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Transmission spectroscopy1,2,3 of exoplanets has revealed signatures of water vapor,
aerosols, and alkali metals in a few dozen exoplanet atmospheres4,5. However, these
previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the
observations’ relatively narrow wavelength range and spectral resolving power, which
precluded the unambiguous identification of other chemical species — in particular the
primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5–5.5 µm
atmospheric transmission spectrum of WASP39 b8, a 1200 K, roughly Saturn-mass,
Jupiter-radius exoplanet, measured with JWST NIRSpec’s PRISM mode9 as part of the
JWST Transiting Exoplanet Community Early Release Science Team program10,11,12. We
robustly detect multiple chemical species at high significance, including Na (19σ), H2O
(33σ), CO2 (28σ), and CO (7σ). The non-detection of CH4, combined with a strong CO2

feature, favours atmospheric models with a super-solar atmospheric metallicity. An
unanticipated absorption feature at 4µm is best explained by SO2 (2.7σ), which could be
a tracer of atmospheric photochemistry. These observations demonstrate JWST’s
sensitivity to a rich diversity of exoplanet compositions and chemical processes.

We observed one transit of WASP-39b on 10 July 2022 with JWST’s Near InfraRed
Spectrograph (NIRSpec)9,13, using the PRISM mode, as part of the JWST Transiting
Exoplanet Community Early Release Science Program (ERS Program 1366) (PIs: N. Batalha,



J. Bean, K. Stevenson)10,11. These observations cover the 0.5–5.5µm wavelength range at a
native resolving power of R = λ/∆λ ∼ 20–300. WASP-39b was selected for this JWST ERS
Program due to previous space- and ground-based observations revealing strong alkali metal
absorption and multiple prominent H2O bands4,6,14,15,16, suggesting strong signal-to-noise
could be obtained with JWST. However, the limited wavelength range of existing
transmission spectra (0.3–1.65µm, combined with two wide photometric Spitzer channels at
3.6 and 4.5µm) left several important questions unresolved. Previous estimates of
WASP-39b’s atmospheric metallicity—a measure of the relative abundance of all gases
heavier than hydrogen or helium—vary by four orders of magnitude6,16,17,18,19,20. Accurate
determinations of metallicity can elucidate formation pathways and provide greater insight
into the planet’s history21. The JWST NIRSpec PRISM observations we present here offer a
more detailed view into WASP-39b’s atmospheric composition than has previously been
possible (see ref. 21 for an initial infrared analysis of this data).

We obtained time-series spectroscopy over 8.23 hours centered around the transit event to
extract the wavelength-dependent absorption by the planet’s atmosphere—i.e., the
transmission spectrum, which probes the planet’s day-night terminator region near millibar
pressures. We used NIRSpec PRISM in Bright Object Time Series (BOTS) mode. WASP-39
is a bright, nearby, relatively inactive23 G7 type star with an effective temperature of 5400 K8.
WASP-39’s J-band magnitude of 10.66 puts it near PRISM’s saturation limit, which
fortuitously allows us to test the effects of saturation on the quality of the resulting science
compared to past measurements (see Methods).

In our baseline reduction using FIREFLy Fast InfraRed Exoplanet Fitting for Lightcurves24,
we perform calibrations on the raw data using the jwst Python pipeline12, and then identify
and correct for bad pixels and cosmic rays. We mitigate the 1/f noise9 at the group level rather
than the integration level to ensure accurate slope fitting, which we find to be a crucial step
for NIRSpec PRISM observations with few groups per integration.

We bin the resulting spectrophotometry in wavelength to create 207 variable-width spectral
channels with roughly equal counts in each. Fig. 1 shows the FIREFLy white and
spectrophotometric light curves at this step in the top panel. Several absorption features are
visible by-eye as darker horizontal stripes within the transit region in the 2D light curve (Fig.
1), demonstrating the high quality of the raw spectrophotometry achieved by the PRISM
observing mode.

To extract the atmosphere’s transmission spectrum, we fit the planet’s transit depth in each
wavelength bin using a limb darkened transit light curve model using the Python-based
Levenburg-Marquardt least squares algorithm lmfit25. The light curves show a typical
photometric scatter of 0.2–1.2% per integration (1.36 seconds each), and the typical transit
depth uncertainties vary between 50–200 parts-per-million (ppm), which is in line with
near-photon-limited precision (see Methods). While we successfully measure fluxes in the
saturated regions (0.8-2.3 µm), due to the lower number of groups used per integration here
(1-3), the measured count rates may be adversely affected. We do not find excess red noise in



the saturated channels themselves, however we notice large point-to-point scatter in the
transit depths, which required wider wavelength binning to better match previous HST
observations. Fig. 2 highlights representative transit light curves spanning the entire
wavelength range. These data are binned into wider wavelength channels than those used for
the final transmission spectrum for ease of presentation. Light curve systematics have not
been removed from these data, demonstrating the unprecedented stability and precision of the
PRISM observing mode.

