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Abstract— Traditional identification approaches for robotic
systems based on the inverse dynamic model and the least-
squares method are the most used to identify dynamic pa-
rameters of robots. However these methods often require a
well-tuned filtering or estimation of the position, velocity,
acceleration and torque to avoid bias in identification results.
The cutoff frequency of the low-pass filter that is usually used
must be well chosen, which is not always a trivial task. In
this paper, we propose to use an extended Kalman filter to
reduce the noise on the measured position and to estimate the
velocity and acceleration. These estimates can then be fed to
the controller to further reduce the noise in the control torque.

The effect of the tuning of this filter is examined and
the presented approach is validated through simulations and
experiments on a one degree of freedom system.

I. INTRODUCTION

Many applications in robotics, such as torque control of
industrial robots [1], [2] or impedance control in human-
robot interaction applications like rehabilitation [3], require
an accurate and a good knowledge of the dynamic model
parameters of the robot.

Least squares (LS) are widely used in the context of rigid
robotics to identify inertial and friction parameters of many
robots. Gautier et al. [4] demonstrated that if a well-tuned
filtering of the observation matrix and the measured torque
is employed with LS, good identification results can be
achieved with low computational cost. However, quantized
position measurements using sensors with large quantization
steps can lead to noisy derivative estimations and induce
an ill-conditioned observation matrix. Furthermore, noisy
control torques arise from the use of these signals as input to
the PID controller used in robotic systems. Because of noisy
measurements and incorrect data filtering, LS estimates may
become extremely biased, to the point of losing all physical
consistency.

Other methods robust to noisy position measures have
been proposed in the literature such as the direct and in-
verse dynamic identification method (DIDIM) [5]. Although
DIDIM requires greater computational effort, it gives good
identification results. However, low-pass filtering of the mea-
sured torque signal is still required and the cutoff frequency
fc of this filter must be well chosen. In [4] and [6] fc
was chosen according to an a priori knowledge of the robot
dynamic frequency, which is not necessarily an accessible
value and is not always well defined for non-linear systems.

Alternative methods can be used, such as for example
those based on Kalman filtering. In [7] identification results
using the weighted least squares (WLS) estimation and using
the extended Kalman filtering (EKF) joint method were
compared. It was concluded that the EKF does not improve
results over the WLS method aside from having a slower
convergence speed. This unwanted time consumption may
be caused by the use of the EKF joint method, in which
state and parameters are estimated simultaneously within a
single Kalman filter and are recursively updated at each time
step. Meanwhile, a technique for estimating the dynamic
parameters of a manipulator and its load using a dual EKF
method has been introduced in [8]. The system state and
parameters are identified separately within two concurrent
Kalman filter instances. A disadvantage of this method is that
it assumes that position, velocity, and acceleration are known,
whereas robotics encoders typically only provide position.

To limit the influence of quantization on identification
results, an EKF has been proposed in a preliminary version
of this work [9] to estimate the position and velocity of
the system based on the quantized position measurements.
The tuning of this filter is simplified and is based on known
sensor characteristics and on a user-defined estimation of
the confidence on the initial model parameter estimations. A
first identification method applying the LS technique used the
position and velocity estimates to construct the observation
matrix. A second method further employed these estimates
as inputs to the PID controller to reduce the noise in the
control torque and then use this torque in the LS technique.
A last method used only this estimated torque signal with the
DIDIM approach. This paper contains detailed examination
of the effect of the tuning of the EKF as well as a comparison
of the suggested methods with LS and DIDIM in simulation
and experimental validation with a one degree of freedom
robotic system.

This paper is organized as follows: existing and proposed
identification methods for robotic systems are recalled in sec-
tion II. Section III shows simulation results and discussions
for the validation of the proposed methods. Then, section IV
presents experimental results and discussion. Finally, section
V includes the conclusion and future works.



II. IDENTIFICATION METHODS

A. Background

1) Identification Model: The inverse dynamic model
(IDM) of a rigid robot with n degrees of freedom (DOF)
calculates the joint forces and torques τ ∈ Rn as a function
of joint positions, velocities and accelerations q, q̇, q̈ ∈ Rn.
It can be obtained from the Newton-Euler or the Lagrangian
equations [10] as follows:

τ = M(q) · q̈ + C(q, q̇) · q̇ + g(q) + f(q̇), (1)

where M(q) ∈ Rn×n is the robot inertia matrix, C(q, q̇) ∈
Rn×n is the Coriolis and centrifugal matrix, g(q) ∈ Rn is the
gravitational term, and f ∈ Rn is the friction term. Several
friction models exist [11]. A widely used one is given by the
following:

fj = Fvj · q̇j + Fcj · sign(q̇j), (2)

with Fvj and Fcj the viscous and Coulomb’s friction coef-
ficients of the jth joint, respectively. The IDM in (1) can
be expressed as a linear function of the standard dynamic
parameters χ =

[
χT
1 χT

2 · · · χT
n

]T ∈ Rp as follows:

τ = IDMχ(q, q̇, q̈)χ, (3)

where IDMχ

(
q̈, q̇, q

)
∈ Rn×p is the model regressor and χj

contains inertia parameters, first moment and mass, as well
as the inertia of the actuator and the friction parameters of
the jth link.

