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Abstract—This article presents a feedforward analytical solu-
tion of Field-Weakening (FW) for Surface-Mounted Permanent
Magnets Synchronous Motor (SPMSM) using Karush-Kuhn-
Tucker (KKT) optimality conditions. The generated current ref-
erences take into consideration voltage and current constraints,
load torque, and speed references. The formulated optimization
problem helps ensure that the generated references stays within
the feasible domain given by the constraints. Furthermore,
the solution given by the KKT is implemented in real-time
using a low cost rapid control prototyping microcontroller
(ATSAME54P20A) without the use of look-up tables.

Index Terms—Flux-weakening control, Karush-Kuhn-Tucker
(KKT), surface-mounted permanent magnet synchronous motor
(SPMSM), real-time control, rapid control prototyping.

I. INTRODUCTION

Electrical Vehicles [1], Robotics [2], Power generation [3]
and other industries use Surface-Mounted Permanent Magnets
Synchronous Motors (SPMSMs). This is thanks to their high
power density, high efficiency, ease to manufacture and com-
pact structure. To fully take advantage of the intrinsic charac-
teristics of SPMSMs, vector control is usually implemented.
When high speed performance is required, the aforementioned
control technique is augmented using ad hoc methods such as
flux weakening (FW). Several approaches have been studied
in the literature when it comes to field weakening techniques
[4] - [10]. They can be classified into three categories: (i) feed-
back (ii) signal injection (iii) feedforward. Feedback control
computes the current trajectories using a voltage control loop.
In [4], a novel virtual speed dependent current constraint is
introduced to improve the transient response of the speed loop.

Paper [5] presents a gradient descent based method to alter the
current reference generated by the voltage control in order to
keep the problem feasible. The voltage feedback control strat-
egy is considered robust due to the active error correction, and
is usually described as model-free. Nevertheless, the model is
used for proper controller tuning, antiwind-up management
and bandwidth decoupling. Signal injection control strategies
(Perturb & Observe) are the most model free techniques to
achieve flux weakening operation. The aforementioned method
comes with issues such as sensitivity to exterior perturbations,
additional losses, and state ripple. Some issues related to this
control are addressed, for example, in [6], [7]. Feedforward is
a model-based method that computes the currents references
using the mathematical model of the SPMSM. In [8] the flux
weakening analytical solutions are presented for different type
of electrical machines using the Lagrangian formalism. (e.g:
permanent-magnet assisted machines, excited reluctance syn-
chronous machines, interior permanent magnet synchronous
machines...). Feedforward methods are usually described as
computationally heavy, especially in the cases treated in [8].
To avoid cumbersome equations, iterative methods can be
used [9], [10]. Paper [9] uses feedforward projected gradient
descent to ensure respecting the non-linear voltage and current
constraints. In [10] a Levenberg–Marquardt algorithm, is used
for the same purpose. Convex optimization is used in [11] for
FW and furthermore to build an optimal speed controller.

The contribution of this paper is to introduce the KKT
optimality conditions methodology to solve the FW opti-
mization problem instead of the Lagrangian. Using the KKT



enables: (i) a general way of writing and solving the FW
problem, (ii) introducing two new Lagrange multipliers, also
called dual variables, they express the sensitivity of the cost
function with respect to changes in the constraints of an
optimization problem, (iii) a model-based trajectory correction
that insures the problem is always feasible via proper anti-wind
up boundary choice. The model dependency weakness of this
feedforward control is addressed through real-time parameter
identification using [12]. Experimental results are presented to
verify the feasibility of the proposed control scheme on real-
time low cost embedded applications. The paper is organized
as follows: Firstly, in Section II, the considered model and
the associated optimization problem are presented. Next, in
Section III, the FW problem is solved analytically using
KKT optimality conditions. To demonstrate the efficacy of the
proposed approach, experiments are conducted in Section IV.
The paper concludes with Section V, which summarizes the
findings and outlines future research directions.

II. PROBLEM STATEMENT

A. Model of the SPMSM

Using Clarke and Park transformations [13], the SPMSM
mathematical model in the d-q axis is expressed as:

L
didq
dt

= vdq −Ridq − pωLJ idq − edq, (1)

τ =
3

2
pϕf iq, (2)

with the rotation matrix J given by:

J =

[
0 −1
1 0

]
, (3)

where the Back Electromotive Force (BEMF):

edq = pϕfωJ
[
1
0

]
= pϕfω

[
0
1

]
, (4)

and where vdq = [vd vq]
T and idq = [id iq]

T are re-
spectively the d-q phases voltages and currents, R the phase
resistance, L the phase inductance, ϕf the peak magnetic flux
of the permanent magnets seen by a stator windings, p the pole
pairs number, ω the rotor angular speed, τ the electromagnetic
torque.