We also compared the results from the FIREFLy reduction to three other independent
reductions that use different treatments for the saturated region of the detector, limb
darkening, and various detector systematics (see Methods). All four reductions obtain
consistent results. Fig. 3 shows a comparison of the four reductions. The consistency provides
confidence in the accuracy of derived atmospheric parameters, demonstrating that any
residual systematics are minimal and do not strongly bias results for NIRSpec PRISM
observations. The transmission spectrum also agrees well with previous measurements from
ground-based telescopes15,16 as well as HST and Spitzer6 within error (see Fig. 3), indicating
that we can reliably recover a spectrum at these levels of saturation. These PRISM
observations offer high-quality data from 0.5–5.5 µm, with minimal contributions from
systematics, and at precisions generally near the photon limit (see Methods). While recovery
of the saturated region (0.9–1.5µm) is possible, caution is warranted when interpreting this
portion of the spectrum (see Methods). Future PRISM observations of similarly bright targets
should therefore carefully consider if saturating the spectrum is an appropriate choice for a
given planet, or if building the wavelength coverage from multiple transits with different
complementary modes is preferable.

The transmission spectrum of WASP-39b from the FIREFLy reduction is shown in Fig. 4. We
select the FIREFLy reduction to be our baseline reduction, but comparable results are
achieved with the three other reductions presented in this work (see Methods). We interpret
the spectrum with grids of one-dimensional (1D)
radiative–convective–thermochemical–equilibrium models (post-processed with some
additional gases (see the Methods)), with a representative best-fitting model transmission
spectrum shown in Fig. 4, along with opacity contributions from atoms, molecules, and grey
clouds. We detect the presence of H2O via four pronounced independent bands (33σ, 1–2.2
µm), a prominent CO2 feature at 4.3 µm (28σ), Na at 0.58 µm (19σ), a CO absorption band at
4.7 µm (7σ), and a grey cloud (21σ). We do not observe any significant CH4 absorption
(expected at 3.3 µm), despite predictions of its presence for atmospheres at approximately
solar metallicity and place an upper limit of / 5×10−6 on the CH4 volume mixing ratio between
0.1–2 mbars. We also observe a relatively narrow absorption feature at 4.05 µm (∼2.7σ),
which we attribute to SO2 — a potential tracer for photochemistry26,27,28 — after an extensive
search across many possible opacity sources (see Methods). Using a Bayesian approach
described in the methods section, we calculate that the volume mixing ratio of SO2 needed to
explain this feature is 10−5. The potential SO2 feature is also observed at higher resolutions
with JWST NIRSpec G395H29, adding confidence that the feature first reported as an
unknown absorber22 is a genuine feature of the planet’s atmosphere. With Na detected in the



atmosphere, the alkali metal, K, is also expected at optical wavelengths14 though not detected.
However, the resolution covering the narrow K absorption doublet in the optical is low,
which may be preventing detection. This might also be because of detector saturation in the
wavelength range where K absorption is expected. We also do not detect the presence of H2S
in the atmosphere. We note that although the best-fitting models shown in Figs. 3 and 4 have
some CH4, H2S, and K signatures, these species are not favored by the data to the level of a
detection. We determine the single best-fitting atmospheric metallicity, C/O ratio, and grey
cloud opacity to be 10×solar, 0.7, and κcld=10−2.07 cm2/g, respectively. A detailed discussion on
these best-fitting parameters is presented in the methods section.

JWST/NIRSpec PRISM’s power to constrain multiple chemical species in hot giant planet
atmospheres provides new windows into their compositions and chemical processes, as we
show here with WASP-39b. Using our model grids, we find that WASP-39 b’s best-fitting
atmospheric metallicity is ∼10× solar. In the limit of equilibrium chemistry, our non-detection
of CH4 at 3.4 µm paired with the prominence of the large CO2 feature at 4.4 µm are indicative
of a super-solar atmospheric metallicity, as illustrated in Fig. 13. This may point to WASP-39
b’s puffy envelope bearing more compositional similarity to the similarly massed ice giants
than the gas giants. Moreover, the likely detection of SO2, and its unexpectedly high
estimated abundance, suggests that photochemical processes are pushing this species out of
equilibrium. Photochemistry models show that sulphur compounds such as H2S efficiently
photodissociate and recombine to form SO2 with ∼1 ppm abundances and at 1-100 mbar
pressures27—roughly the same pressure range probed by our transmission spectroscopy (see
Fig.14). The abundance measurement of SO2 can therefore serve as an important tracer of the
thermochemical properties of highly irradiated stratospheres and the efficiency of
photochemistry. Furthermore, our detection of a qualitatively significant wavelength
dependence to the planet’s central transit time (Fig. 7) suggests that these observations are
sensitive to differences in the atmospheric composition at the planet’s leading and trailing
hemispheres. The measured ∼20 second amplitude of this effect is in-line with model
expectations30. This indicates that such observations will be informative in exploring the 3D
nature of hot Jupiter atmospheres, which may give a more holistic understanding of their heat
redistribution and nightside chemistry.



Figure 1: The light curve of WASP-39b observed by JWST NIRSpec PRISM. a, The
normalized white light curve created by integrating over all wavelengths using the FIREFLy
reduction. b, The binned time-series (with 30 integrations per time bin) of the relative flux for
each wavelength. A constant 200 ppm/hour linear trend through time has been removed from
the white light curve and each spectral channel for visual clarity.



Figure 2: Normalized spectrophotometric light curves for the JWST-PRISM transit of
WASP-39b. The light curves were created by summing over wide wavelength channels
(wavelength ranges indicated on the plot). Overplotted on each light curve are their best-fit
models, which include a transit model and detector systematics. Light curve systematics have
not been removed from the data.



