost, what kind of emergent dynamics can be expected?

To investigate these ecological questions, we choose to apply an extension of the Statistical Model
Checking framework. This computational approach, which was originally designed for the formal
analysis of engineering and industrial systems [20, 27, 53], has very recently encountered a new success
in the study of complex systems arising in life sciences, as in [23, 29, 32, 40] notably. Based on the
possibility of producing a great number of simulations of probabilistic models, this technique yields
statistical guarantees on the analysis of properties of the model under study. Applying this Statistical
Model Checking method on our hybrid model, we will establish two important patterns. First, we
will show that the forest-climate hybrid model clearly exhibits the existence of a tipping point, over
which the persistence equilibrium of the forest can be suddenly broken. By suddenly, it should be
understood that a very small increase in the frequency or the intensity of extreme events can be fatal
to the equilibrium of the forest. Secondly, and this is the main contribution of our work, it turns out
that overcoming this tipping-point leads to emergent dynamics of degraded forest, quite far from a
forest extinction state. We emphasize that these degraded forest dynamics cannot be described by a
single deterministic model, and thus appear as the result of the antagonism between the deterministic
and the probabilistic processes which constitute our hybrid model. On this point, our statements
corroborate the results obtained with other approaches in the aforementioned papers [4], [18] and [28].
Therefore, the degradation pattern of the forest-climate ecosystem is described through an innovative
and explanatory approach.

This paper is organized as follows. In Section 2, the design of our hybrid model is presented in detail
and its well-posedness is established at a theoretical level. In Section 3, we present the main features
of the Statistic Model Checking method and its adaptation to the forest-climate hybrid model; we
also formulate several properties of ecological interest to be verified by the Statistic Model Checking
engine, in order to analyze the dynamics of the forest-climate ecosystem. In Section 4, we expose
the results of our computational procedure and partly answer the questions addressed above on the
dynamics of the forest-climate ecosystem. The proofs of our theoretical results, although abstract,
provide a solid framework to our Statistical Model Checking procedure, which relies on the possibility
of performing a great number of faithful numerical simulations of the model. Since they involve a
technical mathematical background, they are given in the Appendix. Finally, we end our paper with
a conclusion in which we summarize our results and give perspectives for further work.

2 Construction of a continuous-deterministic and discrete--
probabilistic hybrid model

In this section, our aim is to construct an innovative hybrid model in order to describe the pertur-
bation of a forest ecosystem by extreme events arising from climate change. The dynamics of the
forest ecosystem, in absence of perturbations, are modeled by a continuous and deterministic reaction-
diffusion system. We then integrate the effects of extreme events by coupling the initial model with a
discrete and probabilistic process.

2.1 Spatio-temporal model describing the dynamics of the forest ecosystem
in absence of climatic perturbations

Consider a geographical region occupied by a forest ecosystem. We intend to describe the dynamics of
this forest ecosystem by a continuous and deterministic model. To that aim, we choose to consider a
spatio-temporal model determined by an aged-structured system of three reaction-diffusion equations;
this reaction-diffusion system has been first presented in [25], as a forest kinematics model able to
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reproduce the formation of ecotones. It is given by the following equations:




∂u

∂t
(t, x) = βδw(t, x)− γ

(
v(t, x)

)
u(t, x)− fu(t, x), t > 0, x ∈ Ω,

∂v

∂t
(t, x) = fu(t, x)− hv(t, x), t > 0, x ∈ Ω,

∂w

∂t
(t, x) = d∆w(t, x)− βw(t, x) + αv(t, x), t > 0, x ∈ Ω.

(1)

Here, the domain Ω ⊂ R2 models the geographical region occupied by the forest ecosystem (a domain
of R2 is an open and connected subset of R2). The unknowns u = u(t, x), v = v(t, x), w = w(t, x) are
functions of the time variable t ∈ R+ (expressed in years) and of the space variable x = (x1, x2) ∈ Ω,
which denote respectively the densities of young trees, old trees and seeds. The parameters α, β, δ, d,
f , h are positive coefficients; α and β correspond respectively to the seeds production by old trees and
seeds deposition rates; δ models the establishment rate of seeds; d is the diffusion constant of seeds; f
is the aging rate of young trees and h is the mortality rate of old trees. The function γ determines the
mortality rate of young trees and is chosen so as to admit a minimum for a certain optimal value of v;
it is defined by γ(v) = a(v− b)2 + c, with positive coefficients a, b, c. The units of each parameter are
given in Table 1.

Table 1: Unknowns and parameters of the reaction-diffusion system (1).

Unknown Symbol Unit
Young trees density u(t, x) trees×ha−1

Old trees density v(t, x) trees×ha−1

Seeds density w(t, x) seeds×ha−1

Parameter Symbol Unit
Seeds production rate α yr−1

Seeds deposition rate β yr−1

Seeds establishment rate δ yr−1

Aging rate of young trees f yr−1

Parameters of competition a trees−2× ha2×yr−1

between young and old trees b trees×ha−1

c yr−1

Diffusion rate of seeds d ha2× yr−1

Mortality rate of old trees h yr−1

Next, the reaction-diffusion system (1) is supplemented with a boundary condition of Neumann
type, which can be written

∂w

∂ν
(t, x) = 0, (2)

on (0,+∞) × ∂Ω, where ∂Ω denotes the boundary of Ω, ν the normal outward vector to ∂Ω. The
Neumann boundary condition (2), which guarantees the well-posedness of the mathematical model,
means that seeds can accumulate at the boundary of the domain Ω partly occupied by the forest
ecosystem, but cannot cross it; this condition is satisfied if the forest domain is bordered by oceans for
instance.

Finally, initial conditions are defined at t = 0 by

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω. (3)

It is worth noting that the diffusion operator ∆ applies only to the seeds density w, since the densities u
and v describe the evolution of trees, which are biological individuals obviously not subject to spatial
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displacements. For that reason, system (1) is usually called a partly dissipative reaction-diffusion
system. The existence and uniqueness of non negative and bounded solutions to that system have
been proved in [26], where the existence and stability of homogeneous steady states have also been
investigated.

We now briefly describe the stability of the homogeneous steady states of the forest model (1), as
established in [26]. In the parameter regime given by

h >
fαδ

c+ f
, (4)

which corresponds to a large value of the mortality rate of old trees h, with respect to other parameters,
system (1) admits a unique homogeneous and stable steady state O = (0, 0, 0), which corresponds to
the extinction of the forest ecosystem.

System (1) undergoes a first bifurcation when the parameter h decreases and crosses the critical
value fαδ

c+f . Indeed, in the parameter regime given by

fαδ

ab2 + c+ f
< h <

fαδ

c+ f
, (5)

system (1) admits a second homogeneous and stable steady state P+ given by

P+ =
(
h

f

(
b+
√
D
)
, b+

√
D,

α

β

(
b+
√
D
))

, (6)

where D = fαδ−h(c+f)
ah . The stable steady state P+ given by (6) corresponds to the persistence of the

forest ecosystem; P+ and O are separated by an unstable steady state P− given by

P− =
(
h

f

(
b−
√
D
)
, b−

√
D,

α

β

(
b−
√
D
))

.

Afterwards, system (1) undergoes a second bifurcation when the parameter h decreases further and
crosses the second critical value fαδ

ab2+c+f . Therefore, in the parameter regime given by

h <
fαδ

ab2 + c+ f
, (7)

which corresponds to a low mortality rate of old trees, system (1) admits only two homogeneous and
steady states points: the unstable steady state P− vanishes, the extinction steady state O becomes
unstable, while the persistence steady state P+ given by (6) remains stable.

From the ecological point of view, the situation corresponding to the parameter regime (7), with a
low mortality rate h, is the most favorable: the resulting instability of the extinction steady state O
means that the forest ecosystem can recover its persistence state P+, even if starting from a very low
density of trees. On the contrary, the parameter regime (4), with a large mortality rate h, describes the
worst situation: even if starting from a large density of trees, the forest ecosystem can be attracted to
the extinction equilibrium O. Finally, the parameter regime (5) can be viewed as a transition regime,
which is characterized by uncertain dynamics. Among those transition dynamics, various degraded
forms of the forest are possible, in particular its transformation into a savanna-like ecosystem.