The SPMSM is mainly subject to two constraints:

∥idq∥2 = i2d + i2q ≤ I2max, (5)

∥vdq∥2 = v2d + v2q ≤ V 2
max, (6)

where Imax and Vmax are respectively the maximum accept-
able current and voltage. The Imax magnitude mainly depends
on the cooling capacity of the machine, whereas the Vmax

magnitude depends on the rated voltage of the inverter and
the type of modulation used. Without taking into consideration
the dead-times effect and the nonlinearities of the inverter, and
using sinusoidal Pulse Width Modulation (PWM): Vmax is set
at Vdc/2 where Vdc is the DC bus voltage.

B. Formulation of the optimization problem

The desired behavior is the minimum steady state currents
idq to reach a given speed ω at a specific load torque τ under
(5) and (6). The mathematical formulation is given by:

min
id, iq

i2d + i2q,

s.t.

L
didq
dt

= vdq −Ridq − pωLJ idq − edq = 0,

∥idq∥2 = i2d + i2q ≤ I2max,

∥vdq∥2 = v2d + v2q ≤ V 2
max,

iq =
2

3

τ

pϕf
.

(7a)

(7b)

(7c)

(7d)

(7e)

Substituting (7b) in (7d), we reformulate the voltage constraint
into the d-q current frame, the optimization problem becomes:

min
id, iq

i2d + i2q,

s.t.

i2d + i2q ≤ I2max,

(id + a(ω))2 + (iq + b(ω))2 ≤ c(ω),

iq =
2

3

τ

pϕf
.

(8a)

(8b)

(8c)

(8d)

where Γ = {ω, τ, Vmax, Imax} is the parameters set, and
K(ω) =

pωϕf

R2+(pωL)2 ,

a(ω) = K(ω)pωL,

b(ω) = K(ω)R,

c(ω) =
V 2
max

R2+(pLω)2 .

(9)

The constraints presented in (8) are depicted in Fig. 1; in
blue, the current constraint (8b); in yellow, purple, orange
full lines the voltage constraint (8c) for three different speeds
(ω3, ω2, ω1) and in dashed lines three different torque con-
straints (8d).

C. KKT optimality conditions

The problem (8) may be solved using a general Lagrange
function including the inequality constraints and the KKT
optimality conditions, rather than only including the equality
constraints as in [10], [14], [15] and [16]. The given Lagrange
function, where λ, µ1 and µ2 are the Lagrange multipliers, is:

L(id, iq, λ, µ1, µ2) =
i2d + i2q + λ(iq − 2

3
τ

pϕf
) + µ1(i

2
d + i2q − I2max)

+µ2

(
(id + a(ω))2 + (iq + b(ω))2 − c(ω)

)
.

(10)



The Karush-Kuhn-Tucker (KKT) necessary optimality condi-
tions can be extracted by differentiating the Lagrange function
with respect to each of its variables:

[
∂L
∂id
∂L
∂iq

]
=

[
id + µ1id + (id + a(ω))µ2

2iq + λ+ 2µ1iq + 2µ2(iq + b(ω))

]
= 0,

[
µ1 µ2

] [ i2d + i2q − I2max

(id + a(ω))2 + (iq + b(ω))2 − c(ω)

]
= 0,

iq −
2τ

3pϕf
= 0,

i2d + i2q − I2max ≤ 0,

(id + a(ω))2 + (iq + b(ω))2 − c(ω) ≤ 0,

µ1 ≥ 0,

µ2 ≥ 0.

(11a)

(11b)

(11c)

(11d)

(11e)
(11f)
(11g)

For a set of parameters Γ = {(ω, τ, Vmax, Imax) ∈ R4
+}.

Using system (11), four cases are considered in Tab. I.