Figure 3: WASP-39 b transmission spectral measurements. A comparison of the JWST
transmission spectra obtained from the four independent reductions considered in this work
(coloured points), which are all in broad agreement. Previous measurements from HST, VLT,
and Spitzer6 are also shown (black) along with our fiducial best-fit spectrum model from the
PICASO 3.0 grid (grey). All of the transmission spectral data have 1-σ error bars shown. The
saturated region of the detector is indicated (grey bar) with the shading representative of the
level of saturation (also see Extended Figure 6). Different reductions are presented on slightly
different wavelength grids for visual purposes, the original resolution each reduction used is
discussed in the Methods.



Figure 4: The JWST-PRISM transmission spectrum of WASP-39b with key
contributions to the atmospheric spectrum. The black points with 1-σ error bars
correspond to the measured FIREFLy transit depths of the spectrophotometric light curves at
different wavelengths. The best-fitting model spectrum from the PICASO 3.0 grid is shown
as the grey line and the coloured regions correspond to the chemical opacity contributions at
specific wavelengths. The best-fitting 1D radiative-convective thermodynamic equilibrium
(RCTE) model corresponds to a super-solar metallicity and super-solar carbon-to-oxygen
ratio with moderate cloud opacity (see Methods). The PRISM transmission spectrum is
explained by contributions from Na (19σ), H2O (33σ), CO2 (28σ), CO (7σ), SO2 (2.7σ) and
clouds (21σ). The data do not provide evidence of CH4, H2S and K absorption (see Methods).
Also, note that the detector was saturated to varying degrees between 0.8-1.9 µm.
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Methods

Data Reduction
One transit of WASP-39 b was observed with the NIRSpec PRISM mode, with the 8.23-hour
observation roughly centred around the transit event. We used NIRSpec’s Bright Object Time
Series (BOTS) mode with the NRSRAPID readout pattern, the S1600A1 slit (1.6”×1.6”), and
the SUB512 subarray. Throughout the exposure, we recorded 21,500 integrations, each with 5
0.28-second groups up the ramp. We achieved a duty cycle of 82%.

We extracted transmission spectra of WASP-39b using four different reductions with the
FIREFLy, tshirt, Eureka!+ExoTEP, and Tiberius pipelines. The results from all reductions are
broadly consistent (see Fig. 3 and Fig. 5). We used the FIREFLy reduction as our baseline for
comparison to models throughout this paper, however equivalent overall results can be
deduced from the other reductions. Some key attributes of the reductions are compared in
Table 2. All reductions correct for 1/f noise: correlated frequency-dependent read noise in the
images caused by detector readout and current biases in the electronics31. We note that since
the GAINSCALE step of the JWST pipeline applies a gain correction to the raw count rate
files, the counts and count rates quoted herein are in units of electrons and electrons per
second, respectively.

We find that recovery of the saturated region was possible by applying several custom steps
described here. Without these steps, the heavily saturated region showed a large and
unexpected point-to-point scatter on the order of several thousand ppm in the transmission
spectra. We note that there was limited on-sky NIRSpec calibration data available when the
data were obtained and reduced, including an incomplete detector bias image whose values
were all set to zero. We used a custom bias frame for this step (priv. comm., S. Birkmann).
While the transmission spectra longward of about 2µm could be extracted without the use of
this calibration, we found that bias correction was critical to extract the spectrum in the
saturated region.

In addition, to recover the saturated region it was necessary to perform a reference pixel
correction something that was skipped by the default jwst pipeline for NIRSpec PRISM
because no official reference pixels are present in the sub array (also see t-shirt reduction
below). All reductions also expand the saturation flags along entire columns and only use the
groups prior to saturation for slope fitting in these regions. With these steps, the spectra
broadly matched previous HST and VLT observations6, with improvement in the region with
only one or two groups before saturation. We expect that as updated NIRSpec calibration data
becomes available the recovery of saturated regions in PRISM observations may become
easier, however we still suggest avoiding rapid saturation with less than two groups prior to
saturation if possible, especially if that region of the spectrum is important to one’s science
case.

