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Abstract—We propose a precise and efficient pipeline analysis
to tackle the problem of out-of-order resources in modern em-
bedded microprocessors for the computation of the Worst-Case
Execution Time (WCET). Such resources are prone to timing
anomalies [1]. To remain sound, the timing analysis must either
rely on huge timing over-estimations or consider all possible
pipeline states which usually leads to a combinatorial blowup.
To cope with this situation, we build an efficient computational
model by leveraging the algebraic properties of the eXecution
Decision Diagram [2] which is able to track precisely all pipeline
states all along the execution paths of the analysed program while
keeping the analysis time within acceptable range. We show how
to apply this analysis at the Control Flow Graph (CFG) level, and
how to account for a typical out-of-order resource: the shared
memory bus between the instruction and data caches. We observe
a gain in precision of the WCET ranging from 20% to 80%
compared to the state-of-the-art pipeline analysis of the OTAWA
WCET toolset. The analysis time shows that our approach scales
to realistic benchmarks, making it appropriate for industrial
applications.

Index Terms—real-time, WCET, static analysis, pipeline

I. INTRODUCTION

The correctness of hard real-time systems depends not
only on their functional behavior but also on their temporal
behavior. The latter is guaranteed by the scheduling analysis of
the tasks composing the system, which relies on the estimation
of their Worst-Case Execution Time (WCET).

With modern processors, the execution time of a code
snippet is difficult to determine. For instance, on a proces-
sor equipped with cache memories, the latency of memory
accesses is variable: it depends on whether the access results
in a Cache Miss or a Cache Hit. The presence, in modern
micro-architectures, of pipelined and superscalar execution
and other mechanisms to favor instruction-level parallelism
and achieve high performance generates a large variability of
execution times and makes the WCET analysis suffer from
timing anomalies [3]–[6]. Briefly, timing anomalies imply that
the WCET analysis cannot assume that a local worst case will
lead to the global worst case. Illustrated on the case of cache
accesses, this means that a cache miss (longer access) cannot

be assumed to lead to the global worst case, and whether or
not it contributes to the global WCET is not determined [1],
[7]. Unless the target processor is proven to be free of timing
anomalies, a safe and precise WCET analysis has to capture
them by precisely tracking the execution states of the micro-
architecture.

The WCET computation is generally broken down into three
parts [8]. First, global analyses, independent of the pipeline’s
structure, are performed: they typically encompass cache and
branch-prediction analyses, which determine the behavior of
these mechanisms at instruction level. Second, the pipeline
analysis uses the information provided by global analyses to
determine how instructions are executed through the pipeline,
and to compute the (worst-case) execution times of basic
blocks (BB). Finally, an ILP system is built to maximize
the execution time considering the individual WCETs of
basic blocks computed in the previous step, with constraints
expressing the structure of the CFG and flow facts, such as
loop bounds. The solution of the ILP system is the WCET
of the whole program. This method is called Implicit Path
Enumeration Technique (IPET) [9].

The most important bottleneck in the classical structure
of WCET analysis is the lack of efficient abstraction of
pipeline. Existing approaches either tend to be not scalable or
imprecise. However, our previous approach [2] shows that the
eXecution Decision Diagram (XDD) is a good data structure
to record times within the pipeline analysis that improves its
performance. An XDD can be deemed as a lossless compres-
sion of the relationship between the execution time and the
combination of timing variations. By implanting XDD into
the Execution Graph (XG) pipeline model, we achieved exact
and efficient pipeline analysis on basic blocks through in-order
pipelines. In [2], the pipeline analysis is designed to consider
BBs of a program independently by calculating their worst-
case execution context. However, with out-of-order accesses to
resources such as shared buses, the conservative use of a worst-
case context does not hold anymore. We need to precisely track
the possible execution contexts in order to evaluate how the



concurrent accesses to the bus are interleaved. The pipeline
analysis has to analyze the micro-architecture states on the
whole program, that is, at Control-Flow Graph (CFG) level.

a) Contributions: This paper presents (a) how we adapt
the original graph based pipeline model proposed in [2] into
a data-flow analysis applied at CFG level that computes
exactly all the possible temporal pipeline states; (b) how we
construct an efficient computational model of our analysis
by leveraging the algebraic properties of XDD, which turns
the state transition into matrix multiplication on a semi-ring;
(c) how we exploit the precise pipeline states produced by
this computational model to support a typical out-of-order
resource: the memory bus that is shared by the instruction
and data caches to access the main memory; and (d) the
evaluation of our model on realistic applications (TACLe’s
benchmarks [10]) that shows its scalability. Several parameters
are measured during the experiment to give some explanation
of its good performance. The precision gain of our approach is
compared with the state-of-the-art pipeline analysis of OTAWA
[11] and shows improvement of the final WCET ranging from
20% to 80%.

b) Outline: First, the related works are discussed in
Section II. Section III provides background information on
the XG model and the XDD structure. In Section IV, we
extend the original model of XG with XDD to a resource-
based model which is able to express the state of the pipeline
with a vector. Later in this section, we show how to leverage
the algebraic properties of XDD in order to improve the
performance of the analysis by pre-computing the calculus as
matrices. In Section V, we show how to build the complete
analysis at CFG level. Section VI extends our model to support
the shared memory bus. Experiments reported in Section VII
demonstrate the efficiency and the precision of our analysis
on realistic benchmarks. Several metrics are considered and
discussed, and we conclude in Section VIII.

II. RELATED WORK

The most complex part of the classical structure of WCET
analysis (global analyses + pipeline analysis + IPET) is the
pipeline analysis because of the presence of timing anomalies
and the complexity of modern micro-architectures. We may
classify the state-of-the-art pipeline analyses into two classes:
those at CFG level and those at BB level.

The aiT analyzer is one of the most successful WCET
analysis tools and it performs pipeline analysis at CFG level
[12], [13]. Concretely, it builds an abstract model of the
pipeline: this model describes the transition of pipeline states
at the granularity of processor cycles. Its pipeline analysis,
based on the abstract interpretation framework [14], computes
an overset of the possible pipeline states over the CFG of
the program. To the best of our knowledge, it uses power set
domain to keep the set of possible pipeline states. Therefore,
this model suffers from combinatorial complexity caused by
the presence of timing anomalies as it has to keep all possible
states. Several approaches were proposed to reduce the com-
plexity: (a) although the literature provides very few details

about that, close states seem to be joined to form abstract states
at the cost of a loss of precision, (b) in [15], the authors show
how to use a Binary Decision Diagram to compress the state
machine representation of their analysis system, and (c) in [16]
Reineke et al. define a sufficient condition to drop not-worst
cases in order to reduce the number of states. This work has
been extended later in [17], [18], providing a theoretical basis
to design strictly-in-order pipeline where timing anomalies are
proven to not occur [7], [19], thus allowing to more easily drop
non-worst case states.

Another approach to pipeline analysis is to compute locally
the WCET per BB. The Execution Graph proposed by Li
et al. [20] (chronos analyzer) is a very representative exam-
ple. Instead of computing the pipeline state over the CFG,
they make assumptions about the worst execution context
of each BB. To avoid using powerset domain to keep the
pipeline states, they use interval domain to keep the minimal
and maximal execution times of instructions. The contention
between instructions is considered by checking the intersec-
tion of time intervals. If a contention occurs, the interval
is extended accordingly. The XG solving algorithm repeats
the computation until a fix point is reached. However, in
the presence of lots of events, the interval representation
tends to trigger a chain reaction: the imprecision due to the
interval representation creates contentions that are actually
impossible, which extends the interval and involves more
impossible contentions – hence introducing considerable over-
estimation. Moreover, with respect to the micro-architecture,
making precise assumptions on the worst execution context is
not always simple. Another XG-based approach is proposed
by Rochange et al. in [21] that computes the execution
time of BBs for each combination of events, which makes
the algorithm tending towards combinatorial complexity. In
addition, the contention analysis requires examining all cases,
leading to an exponential complexity.

Another different direction of static WCET analysis uses
model checking approaches. The principle of these approaches
is to express the analyzed program and the complete micro-
architecture (including cache, pipeline and all timing related
components) by a timed automaton without abstraction. The
WCET is computed by exploring all possible states of the
automaton. Since all states are reached, it is compatible with
timing anomalies by nature. These approaches usually provide
exact WCETs and are able to give the longest path, which
may help the developers to further optimize the WCET. On
the other hand, they generally have scalability issues when the
micro-architecture becomes complex (this results in a larger
pipeline state domain) or when the program under analysis
becomes complex (this results in an intractable amount of ex-
ecution traces to explore). One of the most well known tools in
this category is UPPAAL [22]. To the best of our knowledge,
the best experiment using UPPAAL, reported in [23], is not
able to analyze all the benchmarks of the Mälardalen suite,
but only the simplest ones. Some hypotheses are also made to
turn some programs into single-path programs, which greatly
reduces the complexity of the problem.