One remarkable property of the reaction-diffusion system is that it also admits an infinite number
of heterogeneous steady states, as proved in [26], which take the form of discontinuous patterns. The
stability of these discontinuous patterns seems difficult to study; partial results have however been
obtained in [22]. We will show in this work that the discontinuous patterns can trap the trajectories
of the model, once coupled with a discrete probabilistic process modeling extreme events. We show in
Figure 1 an example of a spatio-temporal trajectory determined by the reaction-diffusion system (1),
with α = 1, β = 1, δ = 1, f = 1, h = 0.35, a = 1, b = 3, c = 1, d = 0.1, in an elliptic domain Ω
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Figure 1: Spatio-temporal trajectory of the reaction-diffusion system (1) reproducing the formation of an
ecotone in a forest ecosystem. At t = 0, the density u(x) of young trees is distributed over the domain Ω;
when t increases (t = 15, 40, 80, 30, 700), u(x) converges to a positive value on a subset of Ω (green part of
the surface), and to 0 on its complement (yellow part of the surface). The ecotone is located at the frontier
between those two subsets.

of dimensions L = 5 and l = 1; the trajectory was computed with the free and open-source software
FreeFem++ [19]. We observe that the model nicely reproduces the formation of ecotones, which are
ecological boundaries between the forest and another ecosystem. However, the model is incapable of
reproducing the effects of external perturbations such as anthropic activities or extreme events, thus
might be improved. It is precisely our aim to integrate the effect of such perturbations in the next
section.

2.2 Discrete probabilistic process modeling localized and random extreme
events

Now, our aim is to integrate the possible occurrences of extreme events into the reaction-diffusion sys-
tem (1). Those extreme events can model various perturbations, directly or indirectly linked to climatic
conditions such as droughts, fires, or hurricanes, severe floods. They produce a quasi-instantaneous
effect on the forest ecosystem, by increasing locally the mortality rate of trees. In order to model the
possible occurrences of such extreme events, we introduce three parameters τ , p and I:

• τ > 0 denotes the time delay between two possible occurrences of extreme events;

• p ∈ [0, 1] denotes the probability of occurrence of a given extreme event at a given time (for
simplicity, we assume that p is constant);

• I ∈ [0, 1] stands for the intensity of the extreme event.

We also introduce a discretization T of the temporal line [0,+∞) according to the time step τ :

T = {0, τ, 2τ, . . . , kτ, . . . }, (8)
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and we denote by E(t) the occurrence of an extreme event at time t. At each time step kτ , k ∈ N∗,
the probability for an extreme event to occur is fixed to p, which can be written

P
(
E(kτ)

)
= p, k > 0. (9)

If such an event occurs at time t? = k?τ , then a sub-domain ω ⊂ Ω is chosen randomly as follows:
we fix the shape of ω as a disk of constant radius and choose the coordinates of its center uniformly
randomly in Ω. Then, the trajectory of the reaction-diffusion system (1) is interrupted and the model
restarts according to the dynamics of the reaction-diffusion system (1), with a new initial condition
given by

u0(x) = (1− I)u(t?, x), v0(x) = (1− I)v(t?, x), ∀x ∈ ω,
u0(x) = u(t?, x), v0(x) = v(t?, x), ∀x ∈ Ω \ ω. (10)

In Equation (10), u(t, x) and v(t, x) denote the two first components of the solution of the reaction-
diffusion system (1), defined on [t? − τ, t?). The new initial condition models the loss of biological
individuals on the localized subdomain ω, with intensity I; for instance, I = 0.3 means that 30% of
the trees are killed by a localized extreme event on ω. We emphasize that the new initial conditions
u0, v0 given by (10) are determined by a localized homothetic transformation, which implies that a
given extreme event perturbs only a subdomain of the whole forest ecosystem, with a given intensity.
Note that the density of seeds w(t?, x) is unchanged when an extreme event occurs. Indeed, extreme
events can have positive, neutral or negative effects on seeds, depending on the nature of the event, on
the trees species or on the type of seeds. For instance, it is observed that fire has no effect on buried
seeds, as reported in [44]. The occurrence of such a localized extreme event is schematized in Figure
2. For two distinct occurrences of extreme events at times t? and t̃?, the corresponding subdomains ω
and ω̃ are a priori distinct.

Forest domain

Ω

ω

Extreme climatic event

Figure 2: Impact of extreme events on forest ecosystems. Left: Localized forest loss after Hurricane Laura
(2020) in Louisiana, USA (source: U.S. Department of Agriculture Forest Service). Right: Schematic illustra-
tion of an extreme event occurring in a subdomain ω of a forest domain Ω. Such extreme events occur with a
given probability p and yield the loss of trees on the localized subdomain ω, with a given intensity I.

Overall, equations (1)–(2)–(3)–(9)–(10) determine a hybrid continuous/discrete and determinis-
tic/probabilistic model; for convenience the hybrid model is denoted (H); in other words, we have:

(H)⇔ (1)− (2)− (3)− (9)− (10). (11)

The hybrid model (H) is constructed as a sequence of temporal events, in which the continuous-
deterministic dynamics of the forest model (1) and the discrete-probabilistic dynamics of the extreme
events (9) alternate successively. This hybrid model is expected to reproduce the perturbations of the
forest ecosystem by extreme events arising from climate change, as schematized in Figure 3.

The main question we are interested in is to determine how the stability of the persistence steady
state P+ given in (6) can be altered by the possible occurrences of extreme events. In particular,
we wonder if, for a fixed intensity I, a probability threshold p̂ exists, above which the persistence
equilibrium is destabilized (or if, for a fixed probability p, an intensity threshold Î exists, causing a
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similar effect). In other words, we aim to study the level of vulnerability of the forest ecosystem under
the effect of an increase of extreme events.

So as to provide a solid theoretical framework for the analysis of its properties, we have established
the well-posedness of the hybrid model (H) given by (11). Indeed, our computational procedure needs
to perform a high number of numerical simulations of the hybrid model (H). The relevance of this
type of approach can only be justified by a theoretical result proving that the numerical simulations
we perform are a fair and confident reflection of the model. Otherwise, the results that follow would
lose their fundament. Since it involves a technical mathematical background, the proof is given in the
Appendix.

[1] [2]

[3] [4]

[5] [6]

[7]

Extreme events

Degraded forest

Persistence equilibrium Extinction equilibrium

Forest-climate dynamics

Figure 3: Schema illustrating the hybrid model (H) given by (11), describing the dynamics of the forest
ecosystem perturbed by extreme events. In absence of extreme events, the persistence equilibrium is stable
and can be recovered thanks to the effect of forest-climate dynamics, even when starting from a low density
of trees in a degraded forest state. Under the effect of extreme events, the persistence equilibrium can be
destabilized and the forest can be attracted to an extinction state or at least to a degraded state (Sources of
the pictures: [1] Beatriz M. Funatsu; [2-6] Wikimedia Commons; [7] NASA/JPL-Caltech).

3 Statistical Model Checking of the hybrid model
In this section, we propose to explore its dynamics with a computational approach. As mentioned
previously, the most important question we are interested in is to determine how and to what extent
the occurrences of extreme events can destabilize the persistence equilibrium of the forest ecosys-
tem. Since the hybrid model is constructed by coupling a continuous-deterministic formalism with a
discrete-probabilistic one, classical techniques from the theory of differential equations do not apply.
To overcome this issue, we propose an innovative method, where we handle the study of the dynamics
of the hybrid model (H) with a Statistical Model Checking approach (SMC).

SMC relies on the possibility to perform a great number of simulations of the model under study.
We therefore start by describing how to compute numerical simulations of the hybrid model (H) and
how the set of simulations of (H) constitutes a measurable set.