The IDM (3) can be further reduced to only depend on
the minimal set of base inertial parameters β ∈ Rb [12], also
known as identifiable parameters [13], such that the measured
torque τm can be represented as follows:

τm = IDMβ(q, q̇, q̈)β + e, (4)

where IDMβ(q, q̇, q̈) ∈ Rn×b is the reduced model regressor
and e ∈ Rn is the error due to measurement noises and
modeling uncertainties present in practice.

When the robot is controlled to follow an exciting trajec-
tory of N samples with sampling time Ts, optimized so that
the observation matrix W is well-conditioned [1], an over-
determined linear system with r = n · N equations and b
unknowns is obtained, such that

Y = W (q, q̇, q̈)β + ϵ, (5)

where Y ∈ Rr is the sampled vector of τm; W (q, q̇, q̈) ∈
Rr×b is the sampled matrix of IDMβ(q, q̇, q̈), referred to as
the observation matrix; and ϵ ∈ Rr is the sampled vector of
errors e.

2) Least Squares: Ordinary least squares (OLS) is a non-
iterative widely used method to identify robot base inertial
parameters β using measured joint torques and positions as
illustrated in Fig. 1. OLS solution β̂ consists in minimizing
the 2-norm of the error vector ϵ as follows:

β̂ = min
β

||ϵ||2. (6)

Fig. 1: Least squares identification scheme of robot’s base
inertial parameters β considering noisy torque measurements
Y and an observation matrix W computed using the inverse
dynamic model (IDM) with quantized position measurements
q and its derivatives of velocity q̇ and acceleration q̈.

Fig. 2: Direct and inverse dynamic identification method
(DIDIM) scheme for identification of β considering noisy
torque measurements Y and an observation matrix Ws com-
puted using the inverse dynamic model (IDM) with position
qddm, velocity q̇ddm and acceleration q̈ddm computed using
the direct dynamic model (DDM) of the robot.

Solving (5) using OLS results in the following estimate

β̂ =
(
WTW

)−1
WTY. (7)

One issue with the least square methods’ parameter estima-
tions is their vulnerability to measurement noise affecting
the observation matrix. To overcome this limitation, one
option is to use data filtering [4], while another is to employ
identification methods that are robust to violation of this
condition such as the one presented in the following.

3) Direct and Inverse Dynamic Identification Method:
The direct and inverse dynamic identification method
(DIDIM) [5] consists in using simultaneously the inverse
dynamic model and the direct dynamic model (DDM). As
illustrated in Fig. 2, the DIDIM uses only the measured
torque while the observation matrix is constructed from the
position and its derivatives simulated using the ideal DDM.
At iteration k, the DIDIM estimate β̂k

D can be identified using
the following equation

β̂k
D =

(
W k

s

T
W k

s

)−1

W k
s

T
Y, (8)

where W k
s ∈ Rr×b is the observation matrix at iteration k

constructed using the noise-free simulated positions, veloci-
ties and accelerations.



(a) Velocity (b) Torque

Fig. 3: Comparison between different a) velocity and b)
torque signals: real measured signals (blue), signals com-
puted from a simulated quantized system (orange) and sig-
nals computed using the simulated output of the proposed
EKF tuned with 30% uncertainty on the parameters (yellow).

4) Data Filtering: To produce acceptable identification
results, due to quantification noise in position q and the
noise resulting from the differentiation of this position to
calculate the velocity q̇ (see Fig. 3a) and acceleration q̈,
filtering is required when using the LS approach. Without
filtering, estimates may become biased and possibly lose
their physical consistency. This is less critical with the
DIDIM technique since only the measured control torque
is used. Nonetheless, filtering is still required to eliminate
torque noise (see Fig. 3b) caused by the quantized signals
used as the PID controller’s input.