In [24], the authors compute the WCET of BBs with
reservation tables that simulate the reservation of resources
in the pipeline at each cycle. The worst reservation hence
gives the worst execution time. In [25], the worst behavior
of the pipeline, caches and branch predictors are obtained by
simulations at BB-level. In [26], the worst timing contribu-
tions of different components (cache, pipeline and others) are
computed separately and then safely composed using rules
defined in the paper. In [27], the authors bound the distance
of temporal effects between instructions, so as to compute the
WCET per instruction with a safe over-estimation.

Our analysis: The pipeline model proposed in this paper
is inspired from a key idea of the XG approach: it uses
dependencies to describe the temporal behavior of the pipeline,
which allows the analysis to work at pipeline stage level
(unlike aiT that works at the granularity of processor cycles).
Our strategy improves the efficiency of the analysis because
one dependency often spans over several processor cycles,
which leads to a reduced number of applied transitions and
a more compact dependency representation.

Compared to the original XG approach, this new model
considers the effect of instructions of other BBs on the timing
of the analyzed BB (instead of considering each BB in
isolation), and it uses XDDs (instead of the interval domain
in the original XG, or the powerset domain in the case of aiT)
to efficiently represent all possible pipeline states without loss
of precision. Theoretically, this approach is thus more precise
than the original XG approach, and more efficient than the
approach used by aiT when tracking explicitly all possible
pipeline states.

III. BACKGROUND

As a program under analysis usually has several execution
paths and possibly loops, it is impossible to track all the
possible execution traces. The static WCET analysis approach
we use in this paper models the whole program as a CFG, then
computes the WCET of each BB and determines the WCET
using the IPET method. Thus, the pipeline analysis aims at
determining the execution time of each BB, for example, using
Execution Graphs.

A. Execution Graphs

An eXecution Graph (XG) [20], [21] models the temporal
behavior of an instruction sequence (such as a BB) executed
in the pipeline. The key idea of the XG is to model the
temporal behavior by considering the dependencies arising
between instructions during their execution in the pipeline
stages. For example, an instruction has to leave a pipeline stage
before starting its execution in the next stage, an instruction
has to read a register after a prior instruction has written
this register, etc. This results in a dependency graph: a vertex
represents the progress of an instruction in a pipeline stage;
the edges represent the precedence relationships between these
vertices. Formally, let I be the set of machine instructions,
and let GXG be a Directed Acyclic Graph (DAG) GXG =
⟨VXG, EXG⟩ built for an instruction sequence I∗ such that

• VXG is the set of vertices defined by VXG =
{[Ii/s] | Ii ∈ I∗ ∧ s ∈ P}, with P the set of pipeline
stages.

• EXG ⊂ VXG × VXG, the set of edges, is built according
to the dependencies in the considered pipeline.

In addition, an XG is decorated with temporal information:
• λv ∈ N is the latency of vertex v, that is the time spent

in this vertex.
• δv→w ∈ {0, 1} represents the kind of dependency ex-

pressed by edge v → w ∈ EXG. If δv→w = 1 (solid),
w starts after the end of v; if δv→w = 0 (dotted), w can
start at the same time as or after the start of v.

FE DE EX ME WB
(I0) add r3, r0, #4

(I1) add r1, r0, r1

(I2) ldr r2, [r3]

(I3) cmp r2, ip

(I4) ldrgt ip, [r3]

(I5) add r3, r5, #4

IC0IC0IC0

IC1IC1IC1

DC2DC2DC2

Fig. 1: XG model of an instruction sequence.

Examples in this paper consider a 5-stage (FE – fetch, DE
– decode, EX – execute, ME – memory, WB – write-back) in-
order 2-way superscalar pipeline but the presented algorithms
are not limited to this configuration. Figure 1 shows the XG
for this pipeline and for the sequence of instructions listed on
the left. The vertices correspond to the use of a pipeline stage
(column headers) by an instruction (row headers). The edges
reflect the following dependencies:

• The horizontal solid edges model the Pipeline Order: an
instruction goes through pipeline stages in a given order.

• The vertical dotted edges model the parallel execution of
instructions in the superscalar stages (Program Order).

• The vertical solid bent edges model the width of the
stages – 2 instructions per cycle (Capacity Order).

• The slanted dotted edges model the capacity of FIFO
queues (2 instructions) between stages (Queue Capacity).

• The slanted solid edges model the Data Dependencies
between instructions, when an instruction reads a register
written by a prior instruction.

The set of dependency edges shown above is typical for in-
order pipelines. Depending on a particular pipeline design,
rules to build the edges may be added or removed to account
for specific features.

Using an XG, the start time of an instruction in a stage
ρw is computed as the earliest time at which all incoming
dependencies are satisfied and the end time ρ∗w as ρw increased
by the time passed by the instruction in the stage:

ρw = max
v→w∈EXG

ρv + δv→w × λv

ρ∗w = ρw + λw

(1)



The execution time of the instruction sequence is obtained
by calculating the start time of each vertex following a topo-
logical order in the XG. Since the pipeline is in-order (all
resources are allocated in the program order), the timing of an
instruction only depends on prior instructions, meaning that,
at least, one topological order exists. For in-order processors,
this order is implied by the combination of the Pipeline
Order (horizontal edges) and of the Capacity Order (vertical
edges). It is highlighted in the example XG of Figure 1 by
the light gray arrow in the background.

The computation of an XG is fast and efficient. However, as
soon as the pipeline produces variable latencies (e.g. to reflect
a possible cache hit or miss), precision is achieved at the cost
of computing the XG for each combination of these latencies.
This may engender a computation complexity explosion. The
data structure presented in the next section alleviates this issue.

B. Execution Decision Diagrams

The eXecution Decision Diagram (XDD) is inspired from
the Binary Decision Diagram (BDD) [28], [29] and its Multi-
Terminal BDD (MTBDD) variant [30]. An XDD is a DAG
that is recursively defined as:

Definition III.1.

XDD = LEAF(k) | NODE(e, f , f) (2)

The Boolean variables e ∈ E in nodes are called events: they
model the uncertainty in the analysis regarding the micro-
architecture state and its impact on the time, e.g. whether a
particular cache access results in a hit or in a miss. The sub-
trees f, f ∈ XDD represent, respectively, the situations where
the event e happens or not. The leaves of an XDD store the
execution times k ∈ Z# = Z ∪ {+∞,−∞}.

As in ordered BDDs [29], XDDs deploy hash consing
techniques to guarantee the unicity of the sub-tree instances
and speed up the calculation: identical sub-trees share the same
instance in memory. This compression allows the XDDs to
represent efficiently the relationships between combinations of
events (called configurations) and the corresponding execution
times. A configuration γ ∈ Γ is the combination of activation
or inactivation of events (Γ = ℘(E)) and corresponds to a path
from the root node to a leaf in the XDD DAG.

When events are taken into account, the actual time for each
vertex is represented by a map between event configurations
and the corresponding times (i.e. in the domain Γ → Z#) the
size of which is combinatorial with respect to the number of
events (which determines the cost in terms of computation
time). XDDs efficiently solve this problem by factorizing
identical sub-trees. In [2], it has been shown that the subtree
factorization frequently occurs in realistic benchmarks which
largely speeds up the analysis. Yet, an isomorphism between
XDD and Γ → Z# exists: XDD

α
↼−−⇁
β

(Γ → Z#). This means

that XDD can be deemed as a lossless compression of the
map (Γ → Z#). In the remainder of the paper, we note f [γ]
the time corresponding to configuration γ in f (for f ∈ XDD

or f ∈ Γ → Z# since both are equivalent from a functional
point of view).

In [2], it was shown that any binary operation ⊙ on Z#

used in (Γ → Z#) can be transferred in the XDD domain in
an equivalent operation � such that performing the operation
in the XDD domain is lossless:

∀s1, s2 ∈ (Γ → Z#)2,∀γ ∈ Γ,

s1[γ]⊙ s2[γ] = (α(s1) � α(s2))[γ]
(3)

with α the morphism from (Γ → Z#) to XDD.
The operations used in XG are max and + (Eq. (1)).