FIREFLy



We performed custom calibrations on the uncalibrated data, including 1/f noise destriping9 at
the group level, bad and hot pixel cleaning, cosmic ray removal, and 5σ outlier rejection.
Destriping the data also removed potential background in the 2D images, though none was
apparent in the data. The jump-step and dark-current stages of the jwst pipeline12 (version
1.6.2) were skipped, and the top and bottom 6 pixels of the non-illuminated sub-array were
manually set to be reference pixels in the jwst pipeline reference pixel step. To obtain our
final wavelength calibration, we extrapolated the STScI-provided in-flight instrumental
wavelength calibration data product across the detector edge pixels which did not have an
assigned wavelength. The calibration was derived using the ground-based wavelength
solution. We performed tests to search for zero-point offsets in the calibration versus the
planetary and stellar spectra and did not find any at the level of half a pixel width or greater.
JWST detectors integrate using a non-destructive up-the-ramp sampling technique, where the
flux is measured in counts-per-second from fitting the ramp from the groups contained within
each integration. Fig. 6 shows the regions of the spectrum impacted by saturation. Within a
column where a pixel was marked as saturated by the pipeline in any given group, we used
only the data from the preceding groups for ramp fitting, and manually set an entire column
of the detector as saturated if a pixel in that column was saturated. Because a small portion of
the spectrum reaches our saturation threshold in the second group, this region of the spectrum
only uses one group to derive a “ramp.” While we were able to recover the spectra in this
wavelength range by flagging and ignoring saturated pixels at the group level, we note that
the data quality is lower in the saturated region than in the rest of the spectrum given the
counts-per-second ramp was measured from fewer than the total 5 groups.
We measured the positional shift of the spectral trace across the detector throughout the time
series using cross correlation and used them to shift-stabilize the images with flux-conserving
interpolation. This procedure reduced the amplitude of position-dependent trends in the light
curves. We optimized the width of our flux extraction aperture at each wavelength pixel and
extracted the spectrophotometry. For each wavelength we tested a wide range of aperture
widths and determined the width that minimized the scatter of the photometry of the first 350
datapoints. We bin the cleaned spectrophotometry in wavelength to create 207 variable-width
spectral channels with roughly 105 counts per second in each bin, and widths ranging from
3.3—60 nm. Because we use fewer groups in the saturated detector columns, our bin widths
are larger by a factor of a few in this region to account for the lower count rates per detector
column.



Figure 5: A comparison of the extracted 1D spectrophotometry across the four reductions.

Figure 6: Demonstration of the impact of saturation. Shown are the group-level median
frames from the uncalibrated data products across the entire integration. The dashed blue line
represents the empirically derived saturation level, with the orange dotted line representing
85% saturation, the level adopted in the Eureka! reduction. Grey shaded regions represent
columns that reach 85% full well in a given group.



Table 1: Best-fit orbital parameters as measured from the FIREFLy white light curve.

Parameter Value Description
T0 0.83532559 ± 0.0000007 Mid-transit time [days] (BJDTDB - 2459770)

a/Rs 11.582±0.010 Scaled semi-major axis
b 0.44537±0.00195 Transit impact parameter
ρs 1.7873 ± 0.0048 Stellar density [g cm−3] (derived)

Before fitting the transmission spectrum, we use a very wide, high-SNR white-light
channel (3–5.5 µm) to fit for the planet’s orbital parameters (listed in Table 1). Restricting the
wide bin to the reddest wavelengths minimises the impact of limb darkening on the transit
light curve and the resulting covariance with the orbital system parameters while ignoring the
saturated region. We fit this white-light curve using the Markov Chain Monte Carlo sampler
emcee32 within the least-squares minimization framework of lmfit. We use 1,000 steps and
uniform priors with extremely wide bounds that encapsulate the limits of physicality to
ensure that there is no bias introduced by the prior. Our fitting approach accounts for
non-Gaussian degeneracies in the posterior distribution, thereby addressing the known linear
correlation between impact parameter (b) and the scaled semimajor axis (a/Rs).

We excluded the first 3000 integrations as they exhibited a slight non-linear baseline
flux trend, and integrations 20750–20758 due to a high-gain antenna move which was
identified from outliers in the photometry which correlated with noticeable trace shifts in the
x- and y-directions. To measure the transmission spectrum, we fit the light curve at each
wavelength channel jointly with a transit model33 and a linear combination of systematics
vectors composed of the measured spectral shifts in the x- and y-directions. At each channel
we fit the planet’s transit depth and the stellar limb darkening, while fixing the transit centre
time T0, impact parameter b, and normalised semimajor axis a/Rs to the values determined in
the white light curve fit. We also fix the orbital period to the published value of 4.0552941
days34. With the orbital system parameters fixed, we find the posterior distribution is well-fit
by a multivariate Gaussian distribution, and therefore use a Levenberg-Marquart least squares
minimization algorithm25 to efficiently determine the best-fit parameters. In each channel, we
inflate the transit depth error bars in quadrature with the measured residual red noise in the
photometry as measured by the binning technique35. Measured uncertainties on the transit
depths vary from 50–200 ppm, with a median of 99 ppm (see Fig. 8). As the noise levels are
very close to the limit with what is expected including only photon and read noise sources,
tools such as PandExo36 should accurately predict what is achievable for other planets. We
measure an increase in red noise for a few select spectral channels, but otherwise the light
curves show no significant systematic errors, with some channels binning down to precision
levels of a few ppm. We measure x− and y−jitter systematics at the ∼100 ppm level. We see
differences in the central transit time as a function of wavelength on the order of 10 seconds,
which may be attributable to limb asymmetries in the atmospheric temperature and
composition. We show these signatures in Fig. 7. Notably, we see a significant timing



structure in the 2-3 µm range, which may arise from limb asymmetries in temperature and/or
cloud coverage at the altitude probed by the water vapour absorption feature at 2.7 µm37.
Further analysis of the spectrophotometry could be warranted to investigate limb asymmetries
in more detail.

Figure 7: The wavelength-dependent central transit time in seconds. Structure is
apparent–the prominent water and carbon dioxide absorption features at 2.7 µm and 4.2 µm,
respectively, appear to arrive ∼20 seconds after the optical continuum. A slope is also
apparent from the blue side to the red.