3.1 Numerical simulations of the hybrid model
We here provide a complete description of the numerical treatment of the hybrid model (H). First,
we fix the values of each parameter, except for the probability p for an extreme event to occur and
for its intensity I (see Table 2), which we allow to vary in the interval [0, 1]. We emphasize that the
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parameters values are mostly taken from [1], where the non-spatial forest model, which serves as a basis
for the spatialized model (1), has been calibrated. Note also that the values of the parameters lead
to the parameter regime (7), in which the continuous dynamics are characterized by the coexistence
of the persistence stable steady state P+ and the extinction unstable steady state O. All numerical
computations were performed on the calculation servers of the LS2N (Laboratoire des Sciences du
Numérique de Nantes, France), in a GNU/LINUX environment, using the free and open-source software
FreeFem++ [19] (the source code of our numerical computations is provided along with this paper
as supplementary material). The occurrences of extreme events were simulated by a sequence of
independent Bernoulli variables (Yk)k≥0 of parameter p. The shape and size of the localized subdomains
(ωk)k≥0 where the extreme events occur were fixed to a disk of constant radius, but the coordinates of
their centers were randomly generated with a sequence of independent uniform distributions (Zk)k≥0
over Ω.

Table 2: Numerical values of the parameters of the hybrid model (H) given by (11).

Deterministic parameters Value
α 0.5
β 0.5
δ 0.268
f 0.017
a 0.006
b 0.247
c 0.01
d 50
h 0.04

Time variable
t [0, 1000]

Probabilistic parameters Value
p {0.1, 0.2, . . . , 0.9}
τ 1
I {0.1, 0.2, . . . , 0.9}

Domain parameters
Ω Disk of radius 25
ω Disk of radius 3

For each pair (p, I) ∈ {0.1, 0.2, . . . , 0.9}2, we have performed two samples of N = 1200 numerical
simulations of the hybrid model (H), for a total of 2 × 81 × 1200 = 194400 simulations. As will be
detailed below, this number of simulations provides statistical guarantees on the formal analysis of the
properties of the hybrid model (H). Since the time needed for each simulation was approximately 8
minutes, we have parallelized the computations by constituting 9 groups of 18 parallel simulations of
1200 successive trajectories. Overall, the calculations were spread over about 3 months.

For each simulation, the initial condition U0 was fixed and defined as a small perturbation of the
persistence steady state P+ = (u+, v+, w+), given by

u0(x) = u+ + ε(x), v0(x) = v+ + ε(x), w0(x) = w+ + ε(x),

with ε(x) > 0, where x = (x1, x2) denotes the space variable in Ω.

3.2 Analysis and visualization of the trajectories
Each trajectory corresponds to a solution U(t) of the hybrid model (H), which can be visualized in
several ways. The complete visualization of a trajectory requires us to produce an animation of the
surfaces determined by the densities u(x), v(x) and w(x) over the time interval of the simulation4.
However, these complete visualizations do not provide a suitable material for analyzing the properties of
the hybrid model. Instead, we choose to visualize a projection of the trajectories on a three dimensional
environment, by computing, for each value of the time variable t, two indicators of a given trajectory.
Those indicators are determined by the distances d

(
P+,U(t)

)
and d

(
O,U(t)

)
of the current point U(t)

of the trajectory to the persistence steady state P+ and to the extinction steady state O respectively.
4Spatio-temporal animations of the hybrid forest-climate model (H) are provided through the following link: https:

//pagesperso.ls2n.fr/˜cantin-g/forestclimate.html.
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This projection determines a mapping

Θ −→ R3

U(t) 7−→ π(t) =
(
t, d
(
P+,U(t)

)
, d
(
O,U(t)

))
,

(12)

where Θ is the phase space of the hybrid model, given by (22). We borrow the vocabulary of the Model
Checking framework by saying that π(t) is the trace corresponding to the trajectory U(t).

For verifying the properties of the hybrid model (H), we need to follow the position of the trace
π(t) in R3, so as to express, for instance, if it is far from the persistence steady state P+ or not. To
that aim, we consider the neighborhoods Ση(P+) and Ση′(O) of P+ and O respectively, defined for
η > 0 and η′ > 0 by

Ση(P+) = {ξ ∈ (R+)3 | d(P+, ξ) < η × d(P+, O)},
Ση′(O) = {ξ ∈ (R+)3 | d(O, ξ) < η′ × d(P+, O)},

(13)

where d is the standard Euclidean distance in R3. For instance, Σ0.15(P+) contains all the points
ξ ∈ (R+)3 whose distance to P+ is less than 15% of the distance from P+ to O.

Overall, the three dimensional environment of the traces π(t) of the hybrid model (H) is presented
in Figure 4. The horizontal axis on the left depicts the time variable t; the horizontal axis on the
front shows the distance d

(
P+,U(t)

)
between the trajectory U(t) and the persistence steady state

P+; the vertical axis on the left shows the distance d
(
O,U(t)

)
between the trajectory U(t) and the

extinction steady state O. Since the persistence equilibrium P+ is constant over time and is far from
the extinction equilibrium O, it is represented by the green line (top left of the box); the subset Ση(P+)
around P+ determines a region where the trace π(t) remains in a neighborhood of P+. Similarly, the
extinction equilibrium O is far from P+ and it is represented by the red line (bottom right of the box);
the subset Ση′(O) determines a neighborhood of the extinction equilibrium. The subsets Ση(P+) and
Ση′(O) are separated by an uncertain region of great interest, which we denote Γ(η, η′) and which can
be defined as the complement of Ση(P+) ∪ Ση′(O) in (R+)3. Equivalently, Γ(η, η′) can be written

Γ(η, η′) =
{
ξ ∈ (R+)3 | d

(
P+, ξ

)
≥ η × d(P+, O), d

(
O, ξ

)
≥ η′ × d(P+, O)

}
. (14)

Note that the uncertain region Γ(η, η′) is likely to attract the trajectories of the hybrid model (H).
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Figure 4: Three dimensional environment for the visualization of a trace π(t) of the hybrid model (H). The
horizontal axis on the left depicts the time variable t; the horizontal axis on the front shows the distance
d
(
P+,U(t)

)
between the trajectory U(t) and the persistence state P+; the vertical axis on the left shows the

distance d
(
O,U(t)

)
between the trajectory U(t) and the extinction state O.

As an example, several traces of the hybrid model (H) are shown in Figure 5. The legend depicts
the values of the parameters p (probability for an extreme event to occur) and I (intensity of an
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extreme event). Those traces exhibit a discontinuous shape which is characteristic from probabilistic
processes. Some of the traces remain in the neighborhood Ση(P+) of the persistence steady state P+

(top left of the box), whereas other traces are attracted in the neighborhood Ση′(O) of the extinction
equilibrium O. In between, other traces are attracted in the uncertain region Γ(η, η′).

0

250

500

750

10000
50 100 150

50

100

150

t

d
(
P+,U(t)

)

d
( O

,U
(t
))

(a)

p = I = 0.1
p = I = 0.2
p = I = 0.3
p = I = 0.4
p = I = 0.5
p = I = 0.6
p = I = 0.7
p = I = 0.8
p = I = 0.9

0 250 500 750 1000

50

100

150

t

d
( O

,U
(t
))

(b)

0 250 500 750 1000
0

50

100

150

t

d
( P

+
,U

(t
))

(c)

Figure 5: Several traces of the forest-climate hybrid model (H) for different values of the parameters p
(probability for an extreme event to occur) and I (intensity of an extreme event). The traces can be visualized
(a) in a three dimensional environment: for a low value of p and I, the trace remains in a neighborhood of the
persistence equilibrium P+; for a large value of p and I, it is attracted in a neighborhood of the extinction
equilibrium O; in between, other traces are attracted in the uncertain region Γ(η, η′). The traces can be
projected (b) in the plane

(
t, d

(
O,U(t)

))
; or (c) in the plane

(
t, d

(
P+,U(t)

))
.

Finally, we consider the whole set of traces of the hybrid model (H), given by

Traces =
{
π : [0,∞)→ R3 | ∃U(t) solution of (H), π(t) =

(
t, d(P+,U(t)), d(O,U(t))

)}
. (15)

3.3 Computational procedure of the Statistical Model Checking engine
In this section, we introduce the technique we use to evaluate our model. This procedure is based
on the Statistical Model Checking (SMC) technique [27], a technique whose aim is to estimate the
probability that a given model satisfies a given property. This technique has been first developed in
the context of computer science models, but has recently been used in the context of life sciences,
with a special emphasis on models determined by Ordinary Differential Equations [23, 29, 32, 40]. In
essence, the model is equipped with a probability measure on its set of traces, and the aim of SMC
is to estimate the measure of the subset of traces that satisfies the property of interest. In order to
perform this estimation, SMC relies on extensive sampling of the model traces and statistic techniques
– in our case the Monte-Carlo method – to compute an estimation of the measure of the subset of
traces of interest with formal guarantees regarding the precision and error rate of this estimation.