These two operations are transferred into the domain of XDD,
respectively ⊕ and ⊗1, such that the time corresponding to
each configuration in the resulting XDD is exactly the time
computed for each configuration without XDD:

∀s1, s2 ∈ (Γ → Z#)2,∀γ ∈ Γ,

s1[γ] + s2[γ] = (α(s1)⊗ α(s2))[γ]

max(s1[γ], s2[γ]) = (α(s1)⊕ α(s2))[γ]

(4)

The implementation of this operation is detailed in [2].
Shortly, � combines XDD operands along sub-trees and
applies ⊙ when leaves need to be combined.

Now, one can implant XDDs into the XG computation
(Eq. (1)) by replacing max by ⊕ and + by ⊗. Each ρ in
equation (1) now becomes a XDD recording all execution
times with respect to the configurations of events. By doing
that, we now compute all execution times in a single traversal
of the XG. Let us consider some concrete examples in the
computation of the XG showed in Figure 1 with XDDs. Three
events are considered and highlighted in the figure: IC0, IC1

and DC2. The IC events are instruction cache events, meaning
that the associate instruction fetch may result in instruction
cache miss, leading to an increased latency; DC2 is a data
cache event. The extra latency of both types of events is 5
cycles. Figure 2a shows the use of ⊕ when computing the start
date of [I4/EX] where the first operand is the start date of
[I3/EX] and the second operand is the end date of [I4/DE].
Figure 2b shows the explicit representation of the resulting
XDD in Figure 2a. Figure 2c shows the use of ⊗ when
computing the end time ρ∗ of [I2/ME]: the first operand is the
start time and the second operand is the latency of [I2/ME].

The isomorphism guarantees that using an XDD to perform
the XG analysis is precise by following the dependency
resolution rule (Eq. (1)) and the proposed topological order.
However, the graph can only be built for sequentially executed
instructions which raises difficulties for the pipeline analysis
at CFG level. Hence, the next section proposes a pipeline
analysis in the paradigm of state machine which can be easily
adapted for the analysis at CFG level and allows to leverage
algebraic property of XDD to speed up the computation.

1It must be emphasized that the name of the transferred operators is not
related to the original operator: ⊕ does not correspond to + but max, and
it is ⊗ that corresponds to +, this is due to the algebra property of XDD
semi-ring that we will mention later in section IV-C.



DC2

IC0 IC0

5 10 15

⊕
IC1

IC0 IC0

4 9 14

=
DC2

IC1 IC0

IC0 IC0

5 10 9 14
15

(a) Example of ⊕

Configuration time
IC0, IC1, DC2 15
IC0, IC1, DC2 15
IC0, IC1, DC2 10
IC0, IC1, DC2 10
IC0, IC1, DC2 14
IC0, IC1, DC2 9
IC0, IC1, DC2 10
IC0, IC1, DC2 5

(b) Explicit representation

IC0

4 9

⊗ DC0

1 6

=
DC0

IC0 IC0

5 10 15

(c) Example of ⊗

Fig. 2: Example of XDDs

IV. RESOURCE BASED MODEL

The usual approach, that consists in building and solving
an XG for each BB on its own, is no more sustainable when
out-of-order bus accesses have to be supported. The bus access
interactions can indeed span over BB bounds.

This section proposes to solve this issue by turning the
original XG model into a state machine model where the
pipeline analysis is performed by applying transitions on
pipeline states. Moreover, by leveraging the algebraic property
of XDDs, we improve the computational model by implement-
ing transitions as products of matrices. The matrices can be
pre-computed before the pipeline analysis.

A. Temporal State

The dependencies d ∈ D in the XG model the use of
resources, such as pipeline stages, queues etc. For instance,
in our 5-stage in-order pipeline, determining the start time of
an instruction Ii ∈ I∗ in stage DE requires:

• the start time of the previous instruction in stage DE:
ρ[Ii−1/DE] – the Program Order dependency due to the
use of DE stage in program order,

• the end time of the second last instruction in stage DE:
ρ∗[Ii−2/DE] – the Capacity Order dependency due to the
use of DE stage with limited capacity,

• the end time of Ii in stage FE: ρ∗[Ii/FE] – the Pipeline
Order dependency due to the use of the pipeline,

• the start time of the second last instruction in stage EX:
ρ[Ii−2/EX] – the Queue Capacity dependency due to the
use of the queue between DE and EX with limited
capacity.

where Ii−n represents the nth previous instruction. ρ[Ii/s] and
ρ∗[Ii/s] respectively stand for the start and the end time of
vertex [Ii/s]. The actual start time of Ii in DE is the earliest
date at which all dependencies are satisfied:

ρ[Ii/DE] = ρ[Ii−1/DE] ⊕ ρ∗[Ii−2/DE]

⊕ ρ∗[Ii/FE] ⊕ ρ[Ii−2/EX]

ρ∗[Ii−2/DE] = ρ[Ii−2/DE] ⊗ λ[Ii−2/DE]

ρ∗[Ii/FE] = ρ[Ii/FE] ⊗ λ[Ii/FE]

This corresponds to the computation of Eq. (1) extended to
the XDD domain: we use ⊕ instead of max and ⊗ instead of
+. As in the integer case, each computation requires the results
of the computations of previous instructions (e.g. ρ[Ii/DE]

requires ρ[Ii−1/DE] and ρ∗[Ii−2/DE]), which correspond to the
release time of the concerned resources.

Table I shows the information required to compute the start
time of any instruction Ii in stage DE: it forms a vector of
6 elements, each element being an XDD. The vector depends
on the structure of the pipeline, but an important point is that
any architecture that can be described in the XG model can
also be expressed as a vector of XDDs.

Such a vector can be similarly built for each instruction
and each pipeline stage. Table II shows the complete depen-
dency information to be maintained for each stage of our
example pipeline. The symbol −∞ denotes the absence of
dependency2. Ifetch, Iload, Istore and IRi

are, respectively, the
last instructions that have fetched an instruction block from
memory, performed a load, performed a store and wrote to
register Ri (in stage sRi).

Let D be the set of dependencies listed in Table II. The
temporal state of the pipeline can be represented by a vector in
the domain S = XDD|D|. For a given stage s, a temporal state
S⃗ ∈ S, and the set of dependencies D[Ii/s] ⊂ D applicable to
XG vertex [Ii/s], the start and end times of this vertex can
now be rewritten as:

ρ[Ii/s] =
⊕

d∈D[Ii/s]

S⃗[id] (5)

ρ∗[Ii/s] =ρ[Ii/s] ⊗ λ[Ii/s] (6)

where id denotes the index of dependency d within vector S⃗.

B. Pipeline Analysis with Temporal States

We now present how temporal states are updated during
the analysis to account for the execution of instructions in the
pipeline. To simplify the computation, we add an element ϱ
at index iϱ to the state vector. It records the current time all
along the analysis: we refer to ϱ as the time pointer.

Definition IV.1. Following the principle of XG analysis,
the behavior of an instruction in a pipeline stage can be broken
down into four steps.

• Step 1. The instruction cannot be executed in the stage
before all its dependencies are satisfied (Eq. (5)). This is
modelled as follows. First, the time pointer is reset to 0 =
LEAF (−∞) (Step 1.1). Then, each dependency time is
accumulated with ⊕ into the time pointer (Step 1.2). At
the end of Step 1, the time pointer records the maximum

2−∞ is convenient as it is neutral for the max operation.



TABLE I: Information needed to determine the start time of any Ii in stage DE

Program Order Capacity Order Pipeline Order Queue Capacity
ρ[Ii−1/DE] ρ∗

[Ii−2/DE]
ρ∗
[Ii−1/DE]

ρ∗
[Ii/FE]

ρ[Ii−2/EX] ρ[Ii−1/EX]

TABLE II: The temporal state

Prog. Order Capacity Order Pipeline Order Queue Capacity
FE ρ[Ii−1/FE] ρ∗

[Ii−1/FE]
ρ∗
[Ii−2/FE]

−∞ ρ[Ii−1/DE] ρ[Ii−2/DE]

DE ρ[Ii−1/DE] ρ∗
[Ii−1/DE]

ρ∗
[Ii−2/DE]

ρ∗
[Ii/FE]

ρ[Ii−1/EX] ρ[Ii−2/EX]

EX ρ[Ii−1/EX] ρ∗
[Ii−1/EX]

ρ∗
[Ii−2/EX]

ρ∗
[Ii/DE]

ρ[Ii−1/ME] ρ[Ii−2/ME]

ME ρ[Ii−1/CM ] ρ∗
[Ii−1/ME]

ρ∗
[Ii−2/ME]

ρ∗
[Ii/EX]

ρ[Ii−1/CM ] ρ[Ii−2/CM ]

CM ρ[Ii−1/ME] ρ∗
[Ii−1/CM ]

ρ∗
[Ii−2/CM ]

ρ∗
[Ii/ME]

−∞ −∞
Fetch Order Memory Order Data Dependencies

FE ρ∗
[Ifetch/FE]

−∞ −∞
DE −∞ −∞ −∞
EX −∞ −∞ ρ∗

[IR0/sR0]
ρ∗
[IR0/sR1]

...