We fit the transit light curves using a quadratic function to model stellar limb
darkening given as,

. (1)

where I(1) is the intensity at the centre of the stellar disk, µ = cos(θ) where θ is the angle
between the line of sight and the emergent intensity, and a and b are the limb darkening
coefficients. We tested a four-parameter non-linear limb darkening function38 as well, which
provided equivalent results. In practice, we first fit for both u+ = a + b and u− = a − b for the
quadratic law. When comparing the limb darkening coefficients to theoretical values, we find
an offset between the theoretically derived values of u+ from the 3D stellar models from ref.39

and the JWST values derived from the transit light curve fits (see Fig. 9). This offset suggests
the limb of WASP-39A is brighter than the stellar models predict. We fit for this offset and
find it to be -0.065±0.022. As the wavelength-to-wavelength shape of u+ is well described by
the model, we then apply this offset to the theoretical limb darkening coefficients and then
subsequently fix u+ while allowing only u− to be free (see Fig. 9). This procedure helps reduce
degeneracies when fitting multiple limb darkening coefficients and increases the precision of



the transmission spectrum, as the limb darkening is often not well constrained, particularly at
long wavelengths where the limb darkening is weak39 (Fig. 9). The main effect of fitting for
limb darkening over fixing the coefficients to the 3D models is the transit depth level of the
optical spectrum, which is lower with values fixed to the model. We compare the optical
spectrum with fixed limb darkening to the HST data from ref6 in Fig. 10, which was also fit
with limb darkening fixed to the same model. Overall, we find good agreement between the
two spectra. We note that the assumptions around limb darkening can affect the optical
spectra continuum which impacts particularly the interpreted levels of aerosol scattering —
further investigations are warranted.

tshirt

We use the tshirt pipeline e.g.41 to extract an independent set of light curves and
spectrum. We begin with the uncalibrated “uncal” data product and apply a custom set of
processing steps on stage 1 that build on the existing jwst stage 1 pipeline software version
1.6.0 with reference files CRDS jwst 0930.pmap. We use a custom bias file shared by the
instrument team (Stephan Birkmann, private communication), which is the same file that was
delivered to the JWST Calibration Reference Data System (CRDS).

We attempt to minimize the biasing effects of count rate non-linearity by modifying
the quality flags of pixels surpassing 90% of full-well depth at the group stage. To ensure that
there are no systematic differences between pixels within the spectral trace and in the
background region, we adjust the quality flags uniformly along the entire pixel column at
each group for all integrations. We skip the “jump” and “dark” steps of stage 1.

The tshirt code includes a Row-by-row, Odd-Even By Amplifier (ROEBA) correction
to reduce 1/f noise. We first identify source pixels by choosing pixels with more than 5 Data
Numbers per second (DN/s) in the rate file, and expanding this region out by 8 pixels. We
then identify background pixels for 1/f corrections by choosing all non-source pixels and
pipeline flagged non-‘DO NOT USE’ pixels. We loop through every group and subtract the
median of odd (even) row background pixels from all odd (even) rows. We next find a
column-by-column median of all background pixels to calculate a 1/f stripe correction and
subtract this from each column.

After calculating rate files in DN/s, we use tshirt to perform covariance-weighted
extraction of the spectrum31. We do a column-by-column linear background subtraction using
pixels 0 through 7 and 25 through 32. We use a rectangular source extraction region centered
on Y=16 pixels with a width of 14 pixels. We assume the correlation between pixels to be 8%
from previous studies of background pixels31. We use a spline with 30 knots to estimate a
smooth spectrum of the star at the source pixels and identify bad pixels as ones that deviate
by more than 50σ from the spline. Pixels that are more than 50σ or else marked as ‘DO NOT
USE’ are flagged and then the spatial profile is interpolated over those pixels. No corrections
were made to the centroid or wavelength solution due to the exceptional pointing stability of
the observatory42.

When fitting the light curves, we exclude all time samples between UT
2022-07-10T23:20:01 and 202207-10T23:21:08 to avoid the effects of the high gain antenna
move. We first fit the broadband light curve with all wavelengths. We assume zero



eccentricity and the orbital parameters from34 for a/R∗ and period. We try fitting the white
light curve with eccentricity and argument of periastron set free and find that eccentricity is
consistent with 0. We therefore assume zero eccentricity and a transit centre projected to the
time of observations from a fit to the TESS data. We also assume an exponential temporal
baseline in time to the data and a second-order polynomial trend in time. We fit the quadratic
limb darkening parameters with uninformative priors43 and the exoplanet code44,45,46 with 3000
burn-in steps and 3000 sampling steps and 2 No U Turns Sampling chains47. We next binned
the spectra into 116 bins, each 4 pixels wide. We fit all the individual spectroscopic channels
with the orbital parameter fixed from the broadband light curve fit and only allowed the
transit depth and limb darkening parameters to be free. Our resulting transit depth
uncertainties ranged from 35 ppm to 732 ppm, with a median of 90 ppm.