Let Φ ⊆ Traces be the subset of traces of interest. In practice, we use a formula to describe this
subset (see Section 3.4 below), and identify it with the property of interest. Given a trace π ∈ Traces,
we write π |= Φ and say that π satisfies Φ whenever we have π ∈ Φ.

Let ε > 0 be a precision factor and µ ∈ (0, 1) be an error rate. In order to perform the estimation
using the Monte-Carlo method, we sample a fixed amount (πi)1≤i≤N of traces of the hybrid model
(H). Each trace πi is associated with a Boolean random variable Xi regarding the satisfaction of Φ,
i.e. Xi = 1 if and only if πi |= Φ. Informally, because the random variables (Xi)1≤i≤N are independent
and identically distributed, the Central Limit theorem [36] states that the limit of 1

N

∑
1≤i≤N Xi when

N → ∞ is a good estimation of the measure of Φ. Formally, using Theorem 1 in [20], we obtain the
following result as soon as N ≥ 4 log

(
2
µ

)
/ε2:

P



∣∣∣∣∣∣
P(Φ)− 1

N

∑

1≤i≤N
Xi

∣∣∣∣∣∣
≤ ε


 ≥ 1− µ. (16)
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This technique therefore allows us to compute the number of samples required to obtain a given
precision and error rate when performing our estimation. In the following, we will consider precision
and error rate parameters of ε = µ = 0.1, which will therefore require N ≥ 1200 samples of our model
for each property of interest.

3.4 Properties of the hybrid model of ecological interest
In absence of extreme events, we have explained that the forest model (1) is characterized, for the
parameter regime (7), by the coexistence of the stable persistence equilibrium P+ and the unstable
extinction equilibriumO. For those who aim to preserve the natural equilibrium of the forest ecosystem,
it is a major challenge to maintain the stability of the persistence state. Hence, it is natural to wonder if
the occurrences of extreme events can destabilize the persistence equilibrium P+. If P+ is destabilized,
then we wish to characterize the new behavior of the forest-climate ecosystem: Is the ecosystem
attracted to the extinction equilibrium? Is there a threshold over which the extinction equilibrium
becomes attractive? Is the ecosystem able to resist the attraction of the extinction equilibrium? Can
it exhibit emergent properties, such as the convergence to a new equilibrium? How could such a new
equilibrium be interpreted? A myriad of similar questions of great interest could be formulated. Here,
we choose to focus on the four following properties for a given trace π(t) on the hybrid model (H).

• Property 1: invariance of a neighborhood of the persistence equilibrium P+. This
property is parametrized by η > 0 and it is written Φ1(η); it can be formulated as follows:

Φ1(η) ≡ ∀t ∈ T , π(t) ∈ Ση(P+),

where T denotes the discretization of the time interval given by (8). Property Φ1(η) means that
the trace π(t) remains near the persistence equilibrium during the whole time interval T .

• Property 2: attraction to a neighborhood of the extinction equilibrium O. This second
property is parametrized by η′ > 0. Two variants Φ2(η′) and Ψ2(η′) can be considered.

– Temporary attraction : Φ2(η′) ≡ ∃ t̂ ∈ T such that π(t̂) ∈ Ση′(O).
– Definitive attraction : Ψ2(η′) ≡ ∃ t̂ ∈ T such that ∀t > t̂, π(t) ∈ Ση′(O).

Property Φ2(η′) means that the trace π(t) eventually enters Ση′(O), and might or not remain in
Ση′(O); property Ψ2(η′) means that the trace enters and remains in Ση′(O). Obviously, Ψ2(η′)
implies Φ2(η′); however, we will prove that the traces which satisfy Φ2(η′) but not Ψ2(η′) are
rare.

• Property 3: oscillations between a neighborhood of the persistence equilibrium P+

and a neighborhood of the extinction equilibrium O. This property is parametrized by
η > 0, η′ > 0; it is written Φ3(η, η′) and can be formulated as follows:

Φ3(η, η′) ≡ ∃ (tn)n≥0 ⊂ T such that tn < tn+1,∀n ≥ 0,
π(t2k) ∈ Ση(P+),
π(t2k+1) ∈ Ση′(O),∀k ≥ 0.

Although we can prove the existence of traces which satisfy Φ3(η, η′), it will turn out that such
traces are very rare.

• Property 4: attraction to the uncertain region Γ(η, η′). This property is also parametrized
by η > 0, η′ > 0; as for property 2, two variants Φ4(η, η′) and Ψ4(η, η′) can be formulated as
follows.

– Temporary attraction : Φ4(η, η′) ≡ ∃ t̂ ∈ T such that π(t̂) ∈ Γ(η, η′).
– Definitive attraction : Ψ4(η, η′) ≡ ∃ t̂ ∈ T such that ∀t > t̂, π(t) ∈ Γ(η, η′).
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From the ecological point of view, property Φ1(η) is the most important to satisfy, since it ensures
that the forest ecosystem remains in a neighborhood of the persistence equilibrium P+; the smaller
η, the more the persistence equilibrium P+ is preserved. At the opposite, properties Φ2(η′) or Ψ2(η′)
should be avoided, since they mean that the forest ecosystem converges to an extinction state. It
could happen that the forest ecosystem is temporarily attracted to the extinction equilibrium O, but
recovers the persistence equilibrium P+ after a certain time; this situation is expressed by the oscillation
property Φ3(η, η′). Finally, properties Φ4(η, η′) or Ψ4(η, η′) specify that the forest-climate ecosystem
reaches an intermediate equilibrium, far from both the persistence equilibrium and the extinction
equilibrium; as mentioned previously, savanna-like ecosystems or degraded forests can correspond to
such intermediate equilibria.
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Initial
condition

Uncertain
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Extreme
event

Forest
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Extreme
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dynamics
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Extreme
event

Forest
dynamics

Figure 6: Schematic representation illustrating the hybrid model (H), with three states Ση(P+), Ση′ (O),
Γ(η, η′). Biological dynamics and extreme events induce antagonist transitions between those states.

4 Results of the Statistical Model Checking analysis and dis-
cussion

In this final section, we present and discuss the results of the formal analysis on the properties Φ1(η),
Φ2(η′), Ψ2(η′), Φ3(η, η′), Φ4(η, η′) and Ψ4(η, η′) specified above. Our results are given as confidence
intervals of the form (16), on the probability for each property to be satisfied by the hybrid model(H)
given by (11). However, in order to present our results in a clear manner, we adopt the following
notations:

P(φ) ' ξ ⇔ P
(
P(φ) ∈ [ξ − ε, ξ + ε]

)
≥ 1− µ,

P(φ) & ξ ⇔ P
(
P(φ) ≥ ξ − ε

)
≥ 1− µ,

for a given property φ and ξ ∈ [0, 1], with ε = µ = 10%.
Since the properties to be verified depend on the parameters p (probability for an extreme event

to occur) and I (intensity of an extreme event), we provide several color maps where we depict the
probability of each property with respect to p and I.
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4.1 Invariance of the persistence equilibrium and existence of a tipping
point

We begin with the results for the probability of property Φ1(η), which describes the invariance of the
persistence equilibrium P+. We show in Figure 7 four color maps for the estimation of the probability
P
(
Φ1(η)

)
, with respect to the parameters p (probability for an extreme event to occur), I (intensity

of an extreme event), and for η ∈ {0.1, 0.2, 0.3, 0.4}, which measures the size of the neighborhood
Ση(P+). As an example, by virtue of the first color map (top left in Figure 7), we have P

(
Φ1(0.1)

)
' 1

for p = I = 0.1 and P
(
Φ1(0.1)

)
' 0 for p = I = 0.9. More generally, we observe that for each value

of η ∈ {0.1, 0.2, 0.3, 0.4}, the color map is divided into two zones; the green zone corresponds to the
values of p and I for which we have P

(
Φ1(η)

)
' 1, whereas the blue zone corresponds to the values of

p and I for which we have P
(
Φ1(η)

)
' 0. The following proposition gathers our numerical results.