ME −∞ ρ∗
[Iload/ME

ρ∗
[Istore/ME]

ρ∗
[IR0/sR0]

ρ∗
[IR1/sR1]

...

CM −∞ −∞ −∞

release time of all dependencies which is the actual start
time for the analyzed XG vertex. The transitions for the
temporal state are defined with the functions τreset and
τwait:

τreset : S → S,

τreset(S⃗) = S⃗′ |

{
S⃗′[i] = S⃗[i]⊗ 0 if i = iϱ

S⃗′[i] = S⃗[i] otherwise

(7)

τwait : N× S → S,

τwait(x, S⃗) = S⃗′ |

{
S⃗′[i] = S⃗[i]⊕ S⃗[x] if i = iϱ

S⃗′[i] = S⃗[i] otherwise
(8)

τwait has to be called for each dependency (with index
x in the temporal state vector) of the current vertex.

• Step 2. Some resources (e.g. the Queues between stages)
are released at the start of an XG vertex. The correspond-
ing dependencies (Queue Capacity) have to be updated
with the start time ρ recorded by the time pointer ϱ.
Generally, the update of the vector is done with τmove:

τmove : N× N× S → S,

τmove(idest, isrc, S⃗) = S⃗′ |

{
S⃗′[i] = S⃗[isrc] if i = idest

S⃗′[i] = S⃗[i] otherwise
(9)

τmove copies a vector element into another element and
overwrites the destination value. Updating the depen-
dency of a single resource amounts to copying ϱ into the
slot of the dependency: for example, updating the state of
a dependency d of index id with the start time (recorded
in the time pointer ϱ) consists in τmove(id, iϱ, S⃗). The
state of FIFO resources (like queues) requires updating
several temporal state slots (i to i + n − 1 with n the
FIFO capacity) to express the shift of the n last FIFO

uses. Hence FIFO resources are updated by a series of
τmove on the n FIFO slots in the temporal state and by
setting the first slot to ϱ, the use time for the first FIFO
element:

∀j ∈ [i, i+ n− 2], τmove(j + 1, j, S⃗);

τmove(i, iϱ, S⃗);

• Step 3. The started instruction spends λ[Ii/s] cycles in
the stage. After this step, the value the time pointer is
the end time of [Ii/s].

τconsume : N× S → S,

τconsume(λ[Ii/s], S⃗) = S⃗′|

{
S⃗′[i] = S⃗[i]⊗ λ[Ii/s] if i = iϱ

S⃗′[i] = S⃗[i] otherwise
(10)

• Step 4. The instruction finishes its execution and the
dependencies recording the end time of the current vertex
are updated. The τmove operation is used in the same way
as in the Step 2.

As in the original XG resolution model, the computational
model with temporal states has to follow the topological order
so that the times recorded in the XDD vector refer to the cor-
rect timing of resources. In other words, if the state is correctly
updated according to the rules stated above, the resource-based
model is equivalent to the original XG analysis but expressed
in state machine fashion. The implementation using XDDs
extends the model to consider all possible cases according to
the timing variations without any loss. The BB analysis is
consequently exact with respect to the XG pipeline model.

C. The computational model

An important property of the XDD domain is that, equipped
with ⊕ and ⊗, it forms the semiring ⟨XDD,⊕,⊗, 0, 1⟩ with
0 = LEAF (−∞) and 1 = LEAF (0). As the transition



functions τ are affine in this domain, their application can
be expressed as matrix multiplications. Combining and pre-
computing these matrices will help to speed up the pipeline
analysis at CFG level since some BBs need to be recomputed
several times in different execution contexts.

Scalar and matrix multiplication on XDD semiring is simi-
lar to the linear algebra over R by replacing + by ⊕, × by ⊗:

Definition IV.2. The scalar multiplication is defined by:

· : XDDN × XDDN → XDD,

[f0, f1, ..., fN−1] · [f ′
0, f

′
1, ..., f

′
N−1] =

⊕
0≤i≤N−1

fi ⊗ f ′
i

Definition IV.3. The matrix multiplication is defined by:

· : XDDN×M × XDDM×L → XDDN×L,

B · C =

 Ai,j

 |Ai,j =
⊕

1≤k≤M

Bi,k ⊗ Ck,j

Definition IV.4. The identity matrix Id on the XDD semiring
is defined by:

Id =

 Ai,j

 |Ai,j =

{
1 if i = j

0 otherwise

Note that, by definition, S⃗ · Id = S⃗: any matrix column at
index i contains only 0 except for the row i that contains
a 1, which maintains unchanged the value of S⃗[i] in the
resulting vector. To implement the transition functions τ as
matrix multiplications, the matrix Id is taken as a basis and
only the cells that have an effect on the vector have to be
changed.

1) A 0 on the diagonal of the Id matrix at the timer pointer
position resets it: S⃗[iϱ]⊗ 0 = 0:

τreset(S⃗) = S⃗ ·Mreset

= S⃗ ·

 Ai,j

 |Ai,j =

{
0 if i = j = iϱ

Idi,j otherwise

(11)

2) For a given slot at index x in S⃗, τwait(x, S⃗) is represented
by a matrix Mwait(x) with a 1 at position (x, iϱ) resulting
in the operation ϱ⊕ (1⊗ S⃗[x]):

τwait(x, S⃗) = S⃗ ·Mwait(x)

= S⃗ ·

 Aij

 |Aij =

{
1 if i = iϱ ∧ j = x

Idij otherwise

(12)

3) τmove(isrc, idest, S⃗) is represented by a matrix
Mmove(isrc,idest) where the element at (idest, idest) is set
to 0 and the element (idest, isrc) to 1 s.t. element idest in
the result becomes (0⊗S⃗[idest])⊕(1⊗S⃗[isrc]) = S⃗[isrc].

τmove(isrc, idest, S⃗) = S⃗ ·Mmove(isrc,idest)

= S⃗ ·

 Aij

 |Aij =


0 if i = j = idest

1 if i = idest ∧ j = isrc

Idi,j otherwise
(13)

4) For a given latency λ, τconsume(λ, S⃗) can be represented
by a matrix Mconsume(λ), obtained from Id by putting λ
at position (iϱ, iϱ).

τconsume(λ, S⃗) = S⃗ ·Mλ
consume

= S⃗ ·

 Aij

 |Aij =

{
λ if i = j = iϱ

Idi,j otherwise

(14)

Theorem IV.1. Each transition function τ applied to the
timing vector is a linear map from S to S

Proof. Direct since we have already given the matrix repre-
sentation of each transition in Definition IV.4.

Consequently, the operations performed at each step are
also linear because they are combination of τ functions.
Their matrix representation is simply the multiplication of each
invoked τ function. For example,

MStep1[Ii/s] = Mreset ·
∏

d∈D[Ii/s]

Mwait(id)

with D[Ii/s] the set of dependencies required by [Ii/s] and id
the index of resource d in the state vector.

Similarly, we can express MStep2[Ii/s],MStep3[Ii/s] and
MStep4[Ii/s] by invoking the corresponding τ functions.
As each step is linear, the operation when analyzing one in-
struction on a stage is also linear because it is the combination
of the 4 steps.

M[Ii/s] = MStep1[Ii/s] ·MStep2[Ii/s] ·MStep3[Ii/s] ·MStep4[Ii/s]

Finally, the whole analysis of a BB a ∈ V is composed by
the analysis of each instruction in each pipeline stage:

Ma =
∏
Ii∈a

∏
s∈P

M[Ii/s]

With a matrix such as Ma, it is easy and fast to compute
the output temporal state S⃗′ ∈ S corresponding to an input
temporal state S⃗ ∈ S for a BB a:

S⃗′ = S⃗ ·Ma (15)

V. PIPELINE ANALYSIS ON THE CFG

This section extends the temporal state computational
model, presented in the previous section, to the complete
analysis of the CFG. It mainly consists in tracking the explicit
set of possible temporal states for each BB all over the CFG
execution paths.



