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MORPH-DSLAM: Model Order Reduction for
PHysics-based Deformable SLAM

A. Badias, I. Alfaro, D. Gonzalez, F. Chinesta, E. Cueto

Abstract—We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using
standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem to properly describe the
strain and stress fields that are consistent with the displacements captured by the images, constrained by real physics. We do not
impose any ad-hoc prior or energy minimization in the external surface, since the real and complete mechanics problem is solved. This
means that we can also estimate the internal state of the objects, even in occluded areas, just by observing the external surface and
the knowledge of material properties and geometry. Solving this problem in real time using a realistic constitutive law, usually
non-linear, is out of reach for current systems. To overcome this difficulty, we solve off-line a parametrized problem that considers each
source of variability in the problem as a new parameter and, consequently, as a new dimension in the formulation. Model Order
Reduction methods allow us to reduce the dimensionality of the problem, and therefore, its computational cost, while preserving the
visualization of the solution in the high-dimensionality space. This allows an accurate estimation of the object deformations, improving
also the robustness in the 3D points estimation.

F

1 INTRODUCTION

HUMAN visual sense is able to extract and process an
enormous quantity of information, simply by observ-

ing a few images. A similar behavior is present in standard
cameras, where an image can provide a high quantity of
information. A strong development in computer vision has
been carried out along last decades to extract relevant infor-
mation from images. In this work, we want to focus in 3D
reconstruction methods since our goal is to provide valuable
information about the physical changes that happen in the
surrounding space of an agent (a navigation robot or a user,
employing augmented reality tools for the latter).

Visual augmented reality is based in the addition of
graphical information to interact with reality, so it requires
great efforts to fix virtual objects within the real world. This
means that we need to know the map of the real world to
locate the virtual objects. This process is known as Structure-
from-Motion (SfM), and it consists in the estimation of rigid
3D structures from planar images using different camera
view points.

Using the same tools, but with a different goal, we
may want a robot to understand the surrounding spatial
environment, with the ability of understanding the scene
where it is moving. Sometimes not only geometric measure-
ments from a sensor are needed, in some cases we should
provide the agent with the ability of semantic perception
and understanding of the physical changes that happen. We
live in a dynamic world, where changes happen at any time,
so robots need to have this comprehension ability to really
understand the surrounding space.

Some authors suggest the use of the term Spatial AI [1].
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It consists of a 3-layer hierarchical system for the spatial
understanding of the environment [2], namely Robust Local-
ization, Dense Mapping and Semantic Understanding. In our
work we suggest to add a fourth layer to understand the
physical changes that occur around the agent (see Fig. 1).
The physical understanding may be gathered within the
semantic understanding, but we consider that both are very
relevant features and must be considered separately.

Level 3

Level 2

Level 1

Semantic Understanding

Dense Mapping

Robust Localization
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Simulated Reality

Fig. 1: Levels in the Spatial AI approach. Image inspired in
the CVPR presentation of A. Davison [2].

The first level of the Spatial AI approach is related to
the ability of the agent to locate itself in space and navigate
through it in a robust manner. The great development in the
last decades has brought new algorithms of Simultaneous
Localization and Mapping (SLAM) performing localization
tasks very efficiently and robustly [3]. Level 2 refers to
the dense mapping that reconstructs the environment with
a high level of detail [4]. Level 3 requires the system to
identify and recognize the objects around it and to be able
to establish semantic relationships [5]. And finally, at level 4,
we place the term defined as Simulated Reality (SR) [6], where
the system needs to know the physics of the surrounding
environment in order to have a deeper understanding of
the world. SR is based on continuously simulating the
physical phenomena of the environment with which the
agent interacts. Learning this kind of concepts is a long and



complex process, since we must teach a machine how to
interpret the physics.

In the field of computer graphics, recent investigations
have focused in the development of simplified physics (see,
to name but a few [7], [8]) in order to overcome obvious
computational limitations. However, these simplified ap-
proaches provide results with no known accuracy bounds.
Dealing with deformable solids, there are some physics en-
gines to approximate the dynamics, but they hardly comply
with basic conservation laws. We consider there is no better
approach than really solving the (in)elasticity equations, so
we suggest to solve the high-fidelity equations. However,
standard solvers are not able to work in real time, and
even less on portable devices. Since we use visual cameras,
the video frequencies are usually fixed in 30 or 60 frames
per second, so this is why we suggest the use of Model
Order Reduction (MOR) techniques to work in this range of
frequencies. MOR methods are based on the compression of
the data to work in a reduced space, but at the same time
they must recover the original high-fidelity data in a fast
way, fulfilling visualization frequencies, with a minimal loss
in accuracy. Moreover, this loss is limited by well established
error bounds for the vast majority of MOR techniques. The
power of these techniques allows us to simulate realistic
behaviors that describe and adapt perfectly to the changes
that occur in the environment.

In this paper we propose the use of reduced-order
numerical methods to estimate the behavior of real de-
formable solids. Certainly it is usually thought that solving
the equations of solid mechanics can be a heavy process,
not suitable for video frequencies. But in recent years some
tools have been developed to reduce the complexity of these
mechanical models. They allow to approximate the true
physics of solids at real-time rates.

Including this introduction section, we have divided this
paper into 8 parts. Section 2 includes other relevant works
in this field from a computer vision perspective. Section 3
explains our method in a few words. Section 4 shows the
mechanical formulation of the problem. Section 5 shows the
dimensionality reduction problem and the formulation of
some MOR methods. Section 6 explains the inverse problem
assimilating the data with a deformable implementation of
ORB-SLAM2. Section 7 covers the experimentation phase.
And finally, section 8 contains the conclusions of the work.