A low-pass filter is often used for filtering [4], [14]. In
both LS and DIDIM identification approaches, a well-tuned
cutoff frequency fc is required. In [4] and [5], fc > 10 wdyn

is chosen, where wdyn is the system natural frequency. This
value is not always known in practice and is not always
easy to define for nonlinear systems. Coulomb friction may
introduce high frequencies in the system while the frequency
spectrum of quantization noise is often unknown. It is thus
unclear whether or not low-pass filtering is sufficient to prop-
erly remove the noise while keeping the system dynamics,
so that alternative processing methods can be used instead.

B. Proposed Method

1) Extended Kalman Filter: We propose using an ex-
tended Kalman filter, commonly employed for state estima-
tion, to improve identification results. We consider here the
state x =

[
qT q̇T

]T ∈ R2·n. The state space model can then
be obtained using the DDM as

ẋ =

[
q̇
q̈

]
=

[
q̇

DDMβ(q, q̇, τ)

]
,

=

[
q̇

M(q)−1 (τ − C(q, q̇)q̇ − g(q)− f(q̇))

]
. (9)

The discretization of (9) leads to the state transition equation:

xk+1 = xk + ẋk(xk, τk, wk, β) · Ts, (10)

with Ts the sampling time and wk ∼ N (0b×1, Q) a non-
additive process noise with diagonal covariance matrix

Q = diag
([

σ2
wk,1

σ2
wk,2

· · · σ2
wk,b

])
, (11)

where σ2
wk,i

is the variance of wk,i, i = 1, · · · , b.

This noise affects the dynamic parameters of the system
such that each parameter βi in the DDM is replaced in (10)
by a noisy version β̂i of the initial estimate β̂EKF

i defined
as

β̂i = (1 + wi) · β̂EKF
i . (12)

The observation equation is given by:

yk = qk = [In 0n] · xk + vk, (13)

where vk ∼ N (0n×1, R) is an additive measurement noise,
with R ∈ Rn×n its covariance matrix.

EKF Tuning: One issue with the extended Kalman filter
is that the matrices R and Q must usually be fine-tuned to
obtain good filtering properties. The benefit of the chosen
formulation is how easily these matrices may be set.

Assuming that the quantization error is the major source
of noise in position measurements and under the assumption
that it can be modeled as a white uniform noise, its covari-
ance matrix is known to be as follows [15]:

R = diag
([
σ2
v1 σ2

v2 · · · σ2
vn

])
, with σ2

vj =
(δjquant)

2

12
,

(14)
with δjquant the known quantization step of the jth encoder.
Q can be set from an approximate guess on the percentage

of uncertainty on β̂EKF set in the EKF by the user. The
influence of this parameter is studied in section III-B.

2) Identification Using Extended Kalman Filter: To mit-
igate the impact of noise on the identification results when
using the least squares method, we first propose to compute
the observation matrix W in (5) using (q̂, ˆ̇q, ˆ̈q), where q̂ and
ˆ̇q are estimated from the previously described EKF, while
ˆ̈q is computed as a central difference derivative of ˆ̇q. The
estimation process and control structure are illustrated in
Fig. 4 using the green dashed line ( ). This method has
the benefit of not modifying the structure of the controller.
However, the PID control torque signal Y still remains noisy
due to the usage of the measured quantized position as
the controller input. An alternative is to modify the control
structure by using the estimates (q̂, ˆ̇q) as the controller inputs
as shown in Fig. 4 using the red dash-dotted line ( ).
In such a case, identification results using LS and DIDIM
techniques are expected to be improved.

Fig. 4: Two least squares identification methods of pa-
rameters β from torque measurements Y : standard control
structure using quantized position ( ) or modified control
structure using position q̂ and velocity ˆ̇q estimated from the
EKF ( ). W is computed using q̂ and ˆ̇q in the IDM.



III. SIMULATION

To validate the proposed identification technique, a model
of the 1 DOF real system illustrated in Fig. 7 was imple-
mented for simulation in Matlab/Simulink as it provides the
ground-truth values β of the model parameters.

In such a case, the IDM in (1) may be reduced to:

τ = J q̈+Fv q̇+Fc sign(q̇)+Ms g cos
( q

N
+ θ0

)
, (15)

where N is the reduction ratio, g is the gravitational accelera-
tion, θ0 is the angular offset of the handle from the horizontal
position, Ms is the first moment, J is the equivalent inertia
of the motor shaft and the handle, Fv and Fc are the friction
coefficients defined in (2).