Figure. 8: A summary of the positional shifts of the trace, the wavelength-dependent
light curve scatter, and the transit depth noise. (Top) The X- and Y-shift vectors as
measured by 1D cross correlation with FIREFLy. (Middle) The residual spectrophotometric
light curves are shown for four representative spectral channels spanning the PRISM
wavelength range with no temporal binning. The residual scatter is approximately Gaussian
for each, as indicated by the histogram on the right y-axis. We validate this by performing
Anderson-Darling tests on the residuals of the spectral and white-light curves, and find that
all of the Anderson-Darling test statistics lie below the respective critical values 1%
significance level. Therefore, we find that there is not sufficient evidence that the residuals
are not normally distributed. (Bottom) The top two purple curves show the expected and
measured normalised light curve root mean square (RMS) residuals, with no temporal
binning. Longward of 2 µm, the scatter in each light curve matches well with the expected
noise as estimated by the jwst pipeline, which is dominated by photon noise. This agreement
indicates the majority of the light curves reach near the photon limit. The transit depth
uncertainties are also plotted below, including the white noise (blue, σw), red noise (red, σred),
and total noise components (grey, σtot). Some wavelength bins have enhanced red noise, but
the majority of the transmission spectrum is consistent with minimal red noise from residual



systematic errors. The wavelengths affected by detector saturation are indicated by the grey
shaded bar, with darker colors corresponding to quicker saturation. The colored dots are the
measured RMS values from the light curves shown in the top panel.

Figure 9: Empirically derived stellar limb darkening coefficients fit with a quadratic
law. a, the fit u+ coefficients (black) along with the theoretically predicted values derived
from a 3D stellar model (red). The theoretical u+ values with a constant offset of -0.065±0.022
(purple) is also shown. The theoretical models predict the wavelength-to-wavelength shape of
u+ well. As u+ is directly related to the intensity of the star at the stellar limb ref.40, these
findings suggest WASP-39A is 6% brighter at the limb than models predict. b, similar as a,
but for the u− coefficient. As the shape of the derived coefficients differs from the model
prediction, u− was left free to vary in the transmission spectral fits.

Figure 10: Comparison of the JWST NIRSpec PRISM data (black) for WASP-39b along
with HST and VLT data from ref.15,6 and WHT data from ref.16. The JWST spectrum was
derived with the limb darkening fixed to the same 3D stellar model as in6 to aid comparisons.
With fixed limb darkening, the JWST transmission spectrum has lower overall transit depths
especially at optical wavelengths. The broadband spectrum from the two space telescopes



compares well, including the amplitude of the 1.4µm water feature first observed by
HST/WFC3 and the Na feature near 0.6µm observed by HST/STIS.

Eureka! and ExoTEP
We use the Eureka! pipeline48 for the data reduction steps of detector processing, data

calibration and stellar spectrum extraction, and the ExoTEP pipeline49,50,51 to generate light
curves in each wavelength bin and perform light curve fitting.

We start our data reduction using the uncalibrated “uncal” outputs of the jwst
pipeline’s Stage 0. From there, Eureka! acts as a wrapper for the first two stages of the jwst
pipeline, version 1.6.0. We use the jwst pipeline to fit slopes to the ramp in each pixel and
perform data calibration, and follow the default pipeline steps unless otherwise stated. We
skip the jump detection step, meant to correct the ramps for discontinuities in the slopes of
group count rates as a function of time. Due to the small number of groups up the ramp,
performing this step leads to a large fraction of the detector pixels being incorrectly flagged
as outliers, and we therefore rely on the time series outlier clipping steps in the subsequent
stages to correct for cosmic rays. A custom bias frame is used, rather than the default one
available on CRDS at the time of reduction. We also expand the saturation flags in Stage 1 to
ignore saturated pixels more conservatively than allowed by the default jwst pipeline settings:
in each group, we flag pixels as saturated if they reach ∼85% of the full well in the median
image across all integrations for that group and expand the saturation flag such that in a given
detector column (constant wavelength) all pixels are marked as saturated if any one pixel in
that column is flagged. This is implemented by inputting the indices of columns to mask
based on inspection of the uncal data products, rather than an internal calculation of the full
well percentage. We include a version of the ROEBA correction described above, using the
top and bottom 6 rows. We further add a custom background correction at the group level
prior to ramp fitting, and subtract from each column the median of the six pixels at the top
and at the bottom of the detector, excluding outliers at more than the 3-σ level. We skip the
“photom” step in Stage 2 of the STScI detector pipeline because absolute fluxes are not
needed in our analysis. We also skip the “extract1d” step as we perform custom spectral
extraction using Eureka!.

For 1D spectral extraction, we trim the array to include only columns 14 to 495 in the
dispersion direction, as NIRSpec’s throughput is negligible beyond this range. We then use
the median detector frame to construct the weights used in the optimal extraction based on52.
Pixels are masked if they have an marked data quality flag (i.e., bad pixels that are flagged by
the jwst pipeline as “DO NOT USE” for various reasons) or if they are clipped by two
iterations of 10-σ-clipping of the time series. We perform the optimal extraction over 8 rows
centered on the source position (corresponding to a spectral half-width aperture of 4 pixels).
The source position is identified from the maximum of a Gaussian fitted to the summed
spatial profile from all detector columns over the entire integration.