2 RELATED WORK

The standard approach to compute rigid SfM is based in
bundle adjustment (BA). This technique tries to minimize
the reprojection error between observed objects and pro-
jected objects (observed in more than one image), allowing
the estimation of the 3D points and camera locations [9]. SfM
method is normally a post-processing technique giving, in
general words, more accurate results as much information
is extracted from images. But some applications, such as
automatic navigation, need an on-line mapping in real time.
This means that the agent needs to compute SfM method in
real time to be able to navigate in an unknown world, receiv-
ing the name of Simultaneous Localization And Mapping
(SLAM), involving tasks of estimating the 3D environment
structure at the same time the camera is located in the map.

Many works have been developed in this area, allowing
to use different sensors (monocular [10], stereo [11], RGB-D
[12] or laser technology [13], among others). We can make a
division in visual SLAM between direct [14] and feature-
based [3]. Direct approaches use directly the image pix-
els minimizing the photometric error, while feature-based
systems extract features from the images and use them as
keypoints to apply BA techniques. Another classification
can be made between filtered [15] or keyframe-based [16]
techniques, resulting the first idea in a filtering technique
based in the propagation of probability functions and the
second idea in a sparse implementation requiring graph
optimizations. The work carried out for the last decades
has allowed these techniques to move from only research
to the development stage, appearing some companies that
offer consumer tools based in SLAM techniques.

Another classification, with special interest for us, can be
made regarding the position of the objects in the scene. Stan-
dard implementations of SfM (and SLAM) assume a rigid
world, but as we said, sometimes this assumption cannot be
made. The term non-rigid structure from motion (NRSfM)
appeared to take into account this kind of movements, and
it assumes the camera can move inside the world but also
scene objects can move (or deform), as we can see in the
right side of Fig. 2. This is an ill-posed problem as we are not
able to build the 3D objects from 2D points triangulation. In
fact, a different configuration (non-rigid object deformation)
can be observed in each image, making the direct estimation
of the geometries difficult.

Rigid Structure From Motion Non-Rigid Structure From Motion
Cam. Position (t) Cam. Position (t)

Object deformations (t)

a) b)

Fig. 2: a) Rigid SfM allowing a reconstruction of the world
from different views. b) Non-rigid SfM implies that both
the camera and the scene may take different positions and
shapes (time-dependent).

During the last years, many works regarding NRSfM
have been developed trying to solve this problem. Some of
them used factorization approaches to obtain low-rank rep-
resentations of the objects from image streams [17], where
the 3D shape in each frame is a linear combination of a
set of basis shapes (previously applied to rigid shapes by
[18]). Also the non-rigid movements have been computed
as a union of subspaces to model complex motions with
clustering local subspaces [19]. Some other works computed
the trajectory space by a linear combination of basis trajec-
tories instead of basis shapes using generic bases [20]. Non-
linear dimensionality reduction methods have also been
used to model the 3D shape as a non-linear combination of
basis shapes, using kernel functions [21], allowing a reduced
number of bases if the problem is non-linear and the kernel



is well defined. Also bayesian implementations have been
used [22].

Priors were introduced to narrow down the search for
an optimal solution [23], and some other works allow a
prior less estimation of the structure from motion assum-
ing compressible 3d objects as a block sparse dictionary
learning problem [24], and also applying dense variational
reconstructions requiring GPU acceleration [25].

Other works reconstruct the shape of a deformable object
using templates previously created [26], obtaining accurate
results, but requiring 2D parameterizations as they work
only with the external surface, also with curved geometries
[27]. It means some energy constraints need to be imposed
to assure boundary continuity and isometric deformations.
Other works estimate the surface normals to help in the
deformation tracking [28]. And also simple physics-based
implementations have tried to solve the motion of the
external surface using physical priors and Kalman filter
formulations [29].

There is also another approach that involves the use of
the classical theory of finite element methods to estimate
and track deformable objects with some advantages like
robustness and real forces estimation in large deformations,
applied to 1D objects [30] but also to more complex surfaces
[31], [32].

To the best of our knowledge, there is no alternative ap-
proach, however, in which the physics of the system under
consideration is solved rigorously. This is due, undoubtedly,
to the high computational cost of solving a high-fidelity
model by employing state-of-the-art techniques such as fi-
nite elements or finite differences. This motivates our choice
of reduced-order models, whose accuracy as a function of
the complexity of the model is nowadays well-known and
can be controlled by the analyst.

3 OVERVIEW OF THE PROPOSED METHOD

To overcome the just mentioned difficulties, we propose to
track deformable solids from video sequences by solving the
(possibly non-linear) elasticity problem. The goal is to create
an agent able to understand the physical deformations of
the objects to finally show some information to a user
(e.g. stress or strain fields, or deformations of internal and
hidden areas). We make use of reduced-order and para-
metric models, with which we solve the inverse problem
to estimate the kinematic (displacements and strain fields)
and dynamic (forces, stress) states, along with the rest of
parameter values. Equivalently, the problem can be viewed
as an example of data assimilation, in which we obtain
parameter values by measuring displacements in the object
external surface. Our approach is based on a two-stage prob-
lem. First, in an off-line stage we precompute a reduced-
order, multiparametric approximation of the displacement
field of the solids. This can be viewed as the estimation of a
response surface. Second, an on-line stage is carried out to
optimize the parameter values that better approximate the
measured displacements in the video sequence under real
time constraints.

We do not impose any artificial spatio-temporal restric-
tion or prior, nor ad hoc energy laws, since we are solving the
actual physics in a finite element framework, guaranteeing

energy conservation—dissipative behaviors do not impose
any additional conceptual difficulty to this method—and
elastic (or hyperelastic) constitutive laws. Of course, initial
and boundary conditions need to be applied in the com-
putation step, but they can also be considered as parame-
ters in the parameterized problem. The proposed method
can be applied both to articulated and continuous solids,
beating any other existing method in terms of frequency
rates (since it only requires an evaluation of the paramet-
ric solution, rather than a true simulation), accuracy and
robustness (noisy observations are minimized without the
need of Bayesian implementations). Our method has no
dependency on the acquisition system used (monocular,
stereo or RGB-D systems), but we think, however, that one
of the biggest advantages appears with the use of monocular
sensors, since the introduction of parametric models helps
in the minimization process, converging on an admissible
solution.