A. Computing the context with Rebasing operation

In an analysis at BB-level, a temporal state contains times
relative to the start of a BB. In an analysis at CFG-level,
a temporal state should contains times relative to the start
of the program and the temporal states should be tracked
for all possible execution paths. This is generally infeasible
because of the huge number of execution paths, especially in
the presence of loops.

Now the main reason for which we want to compute exact
temporal states at CFG-level is to determine the exact timings
of bus accesses. But these timings do not need to be absolute
with respect to the start of the program. Instead, they can be
relative to arbitrarily-chosen time bases, as long as XDDs with
different bases are not mixed.

We call rebasing the operation that consists in changing
the origin of the timeline of a temporal state. The temporal
state at the end of BB a represents the delay induced by the
execution of a to the start of the following BB b. Considering
the start of b as a new time base T ∈ XDD, we can get a
new temporal state relative to T by subtracting T from the
times in the temporal state in the base of BB a. The outcome
is a temporal state containing XDDs with positive or negative
times relative to T . The relationship between times and events
in the temporal state is preserved. The subtraction in XDDs
⊘ is built in the usual way from the − operator (Eq. (3)).

Rebasing a temporal state is lossless because ⊘ is reversible.
By adding T (with ⊗), one can find back the state before
rebasing. Rebasing is very helpful to reduce the size of XDDs
in the temporal state: an event removed by rebasing has no
effect on the following BBs but it does not mean it has no
effect at all. Its contribution to the overall WCET is simply
linear with respect to the number of occurrences of the BB.
Intuitively, the execution of an instruction depends on the
execution of nearby instructions. Thus the effect of events is
generally short term and is, in practice, often eliminated by
rebasing.

B. Generation of Events within loops

Each event computed by global analyses is linked to a
particular instruction. The pipeline analysis of a BB presented
so far deems the occurrence of events unique. This is not true
when an event arises in a BB of a loop body, since it may occur
or not in different iterations. We would get unsound timings
if we denoted these different event occurrences with the same
event node in the XDD. To fix this, a generation number is
associated with each event. To prevent a blowup of temporal
states, this generation number is relative to the current iteration
and is incremented in the current temporal state each time
the analysis iterates in the loop. The generation number thus
distinguishes occurrences of an event in different iterations.
Fortunately, this method does not result in an endless increase
of generations because (a) the effect of events is often bounded
in time and (b) the WCET calculation requires to bound the
number of loop iterations.

C. The CFG pipeline analysis

Finally, the complete pipeline analysis is designed like
a classical data-flow analysis with a work list. Each BB is
associated with a set of input temporal states and a set of
output temporal states (initially empty). The analysis starts
with an initial temporal state at the entry of the CFG and
propagates the new states all along the CFG paths. For each
entry edge of a BB, the input state set is the union of the
output states of the preceding BBs. Each input state is updated
(i.e. multiplied by the pre-computed matrix) and rebased to
make a new output state. If the set of its output states differs
from the original set, the successors of the BB are pushed
into the work list. The process is repeated until finding a fix-
point on all sets of input/output states has been reached. For
readers familiar with abstract interpretation, this is actually the
collecting semantics of our pipeline semantics.

Using XDD, the variability caused by events is efficiently
recorded without any loss thanks to its compaction property.
Besides, the analysis at CFG-level collects the set of all
possible pipeline states, meaning it is also lossless according
to the variability caused by the control-flow. In turn, this
means that the resulting set of vectors of XDDs contains
sufficient information to determine the exact temporal behavior
of each BB in all possible situations. They can then be used
to precisely analyze the temporal behavior in presence of out-
of-order scheduled resources.

VI. MODELING THE SHARED MEMORY BUS

In previous work, our analysis was valid only when all the
resources were accessed in the program order. However, in
embedded microprocessors, the instruction and data caches
often share a common bus to the memory (or to a unified L2
cache). This introduces an out-of-order behavior: an instruc-
tion cache miss might access the shared bus before a data
cache miss generated by an older instruction. In other words,
the variability due to events in the start times of the FE and
ME nodes may change the access order to the shared bus.
Since XG dependencies are not expressive enough to model
out-of-order bus allocations, we propose, in this section, an
extension to the pipeline analysis to efficiently manage the
shared bus accesses according to the different configurations
of the temporal states. It supports the usual bus arbitration
policy: first-come-first-served (FCFS), with priority given to
the ME stage in case of simultaneous bus accesses.

A. Bus scheduling properties

Since we consider an in-order pipeline, the number of
possible contention scenarios on the shared bus is limited. For
instance, an instruction using the bus in the ME stage cannot
contend with any subsequent instructions in the ME stage
(load/store memory order is preserved). Similarly, bus accesses
by the FE stage follow the program order. Moreover, the
pipeline order ensures that a request emitted by an instruction
in the FE stage is granted the bus before a request emitted by
the same instruction in the ME stage. This means that the bus
allocation in an in-order pipeline is almost completely in-order,



TABLE III: Possible schedules of ME0 with subsequent FEs.

Schedule Condition Scheduling time of ME0

ME0, FE1, FE2, FE3 ρME0
≤ ρFE1

ρME0

FE1,ME0, FE2, FE3 ρFE1
< ρME0

≤ ρFE2
max(ρFE1

+ λBUS , ρME0
)

FE1, FE2,ME0, FE3 ρFE2
< ρME0

≤ ρFE3
max(ρFE2

+ λBUS , ρME0
)

FE1, FE2, FE3,ME0 ρFE3
< ρME0

max(ρFE3
+ λBUS , ρME0

)

with only one exception: a bus request in the ME stage by an
instruction denoted ME0 may be delayed by a bus request
in the FE stage by a younger instruction denoted FEi|i>0. To
simplify the notation in this section, ME0 and FEi|i>0 denote
the instructions as well as the XG vertex (e.g. ME0 also
denotes vertex [ME0/ME]; FE1 also denotes [FE1/FE]).
In-between instructions are disregarded but are still accounted
for in the matrices used to update the temporal states.

To sum up, FEi can delay ME0 only if FEi is ready to
enter FE stage before ME0 is ready to enter ME. In the XG
model, this situation can only happen when FEi does not
depend on ME0, that is, when there is no path from ME0 to
FEi

3.
In the example of Table III, we consider that ME0 can

only be delayed by FE1, FE2 and FE3. For a particular
configuration of events, there are four possible schedules
that are shown in the first column of the table. These four
schedules correspond to the four possible ways to interleave
ME0 with FEi accesses. The actual schedule is determined
by comparing the ready time of ME0 (ρME0 ) with the ready
times of FE1, FE2 and FE3 (resp. ρFE1 , ρFE2 and ρFE3 ):
the second column shows the condition corresponding to each
schedule. The third column gives the actual time at which
ME0 gets the bus with λBUS denoting the latency of a bus
access (including the memory transaction): if ME0 is the first
to be ready, then it gets the bus at time ρME0 . Otherwise,
ME0 gets the bus at the maximum time between its ready
time and the release time of bus by the FEi contender.

B. Batch bus scheduling with XDD

Table III shows the schedule of ME0 for a given con-
figuration. However, when times are expressed as XDDs, a
particular XDD may support configurations with different bus
schedules. That said, we must extend the computation of the
condition and the scheduling time in order to support XDDs.
Figure 3 shows such an example in a simpler scenario: ME0

may be delayed by FE1 and FE2. Let us assume their start
date without counting the contention (ρSi

) as shown in the
figure. The objective is to compute the actual start dates
of ME0 and FEi with contention (ρ̂ME0 and ρ̂FEi ). The
instruction fetch in FE1 may result in a cache hit or a cache
miss, which is represented by event ic1. The instruction fetch
in FE2 is assumed to be classified as Always Miss, meaning
that it always requests the bus. The latency of a bus access
is assumed to be 9 cycles. The events e0 and e1 are events

3The occurrence of such situations is limited by the size of the inter-stage
queues in the pipeline.

related to the instructions before ME0 that are assumed to
impact the start time of ME0 and FE2.

XDD (a) shows the ready time of ME0 and (b) the initial
value of ρ̂ME0

– the scheduling time of ME0 on the bus (+∞
means that no access is yet scheduled). (c) shows the initial
value of ρrel, recording the release time of the bus by FEi

(−∞ denotes that the bus is not used by any FEi for now).
The ready time of FE1 (d) is computed from the initial

state S⃗0 and the matrix between ME0 and FE1. The event
ic1 indicates with −∞ the configuration where FE1 does not
use the bus (hence it is not concerned by the contention).