We use ExoTEP to generate median-normalized light curves at the native pixel
resolution from each detector column, using the stellar spectra outputs from Stage 3 of
Eureka!. We then perform further clipping of outliers in time in the white and
wavelength-dependent light curves by computing a running median with a window size of 20
and excluding 3σ outliers in several time series. This outlier-clipping was applied to the flux,
source position and width in the cross-dispersion direction in each frame and spectrum shifts



in the dispersion direction.
We jointly fit astrophysical and systematics model parameters to the white

(0.5–5.5µm) light curves and each of the wavelength-dependent light curves. Our
astrophysical transit model is calculated using the batman package33. Using the white light
curve, we fit for the two coefficients of a quadratic limb darkening law (Equation 1),
WASP-39b’s impact parameter, scaled semi-major axis a/Rs, time of transit centre, and the
planet-to-star radius ratio. In each of the wavelength channels we then fix the planet’s impact
parameter, semi-major axis and transit time to the values derived from the white light curve
and fit only for the planet-to-star radius ratio and the two quadratic limb darkening
coefficients. For the systematics model, we assume a linear trend with time that can be
different in each spectroscopic channel, and fit for its slope and y-intercept. Lastly, we fit a
single-point scatter to each light curve, which illustrates the level of scatter required for our
joint model to reach a reduced chi-squared of 1. The fitted light curve scatter in both the
white light curve and wavelength-dependent channels is within a few percent of the
expectation from the high-frequency scatter in the raw light curves, which attests to the lack
of systematics. We bin the final transmission spectrum (four points binned together
throughout the spectrum) for visual comparison with the other reductions in Figure 3.

Tiberius
The Tiberius pipeline builds upon the LRG-BEASTS spectral reduction and analysis

pipelines introduced in53,16,54. The Tiberius pipeline operates on the Stage 1 JWST data
products to obtain 1D stellar spectra via tracing of the stellar spectra, fitting and removal of
the background noise, and simple aperture photometry. We used the FIREFLy-processed
Stage 0 data.

Prior to tracing the spectra, we interpolate each column of the detector onto a finer
grid, 10× the initial spatial resolution. This step improves the extraction of flux at the
sub-pixel level, particularly where the edges of the photometric aperture bisect a pixel, and
leads to a 14% reduction in the noise in the data. We also interpolate over the bad pixels using
their nearest neighboring pixels in x and y. We identify bad pixels by combining 5σ outlying
pixels found via running medians operating along the pixel rows with bad pixels identified by
visual inspection. We trace the spectrum by fitting a Gaussian distribution at each column
(where a column refers to the cross-dispersion direction) to the stellar spectra. We then use a
running median, calculated with a moving box with a width of five data points, to smooth the
measured centres of the trace. We fit these smoothed centres with a fourth-order polynomial,
removed five median absolute deviation outliers, and refitted with a fourth-order polynomial.

To remove residual background flux not captured by the 1/f correction, we fit a linear
polynomial along each column in the spatial direction. We mask the stellar spectrum, defined
by an aperture with a full width of 4 pixels centered on the trace we found in the previous
step, from this background fit. We also mask an additional 7 pixels on either side of this
aperture so that the background fit is not impacted by the wings of the stellar PSF. This left us
with 7 pixels at each edge of the detector (a total of 14 pixels) to estimate the background
with. We also clipped any pixels within the background that deviate by more than three
standard deviations from the mean for that particular column and frame to avoid residual bad
pixels and cosmic rays impacting our background estimation. We found that this additional
background step led to a 3% improvement in the precision of the transmission spectrum.



The stellar spectra are then extracted by summing the flux within a 4-pixel-wide
aperture following the removal of the background at each column. The background count
level, as estimated by the JWST Exposure Time Calculator (ETC) is on the order of a few
counts per second, meaning the background is negligible. Further, since we perform 1/f
subtraction, this faint background is subtracted column-by-column. We experimented with the
choice of the aperture width, also running reductions with 8- and 16-pixel-wide apertures.
The 8-pixel-wide aperture gave a median uncertainty 1% larger than a 4-pixel aperture and a
16 pixel aperture gave an uncertainty 15% larger than 4-pixels. This same change was
reflected in the median RMS of the residuals to the light curve fits. Since the stellar PSF is so
narrow in PRISM data, we believe that the increase in noise with increasing aperture width is
related to the increasing influence of photon noise, readnoise and bad pixels where the stellar
flux is lower. Following the extraction of the stellar spectra, we divide the measured count
rates by a factor of 10 to correct for our pixel oversampling, as described above.

To remove residual cosmic rays, we identify outliers in each stellar spectrum via
comparison with the median stellar spectrum. We did this in three iterations, each of which
involves making a median spectrum, identifying outliers (10, 9, 8 σ) and replacing pixels
containing a cosmic ray with a linear interpolation between neighboring pixels. We tested this
interpolation against assigning the cosmic ray pixels zero weight and found that this led to a
negligible difference in the transmission spectrum. To correct for shifts in the stellar spectra
and align each spectrum in pixel space, we cross-correlate each stellar spectrum with the first
spectrum of the observation and linearly resample each spectrum onto a common wavelength
grid. We adopt the custom wavelength solution calculated by the tshirt pipeline, which uses
the jwst pipeline to evaluate the wavelengths at pixel row 16 using the world coordinate
system.

Our white light curves are created by summing over the full wavelength range
between 0.518–5.348µm. We make two sets of spectroscopic light curves: one set of 440 light
curves at 1-pixel resolution and one set of 147 light curves at 3-pixel resolution. We mask
integrations 20751–20765 due to a high gain antenna move that leads to increased noise in
the light curves. We also mask the first 2000 integrations from our analysis due to a
systematic ramp. This means our light curves each contained 19486 data points.