Strictly speaking, we can say that our procedure is not
a structure-from-motion method, since we are not building
a 3D structure from the motion data. The proposed method
is related to the Shape from Template family of methods [26],
in which we register an off-line (reduced-order) parametric
model to the camera observations.

4 PROBLEM FORMULATION

Very often the problem of NRSfM has been formulated
respect to the motion of the visible portion of the deforming
solid (the domain for which some information is captured
by the camera). However, it is well-known that the motion
of the visible part of the solid is heavily influenced by
the whole geometry, including internal details, as described
by the Navier equations of solid mechanics. Therefore, in
this paper we formulate the problem as a complete, three-
dimensional description of the solid [33], thus avoiding
other NRSfM formulations focused only in the visible part
of the solid whose motion was modeled by shell finite
elements [29], [26]. We are interested in some problems like,
for example, augmented reality for mechanical design or
surgery guidance, some problems that allow us to assume
that a full three-dimensional model is available off-line.

4.1 Kinematic description of deforming solids

Neglecting inertial effects and assuming, for simplicity, that
there is no change in temperature, we consider a continuous
solid Ω, where we identify a pointQ, with coordinatesX =
(X,Y, Z) respect to World (W in Fig. 3). These coordinates
are defined in the undeformed configuration ϕ0 : Ω → R3.
The object undergoes a deformation so that point Q moves
to the new position Q′ with coordinates X ′ = (X ′, Y ′, Z ′),
respect to W, in the deformed configuration ϕt : Ω → R3.
The function that explains the movement of the object is
φObj : Ω × I → R3, where I ∈ R is the time interval
where the movement is produced. Therefore, making use
of a Lagrangian description of the amount of movement
(material, always following the same infinitesimal particle),
we can express the deformed configuration of point Q as

X′ = φObj(X, t),
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Fig. 3: Kinematic modeling of the proposed formulation.

where t is the instant of time elapsed between both states.
The deformation gradient tensor F (a two-point tensor)
is the fundamental quantity that explains the deformation
produced between two neighboring particles between the
initial and the deformed state (assuming continuity in the
mapping function). It is defined, with respect to the initial
configuration, as

F =
∂X′

∂X
=
∂φObj(X, t)

∂X
=∇φObj.

It is convenient to define a strain measurement inde-
pendent of the type of movement (rigid-solid translation
or rotation, relative deformations or the combination of all
of them). For independence with respect to to rotations, we
use the right Cauchy-Green deformation tensor, defined as

C = F TF .

And finally, using the Green-Lagrange strain tensor (ma-
terial frame of reference) we can measure the deformations
independently of rigid-body motions

E =
1

2
(C − I) =

1

2

(
(∇U)T +∇U + (∇U)T∇U

)
, (1)

with U(X) = X′ −X the material displacement.

4.2 Camera-centered kinematic description

Let us assume that we obtain an image of the boundary
of an opaque solid at the undeformed configuration, ∂Ω0.
We consider a standard perspective projection camera [34]
(after intrinsic calibration and lens distortion correction)
applying a transformation Π0 : ∂Ω0 → T , where T ∈ R2

represents the image space. This camera operator Π0 maps
a pointQ from World coordinates to qpix in pixel coordinates
xpix = (u, v) making use of the camera intrinsic and ex-
trinsic parameters. The same process occurs with projection
Πt : ∂Ωt → T , where points in the deformed configuration
ϕt are projected to the image ϕt,pix ⊂ R2.

4.3 Solving the unknown kinematics
Using a monocular implementation, the unknown mapping
functions in our problem for any time instant t ∈ I are

• The displacements of the current configuration in a
material description (i.e., with respect to the refer-
ence configuration) φObj(X, t).

• The camera projection Πt, but only the extrinsic
component T t, since it is the part that can change
with the camera movement (and also the redundant
function ΨCam : R3 → R3, that maps the movement
of the camera with respect to its initial position).

The estimation of the mapping Πt for each frame cap-
turing rigid scenes is known, as we said, as the Structure-
from-Motion (SfM) problem and it involves the estimation
of the extrinsic parameters T t (and the three-dimensional
position of the points of the object, Qt), by minimizing a
reprojection error in L2-norm, commonly. If we also add the
estimation of φObj, where objects can deform at any time
instant, the problem becomes more difficult (ill-posed). It
is possible that a different deformed configuration appears
at every instant, with different camera positions. In this
paper we assume that the camera captures both static and
deformed points. Rigid or static points are related to the
general scene (static objects, blue points in Fig. 4) and are
used to estimate the pose of the camera, and non-static
points are used to determine the deformations of the non-
rigid objects in the scene (red points in Fig. 4). We assume
all deformable objects have fixed boundary conditions, so
at least one point of the boundary is fixed in the scene.
However, we could also assume that the objects, in addition
to be deformed, move or rotate around the scene, in which
case it would be necessary to estimate the relative position
of the camera with respect to the object solving a similar but
double problem (PnP problem [35] and displacements).

The position and orientation (pose) of the camera T t

is estimated by using fixed points (image features in our
case) along with consensus techniques such as RANSAC
[36] to identify the subset of fixed points in the scene. To
estimate the camera pose, the reprojection error d(xpix, x̂pix)
is minimized, with d the euclidean distance between the



Πi

ϕi

Fig. 4: In general, we consider applications where an im-
portant part of the scene is static (blue points), while some
regions (red points) are non-rigid or deformable.

pixel coordinates of a point observed in an image and the
pixel coordinates of the point projected on the image (from
the 3D point x and the camera projection Πt, parameters
that are also optimized). We use ORB-SLAM2 [37] for the
estimation of the camera pose and the static mapping.