TABLE I: Possible cases of constraints

µ1 µ2 Active constraints Case
Inactive Inactive None 1
Inactive Active Voltage 2
Active Inactive Current 3
Active Active Voltage and Current 4

The voltage constraint (8c) is dependent on the speed ω
of the SPMSM. It is a circle of center (−a(ω),−b(ω)) and
of radius

√
c(ω). At high speed, the available torque (or iq

current) decreases because of the BEMF (4) leading to voltage
saturation. Hence, a negative id current is applied to reduce
the effect of the BEMF, this is called Field-Weakening. The
current constraint is a steady circle of center (0, 0) and radius
Imax. Cases 1, 2 from Tab. I are to be studied because they
determine whether FW is necessary. Cases 3, 4 are suitable to
determine the feasibility of (11) for the given set of parameters
and furthermore provide a feasible solution.
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Fig. 1: Constraints in the dq-axis current plane.

III. ANALYTICAL SOLUTIONS OF THE OPTIMIZATION
PROBLEM

In this section, an analytical solution to the system (11) is
introduced for the four cases presented in Tab. I. The main
goal is to determine the necessary id for the set of parameters
Γ. A geometrical solution is given in Fig. 2. In full purple and
blue lines are represented respectively the voltage and current
constraints. For a given speed ω, four different torque limits
are considered. First, τ1 the maximum torque without FW, it
is given by the intersection between the voltage constraint and
the q-axis. Then τ2, the maximum torque with FW, it is given
by the intersection between the voltage and current constraints.
Then τ3, the maximum torque at low speeds ω < ω1, it is
a function of Imax. Finally, τ4 the maximum torque when
the voltage constraint is more restraining than the current
constraint. Since the voltage constraint is speed dependent
(8c), the boundaries τ1, τ2 and τ4 are too. Solving (11) is
determining the value of idq by comparing τ to the boundaries
τ1, τ2, τ3 and τ4.
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Fig. 2: Geometrical solution.

A. Case 1: no active constraint
First, we consider the case where no inequality constraint is

active. The SPMSM is in a low speed regime, meaning that the
BEMF is not significant enough to reach the voltage saturation
and the demanded torque does not induce current saturation.
By solving the system (11), the solution is:

id =0,

iq =− λ =
2τ

3pϕf
,

µ1=µ2 = 0,

(12a)

(12b)

(12c)

for the set of parameters given by:

Γ1 = {(ω, τ, Vmax, Imax) ∈ R4
+|

0 < τ < τ1 = 3
2pϕf

(√
c(ω)− a2(ω)− b(ω)

)
and

0 < τ < τ3 = 3
2pϕfImax and c(ω)− a2(ω) ≥ 0}.

(13)

The first inequality expresses the maximum available torque
without FW for a range of speed ω ∈ [ω1, ω3] represented



in Fig. 1. Using the same inequality, we can define some
notable points depicted in Fig. 1 where all full lines are
voltage constraints for a particular speed, and dashed lines
in the same color are the corresponding maximum achievable
torque without FW. Solving:

√
c(ω)− a2(ω)− b(ω) = Imax,

gives the base speed ω1 (full orange line). When ω > ω1

the maximum rated torque given by τ3 = 3
2pϕfImax is no

longer possible. Secondly, solving
√
c(ω)− a2(ω)−b(ω) = 0

gives the critical speed ω3 (in yellow). When ω > ω3, FW is
compulsory to produce any torque. In purple, an intermediate
point to underline the effect of the BEMF on the available
torque when FW is not introduced. The Lagrange multiplier
λ conveys the sensitivity of the cost function in regard to the
torque constraint. The boundaries τ1 and τ3 are schematized
in Fig. 2. When c(ω)−a2(ω) ≥ 0 an intersection between the
voltage constraint and the q-axis exists.

B. Case 2: active voltage constraint

In case 2, the voltage constraint is active, in other terms the
injection of a negative id current is compulsory to achieve the
desired torque and speed operating point. Below, the solution
to (11) when the voltage constraint is active:

id±=±

√
c(ω)−

(
2τ

3pϕf
+ b(ω)

)2

− a(ω),

iq =
2τ

3pϕf
,

λ =− 2iq − 2µ2(iq + b(ω)),

µ2 =− id
id + a(ω)

> 0, µ1 = 0.

(14a)

(14b)

(14c)

(14d)

for the set of parameters given by:

Γ2 =

{
(ω, τ, Vmax, Imax) ∈ R4

+|

τ1 ≤ τ ≤ τ2 and τ1 ≤ τ < min(τ3, τ4)

τ4 =
3pϕf

2 (
√
c− b)}.