The state transition equation (10) then becomes:

xk+1 =

[
qk
q̇k

]
+ (16)[

q̇k
1
Ĵ

(
τk − F̂v q̇k − F̂csign(q̇k)− M̂sg cos(

qk
N + θ0)

)] · Ts,

with M̂s = (1 + w1)M̂
EKF
s , Ĵ = (1 + w2)Ĵ

EKF ,
F̂v = (1 + w3)F̂

EKF
v and F̂c = (1 + w4)F̂

EKF
c , where

M̂EKF
s , ĴEKF , F̂EKF

v and F̂EKF
c are the initial estimations

of, respectively, Ms, J, Fv and Fc in the EKF.

A. Simulation Setup

We compare different identification methods in order to
evaluate the efficiency of our approach:

Method 1: LS with quantized data (see Fig. 1).
Method 2: DIDIM with quantized data (see Fig. 2).
Method 3: LS with measured torque but position and

velocity estimated using the proposed EKF
(see green dashed line in Fig. 4 ).

Method 4: LS with torque computed from the position
and velocity estimated using the proposed
EKF (see red dash-dotted line in Fig. 4 ).

Method 5: DIDIM with torque computed from the posi-
tion and velocity estimated using the EKF.

To study the influence of an inaccurate estimation of the
parameters β̂EKF in the EKF, we also compare five cases:
β̂EKF = 0.3·β, β̂EKF = 0.7·β, β̂EKF = β, β̂EKF = 1.3·β
and β̂EKF = 2 · β. The nominal measurement noise covari-
ance is set to R0 = (0.0031416)2/12 = 8.2247 · 10−7rad2

based on (14) and the quantization step of the real system.
The initial value of the state is set to x0 = [0 0]T to fit
the excitation trajectory and its covariance matrix is set to a
diagonal matrix P0 = diag([R0 0.1]).

B. Effect of Noise Covariance Matrices on the Identification

To study the effect of the tuning of R and Q on the
identification results, a variation of R is considered around
the nominal value R0 in the interval [R0 × 10−3, R0 × 103].
Similarly we set Q = σ2

w · I4, i.e. with the same relative
uncertainty on all parameters, and taking σ2

w ∈ [10−8, 108].
An example of identification of the first moment Ms using

Methods 1 and 3 is shown in Fig. 5. It can be seen that

Fig. 5: Comparison of identification results of Ms using
Method 3 with different values for R and Q (σ2

w).

the curves drawn for a constant value of R tends to have a
similar shape and are only shifted to the right as R increases.
Hence the identification results seem to only depend on the
ratio between R and σ2

w. Consequently, in the followings R
is set to its nominal value R0 and only σ2

w is modified.

C. Simulation Results and Discussion

Fig. 6 compares the identified parameters obtained using
Methods 1 to 5 to the ground-truth values and the values
set in the EKF. Looking at Methods 3 and 4, it can be
seen that for large values of σ2

w, i.e. low confidence in
the model parameters, the identified values tend to converge
towards wrong values. This could be expected since the EKF
would follow the measures and provide almost no filtering
in this case. On the other side, for small values of σ2

w,
i.e. high confidence in the model parameters, the identified
values tend to converge towards the values set in the EKF.
This could also be expected since the EKF would then stay
close to the model behavior even if its output deviates from
the measures, leading to an incorrect computation of the
observation matrix. Therefore, our range of interest for the
analysis of the results will be for σ2

w ∈ [10−4, 1].
In this range both Methods 3 and 4 provide identification

of the friction parameters closer to the ground-truth com-
pared to Method 1 (see Fig. 6d, 6e, 6g and 6h), which can
be explained by the good estimation of the velocity (see Fig.
3a). Method 4 is also slightly more consistent in this range
than Method 3, which could be explained by the additional
filtering of the torque signal (see Fig. 3b). Identification of
the inertia with Methods 3 and 4 can give better results than
Method 1 in some cases (see Fig. 6a and 6b), however it
seems quite sensitive to the good tuning of both σ2

w and
β̂EKF in the EKF, which is not practical.

Concerning the DIDIM approach, it can be seen on Fig. 6c,
6f and 6i that the identified values are close to the ground-
truth for both Methods 2 and 5 for high and low values
of σ2

w. However, in the smaller range of interest, Method 5
seems more sensitive to the tuning of σ2

w when β̂EKF is
overestimated in the EKF (see light blue and pink lines).
On the contrary, when β̂EKF is close to the real values
or slightly underestimated (see dark blue and green lines)



(a) Method 3 (b) Method 4 (c) Method 5

(d) Method 3 (e) Method 4 (f) Method 5

(g) Method 3 (h) Method 4 (i) Method 5

Fig. 6: Identification results β̂ (solid lines) of the dynamic parameters β using Methods 1 to 5 with R = R0, varying values
of Q and different estimated values β̂EKF (dashed lines) of the parameters set in the EKF.