The next task is to estimate the object deformations
from its projection in the images. We use the red points in
Fig. 4, or in other words, the outliers. RANSAC techniques
applied to SLAM usually neglect those points that do not
remain fixed in the scene. But our true interest lies in the
information associated with the deformation of the objects.
It is located precisely there, in the outliers. Therefore, these
points provide the most valuable information about the
displacements suffered by the objects, which we have to
identify after carrying out a registration of the objects.

4.4 Equilibrium in the deformable solid
In previous sections we included a brief summary of the
kinematic analysis of the deformable solid, but to fully
resolve the mechanical problem it is necessary to take into
account the stress analysis to guarantee equilibrium. If we
split the solid by an arbitrary plane of unit normal n, a
force per unit area appears in any point of the newly created
surface,

t(n) = σn; σ =
3∑

i,j=1

σijei ⊗ ej

where t is the stress vector, n is the vector normal to the
plane and σ is the Cauchy stress tensor.

The stress magnitude that is conjugate to the gradient
of deformation tensor F (their product gives an energy
measure) is the so-called first Piola-Kirchhoff stress tensor P ,
defined as

P = JσF−T ,

where J = det(F ) is the Jacobian of the transformation
φ. The stress measure conjugate to tensor E is the second
Piola-Kirchhoff stress tensor S defined as

S = JF−1σF−T ,

so we can write equivalently

P = FS.

In order to guarantee equilibrium in the solid, we must
satisfy the following equilibrium equation, in the absence
of inertia terms (assuming a quasi-static process):

∇ · P +B = 0 in Ωt, (2)

whereB are the applied body forces. These equations need
to be supplemented with appropriate boundary conditions,{

σ n = t̄ on Γt,
u = ū on Γu

where t̄ are the traction forces acting along the boundary
region Γt in terms of the unit normal to the boundary, n,
and finally ū are the prescribed displacements defined in
Γu. The weak form of Eq. (2) is created to relax continuity and
derivability restrictions on the functions that approximate
the final solution, and is obtained after multiplying by an
arbitrary function (admissible variation) and integrating by
parts, ∫

Ω
S : δE dΩ =

∫
Γt

t̄ δu dΓ. (3)

4.5 Constitutive equations

The last ingredient to describe the whole mechanical process
is to define its constitutive nature. In this work we consider
hyperelastic material laws instead of linear elasticity, as lin-
ear materials may introduce artificial increments in volume
when large deformations occur. Hyperelastic materials are
those whose stress-strain relationship derives from a strain
energy density function W . For these materials, the second
Piola-Kirchhoff tensor S can be obtained from the strain
energy density function W as

S =
∂W (E)

∂E
. (4)

Adding Eq. (4) into Eq. (3), the problem to solve by using
finite element methods [38] is∫

Ω
δE : C : E dΩ =

∫
Γt

t̄ δu dΓ, (5)

where C is the fourth-order constitutive tensor. Section 7
shows a practical example of hyperelastic materials.

5 MODEL ORDER REDUCTION (MOR) METHODS

One of the most important aspects of our work is that we
are assuming that the movement φObj is bounded and can be
parameterized and projected onto a low-dimensional mani-
fold. This means that the objects we simulate do not have the
infinite number of degrees of freedom typical of continuum
mechanics. Due to the laws of continuum mechanics, strong
correlations exist between the displacement suffered by each
material point. Actually, we can express the solution as a
function of a much smaller number of degrees of freedom,
what we call dimensions in our reduced space.



5.1 Dimensionality Reduction
The computational complexity of the continuum mechanics
problem prevents its solution under real-time constraints.
Note the non-linear character imposed by the strain mea-
sures introduced in Eq. (1), and also the common non-linear
terms of hyperelastic laws. To guarantee that we comply
with video frequencies, a reduction of the complexity of the
problem is mandatory. In addition, the parameter depen-
dency (material properties, geometry parameters or bound-
ary conditions, among others) increases the complexity of
the problem.

Let us assume that the governing equation depends on a
vector of parametersµ ∈ P , whereP is the set of all possible
values of the parameters, and a compact subset of Rnparam .
The manifold or solution set isM, where all solutionsU(µ)
remain,

M = ϕ(P) = {U(µ) ∈ V : µ ∈ P ⊂ Rnparam},

where ϕ is again the solution map and V is a suitable Hilbert
space. The solution map ϕ is defined as

ϕ : P → V , µ 7→ U(µ).

It is not possible to work with the original solution
set due to the finite memory of computers, so we have to
make a simplification by choosing a suitable discretization
technique to obtain the high-fidelity solution set Mh, also
known as the discrete manifold, usually obtained by finite
element techniques. We assume that Mh is so close to
M that very small differences appear at the discretization
points. The discretized solution of the equation is Uh(µ)
and it belongs to a finite-dimensional subspace Vh of di-
mension Nh,

Mh = ϕh(P) = {Uh(µ) ∈ Vh : µ ∈ P} ⊂ Vh.

After applying the approximation to U(µ), we obtain also
the discrete solution map

ϕh : P → Vh, µ 7→ Uh(µ)

There are many MOR methods to reduce the dimension-
ality of the problem with the goal of obtaining a reduced
basis with an optimal number of components. The re-
duced solution thus belongs to a low-dimensional subspace
Vr ⊂ Vh of dimension Nr � Nh where the construction
of the basis of Vr is generated from a set of r functions.
The particular form of constructing these functions can be
separated between a posteriori and a priori methods. The
classical methods are a posteriori, where some data is coming
from an unkown source and statistical tools like Principal
Component Analysis [39], [40] are applied to project the
data in a reduced and more efficient space. The Proper
Orthogonal Decomposition (POD) method [41] is a common
example. But, if a multiparametric problem has to be solved,
the curse of dimensionality appears, so a priori methods can
be applied to solve the mechanical problem directly in the
reduced space, without evaluating the whole set of solutions
in the high-dimensionality space.