Proposition 1. For each η ∈ {0.1, 0.2, 0.3, 0.4}, the parameter domain D = {0.1, 0.2, . . . , 0.9}2 of
(p, I) admits two subdomains G1(η), B1(η) satisfying:

G1(η) 6= ∅, B1(η) 6= ∅, G1(η) ∩B1(η) = ∅,
P
(
Φ1(η)

)
' 1 if (p, I) ∈ G1(η),

G1(0.1) ⊂ G1(0.2) ⊂ G1(0.3) ⊂ G1(0.4),
P
(
Φ1(η)

)
' 0 if (p, I) ∈ B1(η),

B1(0.1) ⊃ B1(0.2) ⊃ B1(0.3) ⊃ B1(0.4).

(17)

Proposition 1 can be interpreted as follows: for p and I sufficiently small, the trajectory of the
hybrid model (H) remains in a neighborhood of the persistence equilibrium P+ (with a probability
near from 1); in other words, the forest ecosystem is not destabilized by extreme events if they are
rare and of low intensity. At the opposite, if p and I increase, then the trajectory of the hybrid model
(H) leaves the neighborhood of the persistence equilibrium P+; hence, the forest ecosystem is altered
by frequent extreme events of strong intensity. Moreover, the larger the size η of the neighborhood
Ση(P+), the larger the green zone, the smaller the blue zone.

We also observe that the transition between the green zone and the blue zone is abrupt, which
implies that the forest ecosystem can be very sensitive to a small increase of extreme events. This
abrupt transition corresponds to a tipping point, where the dynamics of the forest ecosystems are
profoundly modified. It can be visualized in a different manner in Figure 8, which has been obtained
for η = 0.3 by sectioning the color map for Φ1(0.3) along the line of equation p = I. It is worth
noting that this tipping point is a bifurcational tipping point, since it emerges under the variation of
one parameter of the model. However, this bifurcational tipping point also presents similarities with
noise-induced tipping points [3], since it is the result of the coupling of a continuous process with a
probabilistic one.

Remark 1 (Existence of a tipping point). We emphasize that the existence of a tipping point is
established in a parametric abstract framework, which, although not finely calibrated to any given
forest ecosystem, necessarily covers the “real-world” parameters values, which shall be determined in a
separate work for the Amazon basin.

4.2 Temporary or definitive attraction to the extinction equilibrium
We continue with the results for the probabilities of the properties Φ2(η′) and Ψ2(η′), which describe
respectively a temporary attraction and a definitive attraction to the extinction equilibrium O. These
properties are parametrized by η′ > 0, which measures the size of the neighborhood Ση′(O), and also
depend on p and I.

We present in Figure 9 four color maps for η′ ∈ {0.3, 0.35, 0.4, 0.45}, showing estimations of the
probabilities of the temporary attraction property Φ2(η′). On these color maps, the green zones
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Figure 7: Estimation of the probability of property Φ1(η) (invariance of the persistence equilibrium P+) with
respect to the parameters p (probability for an extreme event to occur) and I (intensity of an extreme event),
for η ∈ {0.1, 0.2, 0.3, 0.4}. If p and I are small enough, then the persistence equilibrium P+ remains stable. If
p and I increase, P+ looses its stability.
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Figure 8: Estimation of the probability of property Φ1(0.3) with respect to the parametrization of equation
p = I, showing an abrupt transition from the green zone where Φ1(0.3) ' 1 to the blue zone where Φ1(0.3) ' 0.

correspond to the values of (p, I) for which P
(
Φ2(η′)

)
' 0, whereas the blue zones correspond to

P
(
Φ2(η′)

)
' 1 for η′ ∈ {0.4, 0.45}, P

(
Φ2(η′)

)
& 0.6 for η′ = 0.3, P

(
Φ2(η′)

)
& 0.8 for η′ = 0.35. Note

that we have also computed the probabilities P
(
Φ2(η′)

)
for η′ < 0.3; in that case, it is observed that

P
(
Φ2(η′)

)
' 0 for all (p, I), which leads to a totally green color map. For that reason, we do not depict

the results for η′ < 0.3. The following proposition summarizes our numerical results.
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Proposition 2. For each η′ < 0.3 and for all (p, I) ∈ {0.1, 0.2, . . . , 0.9}2, we have

P
(
Φ2(η′)

)
' 0. (18)

For each η′ ∈ {0.3, 0.35, 0.4, 0.45}, the parameter domain D = {0.1, 0.2, . . . , 0.9}2 of (p, I) admits two
subdomains G2(η′), B2(η′) satisfying:

G2(η′) 6= ∅, B2(η′) 6= ∅, G2(η′) ∩B2(η′) = ∅,
P
(
Φ2(0.3)

)
& 0.6 if (p, I) ∈ B2(0.3),

P
(
Φ2(0.35)

)
& 0.8 if (p, I) ∈ B2(0.35),

P
(
Φ2(η′)

)
' 1 if (p, I) ∈ B2(η′), η′ ∈ {0.4, 0.45},

B2(0.3) ⊂ B2(0.35) ⊂ B2(0.4) ⊂ B1(0.45),
P
(
Φ2(η′)

)
' 0 if (p, I) ∈ G2(η′),

G2(0.3) ⊃ G2(0.35) ⊃ G2(0.4) ⊃ G2(0.45).

(19)
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Figure 9: Estimation of the probability of the property Φ2(η′) (temporary attraction to the extinction
equilibrium O) with respect to the parameters p (probability for an extreme event to occur) and I (intensity of
an extreme event), for η′ ∈ {0.3, 0.35, 0.4, 0.45}. If p and I are small enough, then the extinction equilibrium
O is not attractive. If p and I increase, the extinction equilibrium O becomes attractive.

Proposition 2 can also be interpreted with an ecological point of view. First, for large values of p and
I, the forest ecosystem is temporarily attracted to a neighborhood Ση′(O) of the extinction equilibrium
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Table 3: Estimation of the probability %(η′, p, I) that a trajectory of the hybrid model (H) satisfies the
temporary attraction property Φ2(η′) but not the definitive attraction property Ψ2(η′), for different values of
η′, p and I. For other values of η′, p and I, this probability is null.

η′ = 0.3 η′ = 0.35 η′ = 0.4 η′ = 0.45
p I %(η′, p, I)

0.7 0.9 1/18
0.8 0.8 1/10
0.8 0.9 3/236
0.9 0.8 12/221
0.9 0.9 7/833

p I %(η′, p, I)
0.6 0.9 3/87
0.7 0.8 6/140
0.7 0.9 17/722
0.8 0.7 8/98
0.8 0.8 16/807
0.8 0.9 8/1159
0.9 0.6 1/11
0.9 0.7 15/725
0.9 0.8 4/1181

p I %(η′, p, I)
0.5 0.9 9/111
0.6 0.8 18/245
0.6 0.9 29/912
0.7 0.7 24/336
0.7 0.8 11/1039
0.8 0.6 18/166
0.8 0.7 8/1063
0.9 0.6 20/921

p I %(η′, p, I)
0.4 0.9 6/36
0.5 0.8 25/215
0.5 0.9 23/815
0.6 0.7 40/362
0.6 0.8 16/1084
0.6 0.9 1/1195
0.7 0.6 26/332
0.7 0.7 12/1140
0.8 0.5 4/60
0.8 0.6 18/1091
0.9 0.5 33/755

O. This means that frequent extreme events of strong intensity, which have already been proved to
destabilize the persistence equilibrium P+, can severely modify the dynamics of the forest ecosystem.
Hence, the existence of a tipping point is underpinned (see also Figure 10). However, if the size η′
of the neighborhood Ση′(O) is small (η′ < 0.3, which is equivalent to d

(
O,U(t)

)
< 30%× d

(
P+, O

)
),

then the trajectory of the hybrid model (H) never enters Ση′(O); in other words, even if the forest
ecosystem is attracted towards the extinction equilibrium, it cannot coincide with it, which can be
welcomed in a somewhat optimistic manner.
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Figure 10: Estimation of the probability of the property Φ2(0.45) with respect to the parametrization of
equation p = I, showing an abrupt transition from the green zone where Φ2(0.45) ' 0 to the blue zone where
Φ2(0.45) ' 1.