Method 5 is almost independent of the tuning of σ2
w like is

the case in Method 2. In addition, we observed that adding
the EKF doesn’t affect the fast convergence of the DIDIM.
Hence, the addition of the EKF seems to be adequate to
improve the LS identification results and Method 5 provides
the added benefit of not requiring a fine tuning of this EKF.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

The actual system depicted in Fig. 7 is a cable-driven
robot joint. It is made up of a handle and a mass linked
by a cable (reduction ratio 15) to a Maxon motor (EC-max
40mm, brushless 120W, model 283871) with a HEDL 5540
encoder that measures the angular position of the motor shaft
with a resolution of 500 counts per turn corresponding to a
quantization step δquant = 2π/(500× 4) = 0.0031416 rad.
The PID controller and EKF are implemented in an EPOS3

driver (Maxon) running via TwinCAT (Beckhoff). More
details on the system can be found in [16].

B. Validation Scenario

The same methods defined in section are implemented on
the system. The parameters β̂EKF are initialized in the EKF
according to previous estimates [16]. We compare different
cases with R ∈ [R0 × 10−3, R0 × 103] and Q = σ2

w · I4,
σ2
w ∈ [10−4, 1].

C. Experimental Results and Discussion

Experimental results show that the suggested identification
methods respond the same way to changes in R and Q values
as described in simulations in section III-B.

Fig. 8 shows a comparison of the torques measured at
the PID output with and without EKF and the torques
reconstructed from the IDM using parameters identified with
Methods 1 to 5 and an EKF tuning R = R0 and σ2

w = 0.09.



Fig. 7: System used for validation and simulation’s reference.

The reconstruction is done using the measured quantized
signals for Method 1, the signals out of the EKF for Methods
3 and 4, and the simulated signals out of the DIDIM process
for Methods 2 and 5. We can see that the torque reconstructed
from parameters estimated with Method 1 is distorted near
zero velocities (around sharp changes in the torque), which
is caused by a noisy computation of the velocity and its
sign, affecting the friction contribution. On the contrary,
Methods 3 and 4 exhibit comparable behaviors, with Method
4 reconstructing a less noisy torque due to the computation
of a smoother control torque with the filtered position and
velocity out of the EKF. Finally, we observe that the torques
generated by Methods 2 and 5 match and are the smoothest
due to the good estimation of model parameters and the use
of a noise-free observation matrix.

V. CONCLUSION AND FUTURE WORKS

In this paper different methods for the identification of
the dynamic parameters of a robotic system were compared,
both in simulation and on a real one degree of freedom
system. An extended Kalman filter (EKF) is used to estimate
the position and velocity of the system from the quantized
position measurements. The proposed formulation allows an
intuitive tuning based on known sensor characteristics and
on the confidence on the initial parameter estimations. The
sensitivity of the methods to the tuning of the EKF noise
covariance parameters were studied and results show that
good identification of first moment and friction parameters
can be obtained using least squares identification even with

Fig. 8: Comparison of the torques measured at the PID
output with (red) and without EKF (blue) and the torques
reconstructed from the IDM using parameters identified with
Methods 1 to 5 and an EKF tuning R = R0 and σ2

w = 0.09.

a coarse tuning of the EKF. Inertia parameters are shown
to be more sensitive to the EKF tuning in this case. Using
the DIDIM identification method with the EKF proved to
provide inertia estimates that are less sensitive to the tuning
of noise covariance matrices but require the initial inertia
estimation to be relatively close to the real value.

Future works will concern the study of an iterative tun-
ing procedure using the identified parameters in the EKF,
starting with a large value of process noise that decreases
as the parameters are identified. Beyond identification, the
designed EKF provides a way to obtain filtered estimations
of kinematic quantities that could then be used as inputs to
more complex controllers.
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parameter estimation using the extended kalman filter,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2015, pp. 3654–3659.

[9] B. Tout., J. Chevrie., L. Vermeiren., and A. Dequidt., “Contribution
to robot system identification: Noise reduction using a state observer,”
in Proceedings of the 19th International Conference on Informatics in
Control, Automation and Robotics - ICINCO, 2022, pp. 695–702.

[10] W. Khalil and E. Dombre, “Dynamic modeling of serial robots,”
in Modeling, Identification and Control of Robots, W. Khalil and
E. Dombre, Eds. Oxford: Butterworth-Heinemann, 2002, ch. 9, pp.
191–233.

[11] I. C. Bogdan, “Modélisation et commande de systèmes linéaires
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