(15)

When the voltage constraint is active, the id− current given
by (14a) is to be applied. The iq current is determined by τ .
The set Γ2 is used for trajectory correction, as detailed later
in III-E. The Lagrange multiplier µ2 denotes the sensitivity of
the copper losses to the variation in the voltage constraint.
The first inequality of the set Γ2 expresses the maximum
torque available seeing only the voltage constraint, Fig. 2.
This is useful when the voltage constraint circle is completely
included in the current constraint. The second inequality
means that the demanded torque needs to be lower than the
intersection between the torque given by the voltage and
current constraints. This is investigated in the fourth case. The
different boundaries defining the set Γ2 are depicted in Fig. 2.
An explicit formulation of τ2 is given in III-D.

C. Case 3: active current constraint

In case 3, only the current constraint is active, which
suggests that the demanded torque is such that iq = Imax.

When the current constraint is active, the maximum attainable
speed is the base speed, ω1 discussed in III-A.

id = 0,

iq =
2τ

3pϕf
= Imax,

λ = −2id − 2µ1iq

µ1 ≥ 0, µ2 = 0

(16a)

(16b)

(16c)
(16d)

for the set of parameters given by:

Γ3 = {(ω, τ, Vmax, Imax) ∈ R4
+|τ = τ3}. (17)

This solution is represented in Fig. 2 by the blue curves.
The dual variable µ1 and λ are linearly dependent, it implies
that the corresponding constraints in the primal problem are
equivalent. Here, the torque constraint is redundant with the
current constraint. To draw an analogy with mechanics, it
could be described as a hyperstatic situation. Thus, any value
of lambda that results in a positive µ1 can be utilized to
measure the sensitivity of the copper losses concerning the
current constraint.

D. Case 4: active voltage and current constraint

As stated in the introduction of this section, case 4 is
studied to have better understanding of the steady state regime
of the SPMSM, and therefore guarantee that the generated
vector idq is always feasible. Here, both the voltage and
current constraints are active, the solution is consequently
a single point given by the intersection between the two
constraints, as shown by the purple square in Fig. 2. When
the set {ω, τ, Vmax, Imax} is not feasible, this point is used to
determine the highest speed possible for the demanded torque,
as shown in Fig. 3. The intersection between the voltage and
the current constraints is given by the solution to the set of
equations (11):

id = κ1 + κ2
−2κ1κ2 +

√
∆

2(κ2
2 + 1)

,

iq =
2τ2
3pϕf

=
−2κ1κ2 +

√
∆

2(κ2
2 + 1)

,

µ1 = −1 +
1

2

(id + a(ω))

b(ω)id − a(ω)iq
λ > 0

µ2 =
id

bid(ω)− aiq(ω)
λ > 0

(18a)

(18b)

(18c)

(18d)

where
κ1 = κ1(ω) =

(−a2(ω)−b2(ω)+c(ω)−I2
max)

2a(ω) ,

κ2 = κ2(ω) =
−b(ω)
a(ω) ,

∆ = 4(I2max(κ
2
2 + 1)− κ2

1),

(19)

for the set of parameters given by:

Γ4 = {(ω, τ, Vmax, Imax) ∈ R4
+|

τ = τ2 =
3pϕf

2
−2κ1κ2+

√
∆

2(κ2
2+1)

}. (20)

Similarly to III-C, µ1 and µ2 are linearly dependent to λ, thus
any value of λ that results in a positive µ1 and µ2 can be used



to measure the sensitivity of the cost function to variation of
both voltage and current constraints. The torque τ2 is depicted
in Fig.2. When ∆ ≥ 0 the intersection between the current and
voltage circle exists.
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Fig. 3: Trajectory correction.

E. Trajectory correction

When the demanded set Γ is located outside the current
constraint circle, the problem is not feasible, for instance
the yellow square in Fig. 3. The aim of this section is to
present a method to produce the desired torque but with
the highest speed possible that respects the constraints. This
idea is illustrated in Fig. 3 by the blue circle when only
mechanical dry friction is considered. When viscous friction
is considered, the blue circle can be lower on the current
constraint. Trajectory correction uses equation (20) to choose
the boundaries for the dynamic antiwind-up of the speed
controller, as depicted by Fig. 4. Cases 3 and 4 are used
for choosing the boundaries of the dynamic saturation bloc
as detailed in algorithm 1. When the set of parameters Γ is
a subset of Γ1 or Γ3 no flux weakening is necessary, and
the direct current is set to zero. The upper boundary of the
dynamic saturation block is set to τ3. Otherwise, a negative
current id is injected to reduce the effect of the BEMF. When
the boundaries of the dynamic anti-windup are reached, the
speed loop is disabled (dotted lines in Fig. 4).