To better understand the procedure, we detail next the
type of model order reduction methods commonly applied
to continuum mechanics and how they can be of great help
in our work.

5.2 MOR in Computational Mechanics
We are looking for a suitable approximation of a space, time
and parameter-dependent field U(X,µ, t). Under the term
model order reduction we encompass a family of methods that
look for an approximation of the type

U(X, t,µ) ≈
nMOR∑
i=1

F i(X) ◦Gi(t) ◦Hi(µ), (6)

where F i(X), Gi(t) and Hi(µ) represent the so-called
modes of the approximation, i.e., nMOR vector-valued func-
tions approximated in a finite element sense that best ap-
proximate the unknown field U . The symbol “◦” represents
the Hadamard or Schur (component-wise) product of vec-
tors.

The simplest way to determine an optimal approxima-
tion of the type given by Eq. (6), sometimes referred to
as affine or separate, is by applying Principal Component
Analysis of a set of snapshots of the evolution of the system,
called Proper Orthogonal Decomposition in computational
mechanics [42]. Once the modes have been identified, by
injecting the approximation given by Eq. (6) into the weak
form of the differential equation governing the problem, the
reduced system can be solved.

Other methods like Reduced Basis (RB) employ directly
a set of snapshots of the system, whose parameter value is
chosen under well-defined error criterion [43].

On the other hand, Proper Generalized decompositions
(PGD) [44] [45] do not employ any snapshot of the system.
This approach presents several advantages. First of all, it
is not necessary to solve the problem for all of the param-
eter combinations in the high-fidelity space. The problem
is solved in the separated space, Eq. (6), and it can be
computed off-line and stored advantageously in memory
in the form of a collection of vectors. These vectors include
only the nodal values, at mesh vertices, of the functions F i,
Gi and Hi. At any other point of the model, the value
of the field U is obtained by finite element interpolation.
Secondly, this separated representation presents important
advantages for the computation of inverse problems. The
sensitivities (parameter influence in the solution) can be
computed straightfoward thanks to this precise form of the
approximation, very important to boost the optimization
step. A detailed formulation is given in Section 6.

5.3 Proper Generalized Decompositions (PGD)
As we said, PGD method does not need any observation
of the system to construct the low-rank approximation to
the unknown field. The method is based in two stages:
an off-line step where the computation of the low-rank
approximation given by Eq. (6) is performed; and an on-
line phase where the parametric solution is evaluated under
real-time constraints. To better explain the basics of PGD, we
consider an introductory example. As a toy model problem
we consider linear elasticity: the case of a cantilever beam
in which the position of the applied load is considered as a
parameter of the system.

5.3.1 How PGD works: linear elasticity
Let us assume a vertical and constant force F , applied over
the upper surface of a cantilever beam. The unknown field



of the problem is the displacementU(X, s), which depends
on the particular material position X and on the position of
the load, s (see Fig. 5). The load can be applied at any point
of the upper part s ∈ Γ̄ ⊂ ∂Ω, with Γ̄ the portion of the
boundary Γt with non-vanishing Neumann conditions.

21
`

F

s

Fig. 5: Cantilever beam problem. A moving load F is pa-
rameterized by its position coordinate s.

The strong form of the governing equation (linear elas-
ticity) under infinitesimal strain theory [38] is

U(X, s) =


∇ · σ +B = 0 in Ω,

σ n = t̄ on Γt,
U = Ū on ΓU ,

(7)

where σ is the stress tensor, B is the body force per unit
volume (assumed vanishing in this example, for the sake of
simplicity), t̄(s) are the traction forces applied to the solid
and Ū are the prescribed displacements (clamped support
at point 1). The constitutive equations for elastic materials,
also known as Hooke’s law, represents the material behavior
and relates stress and strain as

σ = C:ε,

with C the fourth-order constitutive tensor and ε the (small)
strain tensor. Assuming a hyperelastic framework (of which
linear elasticity is a particular example), this constitutive
tensor can be obtained by differentiating the strain energy
density function W , Eq. (4), that in this case takes the form

W (ε) =
1

2
Eε2,

where parameter E is the Young’s modulus. Finally, the
strain-displacement (kinematic) equations are

ε =
1

2
[∇U + (∇U)T ].

Keeping in mind that U depends on X = (X,Y ) and
s, the weak form of the governing equation under the PGD
formalism can be described as∫

Γ̄

∫
Ω
∇sU∗ : σ dΩ dΓ̄ =

∫
Γ̄

∫
Γt

U∗ t dΓ dΓ̄ (8)

where U∗ ∈ H1
0 is an arbitrary test function in the ap-

propriate Sobolev space of functions vanishing along the
Dirichlet boundary of the solid and ∇s = 1

2 [∇ + (∇)T ] is
the symmetric gradient operator. The solution U(X, s) is
assumed to be expressed in separate form,

U(X, s) ≈
nMOR∑
i=1

F i(X) ◦Gi(s), (9)

where nMOR is the number of sums (rank of the tensor
decomposition of the solution), F i(X) are the space modes
in separate variables and Gi(s) are the modes referred to
the position of the load. An alternating direction scheme is

used to obtain the nMOR functions F i(X) andGi(s) so that,
at iteration p we search the p+ 1 functions R(X) and S(s)
that enrich the solution

Up+1(X, s) = Up(X, s) +R(X) ◦ S(s).
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Fig. 6: Separated solution of the vertical displacement. (a)
First five modes depending on space. (b) First five modes
depending on the position of the load. (c) Built solution
using the sum of the product of modes. Note how the result
of the PGD approximation provides with a sort of response
surface, without the need of any parameter space sampling
strategy. Finally, a slice of the surface with the prescribed
load position s0 builds the solution.



Therefore, the test function is

U∗(X, s) = R∗(X) ◦ S(s) +R(X) ◦ S∗(s).