Let us now discuss on the nature of the attraction towards the extinction equilibrium: is it al-
ways only temporary or may it be definitive? To answer this question, we have also computed the
probabilities of the definitive attraction property Ψ2(η′), for the same values of η′, p and I. We do
not show the corresponding color maps, since they seem to be totally identical. Instead, in order to
distinguish the probabilities of Φ2(η′) and Ψ2(η′), we have computed an estimation of the probability
that a trajectory of the hybrid model (H) satisfies Φ2(η′) but not Ψ2(η′). Let us denote by %(η′, p, I)
this estimated probability. For most of the values of η′, p and I, it is observed that %(η′, p, I) is null.
The values of η′, p and I for which it is positive are shown in Table 3. Over the complete range of η′,
p and I, the maximum value of %(η′, p, I) is about 10%.

Those computations show that when the trajectory of the hybrid model (H) is attracted towards
the extinction equilibrium O, then, in the great majority of the cases, it remains in a neighborhood
of it. In other words, if the dynamics of the forest ecosystem are altered, then the forest ecosystem
cannot recover a healthy persistence state, except in rare cases.
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4.3 Existence of scarce oscillatory traces and emergence of degraded forest
states

Finally, we present the results for the probabilities of property Φ3(η, η′), which describes an oscillatory
behavior between neighborhoods of the persistence equilibrium P+ and of the extinction equilibrium
O, and of the properties Φ4(η, η′), Ψ4(η, η′) which correspond respectively to a temporary attraction
and to a definitive attraction towards the uncertain region Γ(η, η′). Those properties are parametrized
by η > 0 and η′ > 0, which measure the sizes of the neighborhoods Ση(P+) and Ση′(O) respectively.
Their common point is that they specify non-trivial and emergent dynamics of the forest-climate
ecosystem, which cannot be observed in absence of extreme events.

First, we discuss on the existence of oscillatory traces between Ση(P+) and Ση′(O). If η and η′ are
near from 1, then the neighborhoods Ση(P+) and Ση′(O) can cross, that is Ση(P+) ∩ Ση′(O) 6= ∅; in
that case, it is of poor interest to research oscillatory traces between Ση(P+) and Ση′(O). Therefore,
the property Φ3(η, η′) is relevant only if η and η′ are small enough, so that Ση(P+) and Ση′(O) are
disjoint. The following theorem establishes the existence of oscillatory traces for the relevant situation.
Its proof is given in the Appendix.

Theorem 1. Assume that the persistence equilibrium P+ is globally asymptotically stable. Let η > 0,
η′ > 0 be sufficiently small so that Ση(P+) and Ση′(O) are disjoint. Then, for all p ∈ (0, 1) and all
I ∈ (0, 1], the hybrid model (H) determined by (11) admits traces which satisfy the oscillatory property
Φ3(η, η′).

We show in Figure 11 three traces of the hybrid model (H), which satisfy property Φ3(η, η′).
The existence of oscillatory traces established by Theorem 1 can be viewed as the result of the two
antagonist processes which constitute the hybrid model (H): indeed, the continuous-deterministic
system (1) reproduces the biological dynamics of the forest ecosystem, which are characterized by
the stability of the persistence equilibrium P+. At the opposite, the discrete-probabilistic process
determined by (10) describes the effect of extreme events, which attract the forest ecosystem to the
extinction state by increasing the mortality rate of trees.
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Figure 11: Three traces of the hybrid model (H) which satisfy property Φ3(η, η′) of oscillations between a
neighborhood Ση(P+) and a neighborhood Ση′ (O).

From the ecological point of view, such an oscillatory behavior means that the forest ecosystem
can recover the persistence equilibrium P+ after being attracted to a neighborhood of the extinction
equilibrium O. However, we have proved previously that the probability for a trace, which enters a
neighborhood of the extinction equilibrium O, to leave this neighborhood is small (see Table 3). Hence,
we expect that the probability for a trace to exhibit an oscillatory behavior is even smaller. To verify
this paradox, we have computed estimations of the probabilities P

(
Φ3(η, η′)

)
for (η, η′) ∈ {0.1, 0.2, 0.3}2

and (p, I) ∈ {0.1, 0.2, . . . , 0.9}2, applying again the SMC method. We do not depict the results on
color maps, since they are very near from 0 in each case and lead to totally blue color maps. In other
words, oscillatory traces theoretically exist, but are practically very rare; indeed, oscillatory traces are
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produced by sequences of Bernoulli variables realizations of the form (24), whose probability is very
small. We obtain the following proposition.

Proposition 3. For all (η, η′) ∈ {0.1, 0.2, 0.3}2 and for all (p, I) ∈ {0.1, 0.2, . . . , 0.9}2, it holds that
P
(
Φ3(η, η′)

)
' 0.

It remains to discuss on the properties Φ4(η, η′) and Ψ4(η, η′), which describe respectively the
temporary and definitive attraction towards the uncertain region Γ(η, η′) given by (14). Since the
definitive attraction is more difficult to satisfy than the temporary attraction, we obviously have
P
(
Φ4(η, η′)

)
≥ P

(
Ψ4(η, η′)

)
for all η > 0 and η′ > 0. Here, we focus on the definitive attrac-

tion property Ψ4(η, η′), which models the convergence of the forest ecosystem to a degraded state.
We show in Figure 12 four color maps with the estimated probability P

(
Ψ4(η, η′)

)
, for η = η′ ∈

{0.3, 0.35, 0.4, 0.45} and (p, I) ∈ {0.1, 0.2, . . . , 0.9}2. In each case, we observe that the parame-
ter domain D = {0.1, 0.2, . . . , 0.9}2 of (p, I) admits two subdomains where P

(
Ψ4(η, η′)

)
' 1 and

P
(
Ψ4(η, η′)

)
' 0. We summarize our results with the following proposition.

Proposition 4. For each (η, η′) ∈ {0.3, 0.35, 0.4, 0.45}2 such that η = η′, the parameter domain
D = {0.1, 0.2, . . . , 0.9}2 of (p, I) admits two subdomains G4(η, η′), B4(η, η′) satisfying:

G4(η, η′) 6= ∅, B4(η, η′) 6= ∅, G4(η, η′) ∩R4(η, η′) = ∅,
P
(
Ψ4(η, η′)

)
' 1 if (p, I) ∈ B4(η, η′),

B4(0.3, 0.3) ⊃ B4(0.35, 0.35) ⊃ B4(0.4, 0.4) ⊃ B4(0.45, 0.45),
P
(
Ψ4(η, η′)

)
' 0 if (p, I) ∈ G4(η, η′),

G4(0.3, 0.3) ⊂ G4(0.35, 0.35) ⊂ G4(0.4, 0.4) ⊂ G4(0.45, 0.45).

(20)

We also observe in Figure 12 that the green subdomain G4(η, η′) can itself be divided into two
subdomains GBL4 (η, η′) (green subdomain at the bottom left of each color map) and GTR4 (η, η′) (green
subdomain at the top right of each color map). In GBL4 (η, η′), we have P

(
Ψ4(η, η′)

)
' 0, which means

that the traces of the hybrid model (H) cannot satisfy property Ψ4(η, η′); in parallel, Proposition 1
shows that in GBL4 (η, η′), we have Φ1(η) ' 1. Overall, it means that the traces of the hybrid model
(H) remain in a neighborhood of the persistence equilibrium P+. Similarly, in GTR4 (η, η′), we also
have P

(
Ψ4(η, η′)

)
' 0, but at the same time, by virtue of Proposition 2, we have Φ2(η′) ' 1, which

means that the traces of the hybrid model (H) are attracted to a neighborhood of the extinction
equilibrium O. In between, that is, in B4(η, η′), we have P

(
Ψ4(η, η′)

)
' 1, which implies that the

traces of the hybrid model (H) are definitively attracted to the uncertain region Γ(η, η′). Note that
the subdomain B4(η, η′) is determined by intermediate values of p or I, which correspond to extreme
events of moderate frequency or moderate intensity.