IV. EXPERIMENTAL RESULTS

Experimental results have been carried to verify the ef-
fectiveness of the proposed control scheme on a 3-phases
SPMSM. The SPMSM identified parameters are given in
Tab. II. An embedded inverter demo-board from Microchip
(MCLV-2), an ATSAME54P20A 32-bits microcontroller with
a rapid control prototyping solution are used [17]. The in-
verter’s switching frequency is fsw = 20 kHz, the DC bus
voltage is 24 V. Two shunt resistors and a 12 bits analog to
digital converter are used for current sensing. Algorithm 1

Fig. 4: The KKT flux-weakening control scheme.

Algorithm 1 KKT FW Algorithm
Data: (τ, ω, Vmax, Imax) ∈ Γ
if Γ ⊂ Γ1 or Γ ⊂ Γ3 then

idr = 0; τmax = τ3; iqr = 2τ
3pϕf

else

idr =

√
c(ω)−

(
2τ

3pϕf
+ b(ω)

)2

− a(ω); iqr = 2τ
3pϕf

;

if τ1 < τ2 &
i2qr(τ = τ2) + i2dr−(τ = τ2) > I2max & ∆(ω) > 0 then

τmax = τ2;
else

τmax = τ4;
end
if ∆(ω) < 0 & i2qr(τ = τ2) + i2dr−(τ = τ2) > I2max then

idr = NaN ; iqr = NaN ; τmax = NaN
end

end

along with the speed control are implemented at a sampling
frequency of fω = 2.5 kHz. The execution time is 17.42 µs
when FW is not necessary, which represents 4.35 % of the
sampling period. When negative id is injected, the execution
time is 41.37 µs, which represents 10.34 % of the sampling
period. The speed loop time response is 1 s. The algorithm is
tested for speed steps of 10 rad/s as depicted in Fig. 5. At 430
rad/s flux weakening is necessary to stay within the voltage
constraint. At 487 rad/s both voltage and current constraints
are active (see Fig. 6), thus, for the torque equivalent to
iq = 1.6 A no higher speed than 487 rad/s is possible.
When the reference speed exceeds, 487 rad/s the dynamic anti-
windup deactivates the speed loop, and the maximum torque
is the intersection of the voltage and current constraint. Using
the measured currents and speed, it is possible to track in real
time the dual variables of the KKT conditions, and therefore
express the sensitivity of the cost function to the changes in

TABLE II: SPMSM parameters

SPMSM Values Units
R 0.656 Ω

L = Ld = Lq 0.35 mH
ϕf 6.6 mWb
p 4 -
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Fig. 5: Speed control. Top: the reference and measured direct
current generated by the KKT FW bloc. Middle: reference and
measured iq current. Bottom: reference and measured speed.
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Fig. 6: Voltage and current norms.

the constraints. In the presented experiment, all constraints
are active at some point. The dual variables λ, µ1 and, µ2 are
depicted in Fig. 7. They indicate the direction of change in the
cost function as the constraints are varied. If the dual variable
for a constraint is positive, then increasing that constraint will
increase the cost function, while decreasing the constraint will
decrease the cost function. Conversely, if the dual variable is
negative, then increasing the constraint will decrease the cost
function, while decreasing the constraint will increase the cost
function. This additional sensitivity information can be used
as an analysis tool to gain insight into the structure of the
primal problem.
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Fig. 7: Dual variables.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a novel approach to feedforward field weak-
ening through the Karush-Kuhn-Tucker optimality conditions
is introduced. This method computes the optimal currents

under voltage, current, and torque constraints. Furthermore,
it provides additional insight in the sensitivity of the cost
function to the changes in the constraints. This sensitivity
can be exploited for scaling the SPMSM, and the inverter
used for the drive, moreover it can be used for scaling the
SPMSM or the inverter, it can also be exploited to build a
control law, which will be explored in future work. To test the
proposed methodology, a control law is built and embedded
on a microcontroller.
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