The load F has been designed as a unitary force acting along
the vertical axis Y ,

t = F δ(X − s)eY , X ∈ Γt,

where δ is the Dirac delta function. Function t needs also
to be expressed in separate form to comply with the PGD
formalism, i.e.,

tY ≈
m∑
j=1

hj(X) kj(s); tX = 0,

where m is the number of sums to approximate function
tY and hj(X), kj(s) are the functions in space and load
position, respectively. To solve the non-linear product of
functions R(X) and S(s), the algorithm uses an alternat-
ing direction scheme based on the fixed point method at
every enrichment iteration. For a detailed description of the
problem and a Matlab implementation, the interested reader
can consult [45].

The first modes of F (X) (only its vertical component,
since it is a vector-valued displacement field) and G(s) are
shown in Fig. 6.(a) and 6.(b), respectively. Finally, the sum
of the products of pairs of modes builds the approximate
solution, as it is shown in Fig. 6.(c).

It is important to highlight the fact that the accuracy of
the proposed reduced-order method can be controlled by
the user. The number of terms in Eq. (9), nMOR controls this
level of accuracy, with the help of a suitable error estimator,
as the ones proposed in [46] [47] [48], for instance.

6 A DEFORMABLE IMPLEMENTATION OF ORB-
SLAM2
We propose in this section a deformable implementation
of the ORB-SLAM2 system [37]. ORB-SLAM2 is a sparse
and feature-based SLAM system with outstanding results
of accuracy [3]. It is used to build a rigid scene and locate
the camera in any frame. In our work, after a few seconds of
video capturing the static scene, we get the 3D point cloud
and apply an automatic and on-line registration against a
CAD model of the object, based in RANSAC methods and
the ICP (Iterative Closest Point) algorithm [49].

The registration step allows us to know which points
are deformable and, subsequently, to estimate the displace-
ments of the 3D SLAM points (U SLAM(X,µ)) using the
precomputed data from the CAD object

U SLAM(X,µ) = f
(
UNeighs,CAD(X,µ)

)
. (10)

To do that, a mapping function between our undeformed
3D model and the 2D image features need to be established.
It means we can afterwards deform the real object, extract
image features in any frame and estimate the parameter
values µ with respect to the precomputed set of solutions.
The goal is to obtain the displacementsU SLAM(X,µ) to add
to the static set of deformable 3D points initially estimated
using the SLAM technique. This solution must maintain
the separate multiparametric structure to obtain a specific
solution for each possible value of our set of parameters.

Therefore, the displacements of the SLAM points are ex-
pressed as a function of the closest registered CAD points.
The procedure can be seen in the general overview schema
(Fig. 7).
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Fig. 7: Deformable object tracking and augmentation proce-
dure based in ORB features matching.

In the visual scanned point cloud there are 3D points that
remain static (used to fix camera position and orientation)
and 3D points that are assigned to the deformable part of the
domain in the current observation. Let us focus on the points
belonging to the deformable part, Q, with coordinates
(X,Y, Z). The position in its deformed configuration is Q′,
where U = (X′ −X) = (X ′, Y ′, Z ′) − (X,Y, Z), but this
displacementU is actually estimated from the deformations
of the CAD object, which depend on the multiparametric
solution projected in separate variables. The point in its
deformed configuration (Q′) is observed from the image
as q′ with pixel coordinates (u′, v′), which must match



the projection q′e = Πt(Q + U(µ)) for the optimal set
of parameters µ. The reprojection error in the image is
therefore defined as d(q′, q′e) and the optimal parameter
values of our parametric solution that minimize this error
for the whole set of observed points are obtained from the
next functional

J (µ) =
nmeas∑
j=1

ρ
(
umeas

pix (x′j)−Πt

(
UMOR(X ′j ,µ)

))2

(11)

where nmeas are the number of measurements, umeas
pix the

pixel coordinates measured in the image, UMOR(X ′j ,µ) the
3D displacement predicted by the reduced-order paramet-
ric solution, Πt the projection to the image plane at any
instant t (frame), and ρ the Huber robust function. It is
important to highlight that UMOR(X ′j ,µ) represents the
whole solution of our hyperelastic problem in question by
storing the position, deformations and stresses of each point,
with parametric dependence and represented in the reduced
space. However, to simplify the process, U in the functional
defined in Eq. (11) only represents the deformed position of
each point. Using Eq. (11) we can estimate the value of the
µ parameters that minimize the reprojection error

µ̂ = argmin
µ
J (µ).

This minimization can be advantageously accomplished
by employing the Levenberg-Marquardt algorithm [50][51],
which takes the form

[JTJ + λ diag(JTJ)] δ

= JT
[
Umeas

pix (x′j)−Πt

(
UMOR(X ′j ,µ)

)]
,

where δ is the perturbation parameter that moves the
parameters in the direction of steepest descent and λ an
algorithmic parameter that adaptively varies the behavior
between the Gradient Descent Method and the Gauss-
Newton Method. Finally, J is the Jacobian matrix, defined
as

J =
∂U(x,µ)

∂µ
. (12)

Here lies precisely the key point that makes the separate
representation of the solution so powerful in the parame-
ter optimization process. Recall the general form of PGD,
Eq. (6), where we can notice that due to its separate form, a
separate differentiation can also be performed. We can pre-
compute the derivative function of each parameter, Eq.( 12),
offline, since the finite element approximation computes the
derivative as a multiplication of matrices. These derivative
functions are usually known as sensitivities of the solution
[52] with respect to each parameter µk. We can interpret
them as the local variation of the function U(X,µ) with
respect to the changes in parameter µk

Jk =
N∑
i=1

F 1
i (X) ◦ . . . ◦ ∂F

k
i (µk)

µk
◦ . . . ◦ F nparam

i (µnparam ).