From the ecological point of view, the uncertain region Γ(η, η′) describes intermediate dynamics of
the forest-climate ecosystem, far from the persistence equilibrium P+, but also far from the extinction
equilibrium O; low (although positive) densities of trees characterize these intermediate dynamics,
which can correspond to savanna-like ecosystems or degraded forest states. In other words, a moderate
increase of extreme events is likely to degrade the forest ecosystem and to lead to its savannization.

Remark 2 (Explanatory description of degraded forest ecosystems). We emphasize that the degrada-
tion pattern of the forest is the result of the two antagonist processes which oppose each other in the
forest-climate ecosystem: the first process corresponds to the biological dynamics of the forest, whereas
the second process corresponds to the occurrences of extreme events. Both processes are integrated in
our model with appropriate scales and formalisms: the biological dynamics are modeled with a con-
tinuous and deterministic system, whereas the climatic perturbations are modeled by a discrete and
probabilistic process. Therefore, our model faithfully reproduces through an explanatory approach the
dynamics of forests perturbed by violent climate events.

It is worth noting that the spatial diffusion of biological constituents of the ecosystem, besides non-
linearity and stochasticity, is a necessary ingredient to reproduce this type of ecological dynamics. On
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Figure 12: Estimated probability of property Ψ4(η, η′), which describes the definitive attraction to the
uncertain region Γ(η, η′), for η = η′ ∈ {0.3, 0.35, 0.4, 0.45} and (p, I) ∈ {0.1, 0.2, . . . , 0.9}2. This definitive
attraction reproduces the degradation of the forest ecosystem.

this point, our results are consistent with the tendencies established in [18], where a different reaction-
diffusion model is used to show that dispersal induces spatially aggregated distributions, separated by
a stable savanna-forest boundary. The diffusion process has also been identified as a crucial model-
ing element in [15], where a dryland-vegetation model integrating both seeds dispersal and soil-water
diffusion has been considered to analyze the stability and dynamics of desertification fronts.

5 Conclusion and perspectives
In this paper, we have studied the vulnerability of forest ecosystems under the effect of extreme
events. We have constructed an innovative hybrid model, by coupling a deterministic and continuous
process describing the biological dynamics of the forest, with a discrete and probabilistic process
reproducing the occurrences of extreme events. The frequency and the intensity of extreme events
are free parameters of the hybrid model, which allows to test several scenarios of increase of such
events. The properties of ecological interest of this hybrid parametric model, whose well-posedness has
been established at a theoretical level, have been verified by applying the Statistical Model Checking
framework. The main patterns highlighted by our computational approach are the following:

• the forest-climate model admits an abrupt tipping-point, in line with observations, over which
its persistence is compromised;
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• a very small increase of the intensity or of the frequency of extreme events can bring the forest-
climate ecosystem to go beyond this tipping-point;

• when the tipping-point is exceeded, the forest-climate can be attracted to an extinction state,
but emergent dynamics are observed with a greater probability;

• oscillatory behaviors between extinction and persistence are theoretically possible, but practically
very rare;

• the most probable emergent behavior is the convergence towards a degraded savanna-like forest
state, far from both the persistence state and the extinction state.

In a near future, we aim to explore two research perspectives. The first perspective concerns the
confrontation of our hybrid model to real-world data, so as to provide a fine numerical assessment of
the general patterns which we have exhibited in a parametric and abstract framework. As a privileged
case study, the Amazon forest is well-known to be particularly vulnerable to both climate and land
cover changes [43], with the regions of highest vulnerability in ecosystem function overlapping areas of
large-scale forest degradation and fragmentation at the southern and eastern edges of the basin [21, 43].
Recent studies have confirmed that widespread droughts and floods have occurred in the Amazon with
increased frequency and intensity in the past two decades, and with changes in precipitation patterns,
including extreme precipitation [2, 12, 14, 16, 17, 35, 52]. A combination of the hybrid model and real
world data on the forest state (intact versus degraded), land cover (forest or savanna), and extreme
events, may thus provide important quantitative insights to the degree of fragility and support the
urgency for preservation and protection of the Amazon forest, as a common good of humankind.

Our second research perspective concerns the theoretical study of Model Checking methods for a
large class of abstract hybrid models, which would generalize the forest-climate model developed in
the present work. In particular, the computational exploration of such hybrid models shall be set in
a rigorous probabilistic framework, which implies a thorough discretization of their enormous phase
space, as their continuous part can lead to an explosion of the number of their states. Providing a
solid theoretical basis to the formal analysis of this type of models, characterized by a multi-scale and
multi-formalism structure, will allow to investigate numerous questions similar to the ones studied in
this paper, related to the vulnerability of various biological ecosystems perturbed by climate change,
not only in forestry, but also in oceanography or glaciology for instance, and more generally to study
the great problem of the stability of the Earth system.
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6 Appendix: Mathematical Background
In this Appendix, we gather the proofs of our main theoretical results, which involve a technical
mathematical background.

6.1 Well-posedness of the hybrid model
As the model (H) determined by (11) presents an original hybrid structure, we intend to establish that
it admits relevant solutions. Hence, following [26], we introduce the Banach space X defined by

X = L∞(Ω)× L∞(Ω)× L2(Ω), (21)
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and the subspace Θ ⊂ X of non-negative elements of X, given by

Θ =
{
U = (u, v, w)> ∈ X | u ≥ 0, v ≥ 0, w ≥ 0 on Ω

}
. (22)

The occurrences of extreme events at time steps kτ ∈ T (k ≥ 0) are determined by a sequence of
independent Bernoulli variables (Yk)k≥0 of constant parameter p. For those k ≥ 0 such that Yk = 1,
the locations xk = (x1,k, x2,k) ∈ Ω of the subdomains ωk on which the extreme events occur, are
determined by a sequence of independent uniform distributions (Zk)k≥0 over Ω.

Theorem 2. For any initial condition U0 ∈ Θ, any realization of a sequence of independent Bernoulli
variables (Yk)k≥0, and any realization of a sequence of independent uniform distributions (Zk)k≥0 over
Ω, the hybrid model (H) defined by (11) admits a unique global solution U(t) =

(
u(t), v(t), w(t)

)>
defined on [0,+∞) with values in Θ.

Furthermore, for each pair (k, k′) of positive integers such that k < k′, Yk = Yk′ = 1 and Yj = 0
for k < j < k′, the restriction U|[kτ,k′τ) of U on the time interval [kτ, k′τ) satisfies

u|[kτ,k′τ), v|[kτ,k′τ) ∈ C
(
[kτ, k′τ), L∞(Ω)

)
∩ C 1((kτ, k′τ), L∞(Ω)

)
,

w|[kτ,k′τ) ∈ C
(
[kτ, k′τ), L2(Ω)

)
∩ C

(
(kτ, k′τ), H2

N (Ω)
)
∩ C 1((kτ, k′τ), L2(Ω)

)
,

(23)

where H2
N (Ω) = {w ∈W 2,2(Ω) | ∂w∂ν = 0 on ∂Ω}.

The function spaces given in (23) mean that on each time interval [kτ, k′τ), u, v and w are con-
tinuous with respect to the time variable t, but might admit discontinuities with respect to the space
variable x ∈ Ω. Finally, W 2,2(Ω) denotes the usual Sobolev space of functions in L2(Ω) admitting first
and second derivatives in L2(Ω) in the sense of distributions.

Proof. Let us consider an initial condition U0 ∈ Θ. As presented in [26], the partly dissipative reaction-
diffusion system (1) admits a unique global solution U(t, U0) =

(
u(t), v(t), w(t)

)> such that

u, v ∈ C
(
[0,∞), L∞(Ω)

)
∩ C 1((0,∞), L∞(Ω)

)
,

w ∈ C
(
[0,∞), L2(Ω)

)
∩ C

(
(0,∞), HN (Ω)

)
∩ C 1((0,∞), L2(Ω)

)
.