ρME0
(a) and ρFE1

(d) are compared using ◀ME to get
the configurations and the time ( ρschedME0

(e)) when ME0

takes the bus, i.e. is scheduled, before FE1 (◀ME is formally
defined in Eq. (16)). Other configurations are assigned +∞,
denoting that they are not processed yet. Notice that a −∞
configuration in ρFEi does not allow ME0 to be scheduled
as subsequent FEj>i might allocate the bus before ME0.
ρschedME0

is then used to update ρ̂ME0
using the minimum

operator ⊖ (f).
ρschedFE1

(g), i.e. the configurations where FE1 gets the
bus, is computed in a similar way as ρschedME0

but with
operator ◀FE that selects the configurations in which FE
gets the bus, using the strict < comparison instead of ≤
because the ME stage has priority over the FE stage in
case of simultaneous requests. By adding the latency of the
bus (λBUS) to ρschedFE1

, we are able to update, using ⊕,
the release time of the bus after FE1 (ρrel (h)). Finally, we
compute the actual schedule of FE1 (ρ̂FE1 (i)) that is the time
of ρschedFE1 if FE1 is scheduled, or otherwise the release
time of the bus by ME0 (ρ̂ME0

⊗ λBUS). Now, as the actual
schedule of FE1 is known, the release time of the bus at
FE1 is computed and is used to adjust the temporal state.
By multiplying the state S⃗FE1

by the matrix MFE1−FE2
, we

get the ready time of FE2 (j). In the second iteration, first,
ρME0 (a) is compared with ρFE2 (j) with the operator ◀ME .
The actual scheduling time ρschedME0

(k) is computed by
considering the maximum between ρschedME0

and the release
time of the bus by FE1 (ρrel) according to the third column of
Table III. Then, ρ̂ME0 is updated (l). The schedule of FE2 –
ρschedFE2 (m) is computed with the operator ◀FE applied to
ρFE2

and ρME0
which is then used to update the release time

of the bus ρrel (n). The actual schedule of FE2 is computed
with respect to the use of the bus by ME0 (o).

When the end of the sequence is reached, there are no
further subsequent instructions that may contend with ME0

and the remaining +∞ in ρ̂ME0
represents configurations



ρSi

ρschedME0
=

(ρME0
◀ME ρFEi

)
⊕ρrel

ρ̂ME0
=

ρ̂ME0
⊖ ρschedME0

ρschedFEi
=

ρFEi ◀FE ρME0

ρrel ρ̂FEi
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Fig. 3: Batch bus scheduling with XDDs.

accessing the bus after FE1 and FE2. They are replaced by
the maximum between the ready time of ME0 and the release
times of the bus by FE1 and FE2, ρrel.

Operator ◀ME (resp. ◀FE) has a straightforward definition,
setting to +∞ the configurations where ME (resp. FE) does
not get the bus:

∀fME , fFE ∈ XDD2,∀γ ∈ Γ,

(fME ◀ME fFE)[γ] =

{
fME [γ] if fME [γ] ≤ fFE [γ],

+∞ otherwise

(fFE ◀FE fME)[γ] =

{
fFE [γ] if fFE [γ] < fME [γ],

+∞ otherwise
(16)

All these calculations seem a bit complex but it must be
kept in mind that real XDDs are much more complex with
much more configurations and relying on the XDD operators
allows to benefit from the XDDs optimizations.
C. Contention Analysis

The contention analysis depicted in the previous example
is described more formally in this paragraph. Basically, the
pipeline analysis is extended by splitting the BBs at contention
points, i.e. at the XG nodes where a bus access may occur
(ME or FE stages causing cache misses). Then they are
grouped in a sequence of one ME access followed by zero
or several FE accesses, (ME0, FE0<i≤n). The instructions
between two successive contention points are summarized by
a pre-computed matrix.

Algorithm 1 is then applied to compute the possible inter-
leaving of bus accesses for all configurations of the sequence
(ME0, FE0<i≤n). Additionally, it takes as input the temporal
state S⃗0. The result is the definitive schedule of ME0 (i.e.
ρ̂ME0 ) and of FEi (i.e. ρ̂FEi ).

Algorithm 1: Contention computation.

Input: S⃗0 ∈ S, (ME0, FE1≤i≤n)
Output: (ρ̂ME0

, ρ̂FE1≤i≤n
)

1 ρ̂ME0
= LEAF(+∞)

2 ρrel := LEAF(−∞)

3 S⃗FE1
:= S⃗ME0

·MME0−FE1

4 i := 1;

5 ρME0
:= S⃗0[iρ]

6 while i ≤ n ∧ (∃γ ∈ Γ ∧ ρ̂ME0
[γ] = +∞) do

7 if FEi.mustUseBus() then
8 ρFEi

:= S⃗FEi
[iFE ]

9 else
10 ρFEi

:= S⃗FEi
[iFE ]⊗ NODE(ici,−∞, 0)

11 ρschedME0
:= (ρME0

◀ME ρFEi
)⊕ ρrel

12 ρ̂ME0
:= ρ̂ME0

⊖ ρschedME0

13 ρschedFEi
:= ρFEi

◀FE ρME0

14 ρrel := ρrel ⊕ (ρschedFEi
⊗ λBUS)

15 ρ̂FEi
:= ρschedFEi

⊖ (ρ̂ME0
⊗ λME0

)

16 S⃗FEi+1 :=

(S⃗FEi
⊕ [0, ..., 0, ρ̂FEi

⊗ λBUS ]) ·MFEi−FEi+1

17 i = i+ 1

18 ρ̂ME0 := ρ̂ME0 ⊖ (ρrel ⊕ ρME0)

Initially, ME0 is considered as not scheduled whatever the
considered configuration and ρ̂ME0 is set to LEAF (+∞)
(line 1). It will then be updated after considering the contention
with each subsequent FEi. When ME0 does not contain +∞
anymore or when all FEi have been processed, the schedule
of ME0 is complete (condition at line 6). Line 2 initializes
ρrel that records the release time of the bus by FEi to −∞



as no FEi has been processed yet.
In line 3, the temporal state just before FE1 is computed

by applying the matrix MME0−FE1
to the initial state S⃗0; i is

initialized in line 4 and will range over the Contention Points,
1 to n. The ready time of ME0 is recorded into ρME0 at line 5.
Lines 7-10 compute the ready time of FEi if the access always
or sometimes results in a miss (according to mustUseBus()).
The latter case is expressed by the event ici and by adding
the NODE(ici,−∞, 0) to ρFEi

: −∞ denotes the case where
ici does not arise and there is no bus access.

ρschedME0
, ME0 configurations getting the bus before

FEi, is computed with ◀ME at line 11 by comparing the
ready times of ME0 with the ones of FEi. According to
the last column of Table III, these configurations are fixed by
taking the maximum between the ready time of ME0 and the
release time of the bus ρrel. The schedule of ME0 at this
iteration is accumulated in the definitive schedule of ME0

at line 12. At line 13, the schedule of FEi is computed.
Notice that as the ready time of FEi contains −∞ to denote
the case where it does not use the bus, these −∞ are kept
in ρschedFEi

. By adding the bus latency λBUS to ρschedFEi

and then ⊕ with ρrel, the release time of the bus is only
updated for configurations γ where FEi uses and gets the bus
(ρschedFEi [γ] ̸= +∞) (line 14). Notice that the +∞ in
ρrel cannot overwrite the release time of the bus by FEi

because FEi cannot get the bus if any prior FEj<i does
not get the bus. At line 15, the actual schedule of FEi is
computed by replacing the +∞ in ρschedFEi

(where FEi

loses contention in favor of ME0) by the release time of the
bus by ME0. Configurations where time is +∞ in ρschedFEi

must not be +∞ in ρ̂ME0 because only one of FEi or ME0 is
scheduled. However, as ρschedFEi

configurations not leading
to +∞ are lower than ρ̂ME0

(otherwise it is considered as
non-scheduled), ⊖ can be used to implement the replacement.