It allows us to avoid the exploration of all of the paramet-
ric space in search of the derivatives, and directly apply the
differentiation on the separated variable vectors, involving
a great reduction in the computational task. In sum, we
need the partial components of the derivative terms of the

Q′

I

WTC

IΠC

WTO

q′

O
W

C ∂uI(x,µ)
∂µk

∂UO(X,µ)
∂µk

Fig. 8: Transformations and projection of the precomputed
sensitivities from the original system of coordinates to the
image reference.

multiparametric solution projected on the image, since we
are minimizing the reprojection error (2D), but we precom-
puted the sensitivities in the original 3D space, so we have
to project these sensitivities onto the image plane. A graphic
example to understand this process appears in Fig. 8, where

Jk =
∂UO(X,µ)

∂µk
(13)

refers to the partial derivative term of the multiparametric
3D solution of the CAD object with respect to the parameter
µk, evaluated at pointQ′ and with the origin of coordinates
defined on that object (O), and

jk =
∂uI(x,µ)

∂µk
(14)

represents the same partial derivative projected on the im-
age plane and evaluated on the point q′. To obtain the value
of this sensitivity in the image plane, jk, we use the chain
rule

jk =
∂uI(x,µ)

∂UC(X,µ)

∂UC(X,µ)

∂UW (X,µ)

∂UW (X,µ)

∂UO(X,µ)

∂UO(X,µ)

∂µk
,

where uI(x,µ) is the position of point q′ with respect to
the image plane, UC(X,µ) with respect to the camera co-
ordinates, UW (X,µ) with respect to the global coordinate
axis (World) and UO(X,µ) with respect to the coordinate



axis defined in the object. The solution derivative terms are
known in the object reference, Eq. (13), and their consecutive
transformations in the Euclidean space R3 are carried out
by the matrices WTO and WTC , which are assumed to be
known since they are estimated by the static part of ORB-
SLAM2 and the registration step. However, the projection
on the image plane IΠC does not allow such a simple
treatment, since the camera conical projection used depends
on the location of the 3D point with respect to the image
plane. This means that the projection of the derivative terms
R3 7→ R2 must take into account the position of the point
where the gradients are evaluated. This projection is known
as the image Jacobian, and is expressed as

IJΠC =
∂uI(x,µ)

∂UC(X,µ)
=

[
1

ZC
fx 0 −XC

Z2
C
fx

0 1
ZC
fy − YC

Z2
C
fy

]
,

where (XC , YC , ZC) are the 3D coordinates of point Q with
respect to the camera axes. Finally, the projection of the
multiparametric derivative terms with respect to parameter
µk on the image plane is expressed as

∂uI(x,µ)

∂µk
= IJΠC · WTC

−1 · WTO ·
∂UO(X,µ)

∂µk
,

(15)

where we remember that the sensitivities defined with re-
spect to the object axes are interpolated according to the
neighbors in the separate variables precomputed solution.
Regarding to the technical aspects, we use the feature search
method developed in the ORB-SLAM2 code to track the
deformations. Time requirements for the minimization al-
gorithm are much smaller than the computation time of
the SLAM tasks, so a simple parallelization of the whole
code in a few threads allows us to work in a frequency of
30 fps using the CPU. We stop the Mapping tasks and work
in Localization mode in ORB-SLAM2 once deformations are
appearing.

7 EXPERIMENTS

We provide two examples to support our method. Both have
been tested with different video sequences working in real
time.

7.1 Rubber boot seal

This example shows the behavior of a rubber boot seal,
the part that protects the gearshift of a vehicle. The object
is deformed forced by the rotation of the gearshift in one
direction, from −52◦ to 52◦, but the simulation has been
only applied within the parametric range θ ∈ [0◦, 52◦],
taking advantage of revolution symmetry.

The material behavior applied to the rubber is a non-
linear law, called Neo-Hookean model, with the strain en-
ergy density

W =
µ

2
(I1 − 3)− µ ln(J) +

λ

2
(ln(J))2,

where I1 is the first invariant of the right Cauchy-Green
deformation tensor

I1 = λ2
1 + λ2

2 + λ2
3,

and where λi are the eigenvalues. The mesh of the object
has 25795 nodes and 18403 linear hexahedral elements.

Applying a sparse implementation of PGD [53], we ob-
tain the parametric solution in the projected space, depend-
ing in space X = (X,Y, Z) and one parameter, θ, where
the parameter optimization is a very fast process as we
precompute the sensitivities. Due to the projection process
of the data, a certain error in the approximation is made, as
it can be seen in Fig. 9. With a total number of 29 modes,
we get a cartesian mean error of 0.18 mm (the normalized
error is 0.0041). For this solution, the compression factor is
92.58%, computed as

C(%) =
(

1− MP

MO

)
· 100,

where MP is the memory storage used by the projected
solution and MO is the memory cost necessary to store
the original data. In other words, using a reduced space
to express our solution we only need a 7.42% of the storage
memory, allowing real time evaluations.
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Fig. 9: Cartesian mean 3D error in displacements due to the
projection of the solution in the reduced space respect to the
number of modes.

αZ

θ

Fig. 10: Parameters to optimize in the video sequence.

Since we assume that the geometry of the deformable
model is known, but not its external appearance (texture)
or its location in the scene, we apply a registration pro-
cess between the static point cloud and the CAD object.



Fig. 11: Some images showing the original and the augmented frames. In the central and right images we can see the stress
field that the object is suffering when the deformation appears.

The object to be deformed has geometry of revolution, so
we must actually optimize the value of two parameters
µ = (θ, αZ), where parameter θ measures the deformation
and αZ the angle of orientation of the axis of rotation, a
geometric parameter that we cannot estimate in the regis-
tration process (see Fig. 10). This is why, when the defor-
mation occurs, we have to estimate the value of θ in each
frame. To favor the minimization process, the value of αZ

is minimized throughout the entire sequence, so after a few
frames observing the deformed object, the system itself is
able to estimate with great degree of certainty the value of
αZ , which involves also a better accuracy in the estimation
of parameter θ.