Now, let k1 denote the first positive integer such that the Bernoulli variable Yk1 satisfies Yk1 = 1. The
uniform distribution Zk1 determines the location of a subdomain ωk1 ⊂ Ω. Therefore, we can construct
the solution U(t) of the hybrid model by setting

U(t) = U(t, U0), t ∈ [0, k1τ),
U(k1τ) = (u1, v1, w1)>,

where u1, v1 are given as in (10) by

u1(x) = (1− I)u(k1τ, x), v1(x) = (1− I)v(k1τ, x), ∀x ∈ ωk1 ,
u1(x) = u(k1τ, x), v1(x) = v(k1τ, x), ∀x ∈ Ω \ ωk1 ,

and w1 is given by w1 = w(k1τ).
Now we consider again the partly dissipative reaction-diffusion system (1) with the new initial con-

dition U1 = (u1, v1, w1)> and the new initial time t0 = k1τ ; we denote by Ũ(t, U1) =
(
ũ(t), ṽ(t), w̃(t)

)

the resulting global solution on [k1τ,+∞). We introduce the first integer k2 > k1 such that the
Bernoulli variable Yk2 satisfies Yk2 = 1, and the uniform distribution Zk2 , which determines the lo-
cation of a subdomain ωk2 ⊂ Ω. The solution U(t) of the hybrid model is extended to [0, k2τ ] by
setting

U(t) = Ũ(t, U1), t ∈ [k1τ, k2τ),
U(k2τ) = (u2, v2, w2)>,
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where u2, v2 are given by

u2(x) = (1− I)ũ(k2τ, x), v2(x) = (1− I)ṽ(k2τ, x), ∀x ∈ ωk2 ,
u2(x) = ũ(k2τ, x), v2(x) = ṽ(k2τ, x), ∀x ∈ Ω \ ωk2 ,

and w2 is given by w2 = w̃(k2τ).
Finally, repeating the previous reasoning allows to construct by induction the solution U(t) of the

hybrid model (H) on [0,∞). The proof is complete.

Remark 3 (Probability space for the set of traces). Since each trajectory U(t) of the hybrid model
(H) is the result of a double deterministic-probabilistic process, we can equip the set Traces given
by (15) with a σ-algebra F and a probability measure P. Indeed, the occurrences of extreme events
given by (9) are fully determined by a sequence of independent Bernoulli variables (Yk)k≥0, and the
corresponding subdomains (ωk)k≥0 where these extreme events occur are fully determined by a sequence
of independent uniform variables (Zk)k≥0. Overall, we obtain a probability space

(
Traces,F ,P

)
, where

F is the σ-algebra determined by the sequences (Yk)k≥0 and (Zk)k≥0 and P is the associated probability
measure.

6.2 Specification of the properties
Here, we emphasize for the reader interested in Formal Methods that the properties 1 to 4 described in
Section 3.4 fully fit with the Model Checking theory framework, since they can be specified by means
of the Linear Temporal Logic formalism (LTL). Indeed, the hybrid model (H) admits three states
Ση(P+), Ση′(O), Γ(η, η′), with both deterministic and probabilistic transitions between those states,
as depicted in Figure 6. If the behavior of the hybrid model (H) is observed on the infinite discrete
time interval T = {0, 1, 2, . . . }, we can write:

Φ1(η) ≡ �Ση(P+),
Φ2(η′) ≡ ♦Ση′(O),
Ψ2(η′) ≡ ♦�Ση′(O),

Φ3(η, η′) ≡ �
(
Ση(O)⇒ ♦Ση′(P+)

)
∧�

(
Ση′(P+)⇒ ♦Ση(O)

)
,

Φ4(η, η′) ≡ ♦
(
¬Ση(O) ∧ ¬Ση′(P+)

)
,

Ψ4(η, η′) ≡ ♦�
(
¬Ση(O) ∧ ¬Ση′(P+)

)
,

where ♦ and � denote the temporal operators eventually and always respectively, ∧ denotes the
conjunction connector and ¬ the negation operator. If the behavior of the hybrid model (H) is observed
on a finite time interval T = {0, 1, 2, . . . , T} with T a positive integer, then one should replace ♦ by
♦≤T and � by �≤T in the specification of the properties.

6.3 Existence of oscillatory traces: proof of Theorem 1
Let us denote by U(t) the solution of the hybrid model (H) and by (Xk)k≥0 the sequence of Bernoulli
variables which determine if an extreme event E(kτ) occurs at t = kτ . We consider a particular
sequence of realizations (Xk)k≥0 satisfying

{
Xk = 1, k1 × j ≤ k < k1 × j + k2,

Xk = 0, k1 × j + k2 ≤ k < k1 × (j + 1),
(24)

for all j ≥ 0, where k1, k2 are positive integers such that k1 > k2. With such a sequence (Xk)k≥0, the
solution U(t) undergoes k2 successive extreme events E(kτ), which alternate with a time interval of
length (k1 − k2)τ without any extreme event.
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If k2 is sufficiently large, then the solution U(t) is attracted to a neighborhood Ση′(O) of the
extinction equilibrium O on the time interval [k1jτ, (k1j + k2)τ ], for all j ≥ 0. Next, since P+

is globally asymptotically stable, if k1 if sufficiently large, then the solution U(t) comes back in a
neighborhood Ση(P+) on the time interval [(k1j + k2)τ, k1(j + 1)τ ], for all j ≥ 0.

Therefore, the solution U(t) oscillates between Ση(P+) and Ση′(O). The proof is complete.
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[24] P. Klimasara and M. Tyran-Kamińska. A model for random fire induced tree-grass coexistence in savannas.
Mathematica Applicanda, 46(1), 2018.

[25] Y. A. Kuznetsov, M. Y. Antonovsky, V. Biktashev, and E. Aponina. A cross-diffusion model of forest
boundary dynamics. Journal of Mathematical Biology, 32(3):219–232, 1994.

[26] C. Le Huy, T. Tsujikawa, and A. Yagi. Stationary solutions to forest kinematic model. Glasgow Mathe-
matical Journal, 51(1):1–17, 2009.

[27] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview. In International
conference on runtime verification, pages 122–135. Springer, 2010.

[28] Q. Li, A. C. Staver, S. A. Levin, et al. Spatial feedbacks and the dynamics of savanna and forest.
Theoretical Ecology, 12(2):237–262, 2019.

[29] B. Liu, B. M. Gyori, and P. Thiagarajan. Statistical model checking-based analysis of biological networks.
In Automated Reasoning for Systems Biology and Medicine, pages 63–92. Springer, 2019.

[30] T. E. Lovejoy and C. Nobre. Amazon tipping point. Science Advances, 4(2):eaat2340, 2018.
[31] T. E. Lovejoy and C. Nobre. Amazon tipping point: Last chance for action. Science Advances,

5(12):eaba2949, 2019.
[32] T. Mancini, E. Tronci, I. Salvo, F. Mari, A. Massini, and I. Melatti. Computing biological model parame-

ters by parallel statistical model checking. In International Conference on Bioinformatics and Biomedical
Engineering, pages 542–554. Springer, 2015.

[33] F. Mora. A suite of ecological indicators for evaluating the integrity of structural eco-complexity in
Mexican forests. Ecological Complexity, 50:101001, 2022.

[34] C. A. Nobre, G. Sampaio, L. S. Borma, J. C. Castilla-Rubio, J. S. Silva, and M. Cardoso. Land-use and
climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc.
Natl. Acad. Sci. (USA), 113(39):10759–10768, 2016.

[35] J. S. Panisset, R. Libonati, C. M. P. Gouveia, F. Machado-Silva, D. A. França, J. R. A. França, and L. F.
Peres. Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin.
International Journal of Climatology, 38(2):1096–1104, 2018.

[36] V. V. Petrov. Sums of Independent Random Variables. De Gruyter, 2022.
[37] A. Pontes-Lopes, C. V. Silva, J. Barlow, L. M. Rincón, W. A. Campanharo, C. A. Nunes, C. T. de Almeida,

C. H. Silva Júnior, H. L. Cassol, R. Dalagnol, et al. Drought-driven wildfire impacts on structure and
dynamics in a wet Central Amazonian forest. Proceedings of the Royal Society B, 288(1951):20210094,
2021.

25



[38] R. Portela and I. Rademacher. A dynamic model of patterns of deforestation and their effect on the ability
of the Brazilian Amazonia to provide ecosystem services. Ecological Modelling, 143(1-2):115–146, 2001.
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