At line 16, the temporal state is updated regarding the
schedules of FEi, by applying ⊕ between the time pointer
of the state vector and the release time of the bus by FEi.
The updated state is then multiplied by matrix MFEi−FEi+1

to obtain the ready time of FEi+1. Line 18 takes into
account the remaining +∞ configurations in ρ̂ME0

that are
not already scheduled by the loop. The times assigned to these
configurations are the maximum between the ready time of
ME0 and the bus release time by FEi. Notice that +∞ in
the ρ̂ME0 may also be caused by the fact that none of the FEi

have used the bus: this time is recorded as −∞ in ρrel and is
hence automatically overwritten by the ready time of ME0.

VII. EVALUATION

The performance of the analysis strongly depends on the
size of the XDDs in the pipeline states and on the number
of pipeline states. Both metrics are related to some inher-
ent properties of the analyzed program and of the micro-
architecture, the impact of which is difficult to theoretically
estimate. Therefore, we experiment our analysis on realistic
benchmarks that empirically provide a better understanding of
the performance.

A. Experimental Setup

The pipeline used in the examples of the previous sections
was chosen to enhance the readability of the article. For
the experimentation, we consider a more powerful micro-
architecture with more parallelism leading to more complex
temporal states. In addition, this new pipeline allows demon-
strating the scalability of our approach.

Our pipeline has 4 stages (FE, DE, EX, CM), each able
to process 4 instructions per cycle. In the FE stage, it fetches
instructions from a single-level instruction cache. The FE stage
is able to fetch 4 instructions of the same memory block
simultaneously, with a latency of 7 cycles in case of a cache
miss (ignoring possible contention). The DE stage decodes the
instructions and the EX stage handles all arithmetic, floating
point and memory related operations in several functional units
(FU). Four ALUs (Arithmetic and Logic Units) are available
and can be simultaneously used by independent instructions.
The latency of arithmetic operations is 1 cycle for additions
and subtractions, 2 cycles for multiplications and 7 cycles for
divisions. One FPU (Floating Point Unit) is available with a
latency of 3 cycles for additions and subtractions, 5 cycles
for multiplications and 12 cycles for divisions. A single MU
(Memory Unit) handles memory-related operations (loads and
stores). In case of a multiple load/store operation, the memory
accesses are performed in order, and if one multiple load/store
needs to use the memory bus (in case of data cache misses),
it occupies it until all loads/stores are completed. The latency
of data accesses is the same as for instruction fetches. In the
EX stage, an issue buffer distributes the instructions to the
appropriate FUs. Instructions using the same FU are executed
in order; instructions using different FUs can be executed out-
of-order (if the absence of data dependencies).

The instruction cache is a 16-KByte 2-way set associative
LRU (Least Recent Used) cache. The data cache is a 8-KByte
2-way set associative LRU cache. There is a single level of
caches and they share the same bus to the main memory. We
believe that this architecture is representative of many mid-
range processors used in real-time embedded systems.

The whole CFG analysis is implemented using the OTAWA
toolbox [11]. Global analyses, including instruction and data
cache analyses as well as control flow analyses are provided by
OTAWA. The benchmarks are taken from the TACLe suite [10]
compiled for the armv7 instruction set with a hard floating
point unit. Among 79 tasks to be analyzed, 5 fail due to
limitations in OTAWA (unsupported irregular control flow4,
e.g. unable to solve dynamic branch address) and another
5 have been dropped due to the lack of annotations on the
bounds of recursive function calls5, for which the WCET
computation impossible.

B. Number of Temporal States

The first experiment explores the number of temporal states
along the edges of BBs (representing the output of the source

4pm,mpeg2, gsm enc, ammunition, rosace
5recursion, huff enc, quicksort, bitonic, anagram



BBs and the input of sink BBs). The experimental results are
shown in Figure 4. The x-axis shows the number of pipeline
states and the y-axis shows the number of edges for each
amount of states (in a logarithmic scale). The bars accumulate
data from all the benchmarks.

The risk, with our approach at CFG level, is to face an
exploding number of states which is a common concern of
collecting semantic based analyses. Fortunately, the experi-
mentation shows that most of the edges have less than 20
output states. This means that most of the timing variations
due to events are efficiently represented in the XDDs of the
temporal states. As expected, the XDDs successfully prevent
the state explosion and keep the pipeline analysis tractable at
CFG-level. The presence of some rare cases where the number
of states is much higher is not blocking as the analysis time
remains reasonable in most cases (cf. Section VII-D).
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Fig. 4: The distribution of number of pipeline states.
C. Events Lifetime

The second experiment measures the lifetime of events
during the analysis. The longer the lifetime of events, the
larger the complexity of the analysis in terms of number of
states and size of XDDs. In our micro-architecture, an event
is created by a cache access and may disappear from the
XDD during the analysis, for two reasons: (i) it is absorbed
by the pipeline: for example, when an instruction stalls in
the EX stage due to a data cache miss, the next instructions
may still be processed in the pipeline, completely hiding the
stalling time – this event will stay alive only in a short time
window during the analysis of other instructions executed in
parallel. (ii) The events are stabilized and disappear thanks to
the rebasing operation. Intuitively, we assume that in most
situations, the events raised by an instruction only impact
nearby instructions. Therefore, the lifetime of events provides
a fine estimation of both the size of XDDs and the number of
pipeline states of our analysis at CFG-level. As complement,
in [2], we provide detailed discussion and experiments, on
different micro-architecture setups, of the size of XDDs for
BB-level analysis where the pipeline absorption effect is the
primary factor.

However, the pipeline analysis is only able to provide the
lifetime information at the granularity of contention points
because the effect of executing instructions between contention
points is expressed by matrices. As collecting these statistics
at a finer granularity would have an important adverse effect

on the analysis time, we survey the liveness of events on this
basis. Events are deemed as dead at contention points if the
temporal state of which does not contain the event in any XDD
contained in the vector. Thus, the lifetime statistics are over-
estimated by the number of instructions between contention
points. Besides, the pipeline states are only rebased at the end
of BBs so the lifetime of events in the middle of BBs does not
consider the potential death due to rebasing. In the end, the
measured lifetime in this experimentation is an over-estimation
of the actual lifetime of events.

Figure 5 shows the experimental results. The x-axis is the
lifetime of events (in instructions with limitations described
above) and the y-axis, in logarithm scale, shows the number
of events having this lifetime. These are also accumulated from
the whole set of TACLe benchmarks. The statistics show that
most events have a short lifetime (below 50 instructions). We
have observed a unique lifetime of 602 instructions that is
not represented to keep the figure readable. It turns out that
in most situations where the lifetime is greater than 50, the
events are in a very long BB. In the extreme case of the
602-instruction event lifetime, the involved BB contains 617
instructions (in benchmark md5) and the reported lifetime is
an effect of the granularity level. Despite this very infrequent
case, most events have short lifetimes and the size of temporal
states (sum of XDDs sizes of the vector) is reasonable and
the analysis remains efficient.
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Fig. 5: The distribution of events lifetime.

D. Analysis time

The analysis time includes the time to pre-compute the
matrices and the duration of the pipeline analysis on the CFG.
We run the analysis on a virtual machine on a cloud server with
8 GB RAM and 4-core Intel Broadwell processors. Only 2
cores are occupied simultaneously to process the benchmarks.
We also measure the analysis time without leveraging the
algebraic property of XDD to pre-compute the matrices (with
a timeout of 1 hour) in order to clarify the benefit of this
optimization. The results are shown in Figure 6. The x-
axis shows the benchmarks and the y-axis plots the analysis
time in seconds in a logarithmic scale. The analysis time
with matrices is shown as green bars. At worst, the analysis
with matrices finishes in 553s (9m13s). In most cases, it
finishes in about 1 to 20s. In contrast, the analysis without
matrices has both memory usage and speed issues as shown
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Fig. 6: The analysis time.

by the red (crashed because out of 8G RAM) and yellow
bars (timeout after 1 hour). For those finishing within 1
hour (blue bars), the matrix optimization brings 217% speed-
up in average6. The rare cases where the analysis without
matrix is faster are simple benchmarks where the cost of
computing the matrices is not balanced by the speed-up. This
result reveals that the pre-computation of matrices effectively
reduces intermediate redundant computations, which enhances
the analysis performance in terms of speed and memory usage.
The analysis is still able to handle problematic cases (those
that have a large number of temporal states or long lifetime
events) in a reasonable time. Moreover, we observe that the
industry-like applications encompassed in the TACLeBench
collection (Debbie and Papabench) are analyzed in short times
(respectively 10 and 15 minutes, summing the analysis times
of all their tasks). Therefore, we believe that our approach
could be used in industrial real-time applications (for example,
Airbus requires at most 48 hours between the detection of
a bug and the distribution of the fix, including temporal
verification).