Fig. 11 shows some frames extracted from a video se-
quence with the original object, and the virtual object with
the estimated displacements. The central and right frames
show the stress field in colors, result of solving the whole
mechanical problem. Finally, in Figs. 12 and 13 the 3D error
is estimated. These error values have been calculated as the
euclidean distances between the surface of the deformed
virtual object and the object scanned with an RGB-D camera
(Intel RealSense D415). It is important to note that using an
accurate model of a complex geometry like the one in this
example gives better results than the scanning of an RGB-
D system, mainly due to the precision of the camera itself.
For example, it can be seen in image 1 of Fig. 12 that the
RGB-D camera is not able to accurately estimate the folds
of the real object. In any case, the median error using a
monocular camera is 1.33 mm (Fig. 13) and the mean error is
1.49 mm. These very accurate values are the result of using
a detailed model of the geometry, an adequate description
of the material law, and a measurement system as accurate
as the non-deformable implementation of ORB-SLAM2.

7.2 Paper sheet buckling
The second example simulates the buckling phenomenon of
a paper sheet. From a numerical simulation point of view,
buckling is a complex problem that is usually solved using
linear approximations to obtain the critical loads (buckling
modes) that produce the beginning of buckling. For this, an
eigenvalue analysis is used, looking for the loads for which
the model stiffness matrix becomes singular [54]. However,
if a complete analysis of the buckling problem is desired,

in order to know in detail the values of the stresses and
deformations of the object in question, it is necessary to
apply more complex methods such as the Riks method,
introducing small imperfections on the geometry [54].

Again, the hypothesis of the use of a reduced model in
this example is based on the fact that the number of degrees
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Fig. 12: Error of the monocular estimation, measured assum-
ing the ground-truth is coming from a stereo camera. Due to
the high complexity of the geometry, the stereo system can
not be more accurate than the sum of model and monocular
camera in some areas, producing a constant error that can
be shown in the undeformed frame 1©.
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Fig. 13: Boxplot of the error distribution of all points of the
external geometry, acquired in the frames of Fig. 12.

of freedom of the problem is not high. In other words, al-
though it may appear that the object is arbitrarily deformed,
there is a great restriction due to the geometry of the paper,
so the number of degrees of freedom of the problem is very
small, actually living in a reduced dimension manifold.

The paper sheet material has been considered
anisotropic (reinforced with oriented fibers) to emulate the
real behavior of the object [55], [56]. The model mesh has
been discretized in 1333 nodes, 31 in the vertical direction
and 43 in the horizontal direction. To model the buckling
problem we use one single parameter (µB) discretized at
801 buckling positions. Applying again the sparse imple-
mentation of PGD [53] it is possible to obtain a projected
solution u = (X,Y, µB), reaching a compression factor of
98.36%.

The sequence was recorded with an RGB-D camera
(StereoLabs Zed Mini) in order to estimate the error made by
our monocular method, where Fig. 15 plots the mean error
in millimeters between the model and the real object for
each frame. Fig. 14 shows some frames extracted from the
sequence, where colors represent the Von Mises stress field.
Note that this error, that may seem big, is comparable to the
best of the state-of-the-art, with one important difference:
we are solving the physics of the problem, and therefore are
subject to errors in the calibration of material parameters,
for instance [28]. In addition, deformations in the consid-
ered sequence are much bigger than those in [57], with a
maximum vertical displacement value (also corresponding
to the maximum error peak) of 16.9 cm. Relative error is
thus on the order of 10% at this maximal value.

The fact that both deformations and displacements (as a
rigid solid) of the object are allowed makes it also necessary
to estimate the deformation parameters and the pose of the
object in each frame. This means that the robustness of ORB-
SLAM2 in its rigid part cannot be exploited and the errors
are slightly higher than those of the previous example, but
our method is more general and robust to displacements.
The 3D mean error of the whole sequence is 3.98 mm,
measured respect to the ground truth data coming from the
RGB-D camera and taking into account there is a relevant
camera error of 1.2 mm (orange line in Fig. 15). This error is
one order of magnitude less than the one reported in state
of the art references, such as [28], for instance, that reported

errors up to 30–35 mm in the displacement prediction.

8 CONCLUSIONS

We propose in this paper the application of computational
mechanics as a tool for estimating the deformations suffered
by the objects perceived by a standard camera. This allows
us to augment the video sequence with information regard-
ing the displacements, forces and stresses suffered by the
objects. To do this, we rely on the use of models to obtain a
parametric solution (using finite element methods) that we
use in the on-line phase. This parametric solution is stored
in a compressed way to optimize both the cost of storage
and its evaluation in real time.

One of the great differences of this work with respect
to the bibliography is that we do not have to impose any
type of spatio-temporal restriction, nor apply energy con-
servation laws implemented ad-hoc, as we are solving the
real physics of the deformable solids. This also implies that
the result is defined for the whole volume of the modeled
objects, not only for the external surface, allowing us to
capture the real behavior of the objects although partial
occlusions appear. It also provides information about how
the interior of the objects is changing, even though we are
not able to capture them with the camera. It assums a clear
advantage for biomedical applications where it is necessary
to know, for example, the location of the blood vessels or
cancerous bodies inside the organs. Also different material
properties can be applied in any point of the solid, giving
different results depending on the stiffness, but assuming
more expensive previous work.

As it is shown in the experiments section, our method
has a great computational efficiency, is CPU-based and quite
robust against noisy observations. It is not necessary to pre-
compute sequences to extract trajectories or learning shapes,
as we obtain the information directly from the models. But
the solution must be obtained for a parametric set of loads,
states and deformations enough to be able to work in any
sequence.

Finally, this work can use any type of model order re-
duction method, and applied to any type of camera device,
such as monocular, stereo or RGB-D systems.
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