E. Precision

The presence of out-of-order resources enables potential
timing anomalies [7]. This means that the pipeline analysis
can not assume the local worst case to be the global worst
case upon timing variations. In the presence of possible timing
anomalies, a trade-off between precision and performance is
more difficult to achieve: the analysis either has to track ex-
actly all possible timing states or to cover the timing variations
with a safe but largely over-estimated cost. In the example of
the shared bus, the cost for not tracking precise pipeline states
is to cover the latency of memory access with an upper bound
by considering the maximal potential contention with prior and
subsequent instructions. To evaluate this over-estimation, we
implemented this strategy in etime, the state-of-the-art pipeline

6average speed up = the sum of the analysis times of all the benchmarks
without matrix divided by the sum of analysis times with matrices.

analysis of OTAWA. We compare the WCET estimated with
etime to the one estimated with the new approach.

Concretely, the etime analysis implements the same pipeline
model (i.e. XG based) except for it does not use XDDs and
considers the WCET of BBs locally instead of at CFG-level.
In order to tighten the WCET, it considers all the combinations
of events for each BB. But since it disregards the execution
context, it may choose to drop the context at any time to
reduce the exponential number of pipeline states – which is
not safe with timing anomalies. Moreover, etime generates
only one execution time for each BB (the worst one), while
the new pipeline analysis provides all the possible execution
times to the IPET stage. The way IPET can handle these
multiple execution times has been detailed in [31] and is out
of the scope of this paper, but it clearly benefits the new
approach. Finally, as etime originally did not support out-of-
order accesses, we created a new type of event with a latency
of one memory access that is associated to each memory
access not classified as Always Hit or Always Miss in order
to cover the waiting time of the shared bus.

As both etime and the approach presented in this paper
are implemented with OTAWA, we are able to ensure that the
micro-architectural model and global analyses are the same.
Disregarding the safety issue due to ignoring timing anomalies,
we believe that the WCET obtained by etime can be used as a
reference of a classical static WCET approach that considers
out-of-order resources without tracking exact pipeline states.

The experimental results are shown in Figure 7, in which
the x-axis shows the benchmarks and the y-axis shows the
gain in precision computed by (tetime − tnew)/tetime, where
tetime is the WCET obtained by etime and tnew is the WCET
obtained by our new approach. Due to the limited performance
of etime, the epic benchmark does not finish within 6 hours.
The susan benchmark also fails due to a bug in OTAWA. This
is why the bars for these two benchmarks miss in the figure.

The experimental results show that, for most of the bench-
marks, the WCET obtained by using the new approach is
improved by 40% to 80%. In some rare cases (fft, two



ad
pc

m_d
ec

ad
pc

m_e
nc

au
dio

be
am

bin
ar

ys
ea

rch
bit

co
un

t
bs

or
t

cjp
eg

_tr
an

su
pp

cjp
eg

_w
rb

mp

co
mple

x_
up

da
te

s
co

sf

co
un

tn
eg

at
ive

cu
bic

de
bie

-H
an

dle
Ac

qu
isi

tio
n

de
bie

-H
an

dle
He

alt
hM

on
ito

rin
g

de
bie

-H
an

dle
Hi

tTr
igg

er

de
bie

-H
an

dle
Te

lec
om

man
d

de
bie

-In
itA

cq
uis

itio
nT

as
k

de
bie

-In
itH

ea
lth

Mo
nit

or
ing

de
bie

-In
itH

itT
rig

ge
rTa

sk

de
bie

-In
itT

ele
co

mman
dT

as
k

de
g2

ra
d

dij
ks

tra ep
ic fac fft

filt
er

ba
nk

fir
2d

im
fm

re
f

g7
23

_e
nc

gs
m_d

ec
h2

64
_d

ec
hu

ff_
de

c iir
ins

er
tso

rt
isq

rt
jfd

cti
nt

lift
-m

ain lm
s

lud
cm

p
mat

rix
1

md5
minv

er
nd

es

pp
b-

__
ve

cto
r_1

0

pp
b-

__
ve

cto
r_1

2

pp
b-

__
ve

cto
r_1

7

pp
b-

__
ve

cto
r_3

0

pp
b-

__
ve

cto
r_5

pp
b-

__
ve

cto
r_6

pp
b-

alt
itu

de
_c

on
tro

l

pp
b-

ch
ec

k_
fai

lsa
fe

pp
b-

ch
ec

k_
meg

a1
28

_v
alu

es

pp
b-

cli
mb_

co
nt

ro
l

pp
b-

lin
k_

fb
w_

se
nd

pp
b-

ra
dio

_c
on

tro
l

pp
b-

se
nd

_d
at

a_
to

_a
ut

op
ilo

t

pp
b-

se
rv

o_
tra

ns
mit

pp
b-

sta
bil

isa
tio

n
pp

b-
te

st_
pp

m
pe

tri
ne

t

po
we

rw
ind

ow
_m

ain
pr

im
e

ra
d2

de
g

rijn
da

el_
de

c
rijn

da
el_

en
c

sh
a st

sta
te

mat
e

su
sa

n

0
10
20
30
40
50
60
70
80

 W
CE

T 
ga

in
 (%

)

Fig. 7: WCET comparison

tasks of papabench, rad2deg, rijndael enc, rijndael dec and
statemate), the gain is smaller but still around 20%-40%: these
benchmarks are the least memory-intensive and get the worst
results from global analyses, which explains why the over-
estimation on memory latency and the improved IPET (see
[31]) have a lower impact.

This impressive improvement on the final WCET is ex-
plained by the precise estimation of the bus latency, the
benefits of which are amplified by the improved IPET for-
mulation. Concerning the latency of memory accesses, the
new approach computes the exact waiting time. If we consider
that the actual waiting time is low (which is the case in the
example micro-architecture that is almost in-order), the worst
memory latency accounted in etime is nearly doubled. The
improved IPET applied to the new approach also contributes
to the improvement: according to our experiments in [31] it
achieves itself 0%-50% of the gain precision depending on
the benchmark. Moreover, the over-estimation on the pipeline
analysis is even amplified by standard IPET (as opposed to
our improved version [31]) because the WCET of each BB
is multiplied by the BB’s execution count. This explains the
impressive improvement up to 80% observed in Figure 7.

VIII. CONCLUSION

In this paper, we formally define an efficient state represen-
tation for pipeline timing analysis using vectors of XDDs.
It enables the analysis of the pipeline at CFG-level. By
leveraging the algebraic properties of XDDs, we perform
the analysis as a sequence of matrix multiplications, which
significantly reduces the analysis time. This analysis also
improves the precision of the estimated WCET by 20% to 80%
on the TACLe benchmarks compared to previous analysis im-
plemented in the OTAWA toolset. We extend our new analysis
to precisely take into account the contention on the memory
bus shared by the instruction and data caches. This makes
the analysis sound for timing-anomaly-prone processors. The
measured analysis time for the TACLe benchmarks shows that

the approach is scalable and should be practical for industrial
applications.

As future work, we could benefit from the exact tracking
of the temporal states to qualify more precisely the effects of
timing variations in different micro-architectures. This could
be used to eventually qualify good or bad micro-architecture
designs in terms of predictability. This may also help to find
better trade-offs in the design of time-predictable pipelines
and alleviate over-stringent constraints on the pipeline such as
strict-in-order execution, that often limits the performance of
the processor. We also plan to extend our approach to all kinds
of out-of-order scheduled resources. Although our operators
and matrices calculation are correct whatever the out-of-order
resource, the generalization of the contention model will likely
raise performance issues as one can no longer leverage the
constraints on the contention upon concurrent accesses. That
said, we must find a scalable model of the interleaving of
resource acquisitions when multiple out-of-order resources are
involved.

TABLE IV: List of symbols and their signification

ρ[i, st] the start time of an instruction i in a pipeline stage st
ρ∗[i, st] the end time of an instruction i in a pipeline stage st

λv the latency of an instruction executed in stage v

Z# Z ∪ {+∞,−∞}
γ ∈ Γ one of the set of configurations of events
α function converting Γ → Z# to XDD

Ii ∈ I the ith instruction of a sequence of instructions
s ∈ P one stage of the set of pipeline stages

d ∈ D[I/s] one dependency of the set of dependencies of [I/s]
S⃗ ∈ S one pipeline state vector of the set of pipeline states

ϱ the time pointer of pipeline state
ρ̂ the definitive time of acquiring the bus
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