To fit our light curves, we began by fitting the white light curve to determine the
system parameters.

We fit for the following parameters: the scaled planetary radius (Rp/Rs), the planet’s
orbital inclination (i), the time of mid-transit (TC), the scaled separation (a/Rs), the linear limb
darkening coefficient (u1), and the parameters defining the systematics model. We fix the
planet’s orbital period to 4.0552941d and eccentricity to 034. For the remaining parameters,
we use the values from34 as initial guesses.

For the analytic transit light curve model, we use batman33 with a quadratic limb
darkening law. We use ExoTiC-LD55,56, with 3D stellar models39 to determine the appropriate
coefficients, adopting the stellar parameters (Teff = 5512±55K, logg = 4.47±0.03 cgs, [Fe/H] =
0.01±0.09 dex) from34 and Gaia DR357,58. For our final fits, we fix the quadratic coefficient,
u2, to the values determined by ExoTiC-LD. However, we also run a set of fits with neither u1

nor u2 fixed and find this leads to a transmission spectrum that is qualitatively similar to the
one in which LDs are fixed. For the systematics model, we sum the following three



polynomials: quadratic in time, linear in x position of the star on the detector, and linear in y
position of the star on the detector. The final fit model, M, was of the form:

M(t) = T(t,p) × (Σi(Si(ai,s)ni)) (2)

Where t is time, p are the parameters of the transit model, T, a are the ancillary data, and s
are the parameters (polynomial coefficients) of the systematics model, S. The systematics
model is the sum of the polynomials operating over each ancillary input, ai, with ni defining
the order of the polynomial used for each input.

We fit our white light curve in three steps: a first fit to remove any 4σ outliers from
the light curves, a second fit that is used to rescale the photometric uncertainties such that the
best-fitting model gives χν

2 = 1, and a third fit with the rescaled photometric uncertainties,
from which our final parameter values and uncertainties are estimated. The parameter
uncertainties were calculated as the standard deviation of the diagonal of the covariance
matrix that was in turn calculated from the Jacobian returned by scipy.optimize.

Following the white light curve, we fit our spectroscopic, wavelength-binned, light
curves. For these fits, we held a/Rs, i, and TC fixed to the values determined from the white
light curve fit: 11.462 ± 0.014, 87.847 ± 0.015 deg, 2459770.835623 ± 0.000008 BJDTDB.
These values are somewhat different to the FIREFLy reduced white light parameters, and
these differences will be explored in greater detail in a future work. To zeroth order, offsets in
orbital parameters result in simple vertical offsets in the resulting transmission spectrum. The
remaining fit parameters were the same as for the white light curve fit. We perform the same
iteration of fits using a Levenberg–Marquardt algorithm to determine Rp/Rs as a function of
wavelength.

Reduction Comparison
Procedural differences exist across the four main reductions of the dataset, which may
account for the subtle qualitative differences between the final reduced spectra. A careful
investigation of these nuances is warranted and will be presented in a future paper. Table 2
highlights some key procedural differences between the reductions. We note that despite these
differences, the resulting exoplanet spectra are qualitatively in excellent agreement with each
other (see Fig. 3), owing to the stability of the data and the self-calibrating nature of the
transit technique.



Reduction step FIREFLy Tshirt Eureka! Tiberius
Background, 1/f subtraction y y y y

X-, Y-shift correction y n y y
X-, Y-shift detrending y n y y
Baseline detrending y y y y

Trace extraction optimization y y y n
Pre-transit baseline trim y y n y

Mean spectrophotometric scatter (ppm) 676 725 815 709

Table 2: An overview of the analysis procedures used by the independent data reductions.
The spectrophotometric scatter is estimated from the standard deviation of the pre-transit data
between 0.62-5.42 µm with only a linear baseline trend removed

Stellar Activity
WASP-39b has a reported low activity level8 , with a Ca II H and K stellar activity index of
logR’HK=-4.994[ref. 4]. NGTS and TESS photometric monitoring of WASP-39A is reported in
ref.23, which finds low modulations at the 0.06% level with no apparent star-spot crossings.
With low stellar activity levels, the transit observations are unlikely to be affected by stellar
activity.

Forward Model Grids
We use four different 1D radiative–convective–thermochemical–equilibrium (RCTE) model
grids to assess atmospheric properties like detection of individual gases, metallicity,
carbon–to–oxygen (C/O) elemental abundance ratio, and the presence/absence of clouds. The
ScCHIMERA59, 60, PICASO 3.061,62,63,64, ATMO65,55,67 , and PHOENIX68,69 models were used to
generate these grids specifically for WASP-39 b. While the ATMO and the PHOENIX grids
were used to fit the data with a reduced χ2 based grid search method, the PICASO 3.0 and
ScCHIMERA grids were used in a grid retrieval framework using a nested sampler70,71 .
Within each nested sample likelihood calculation, the transmission spectra are generated
on-the-fly by post-processing the pre-computed 1D RCTE model atmospheres. The SO2

volume mixing ratio and cloud properties are injected into spectrum during this
post-processed transmission calculation. Fig. 11 shows best-fit models obtained by each of
the four grids compared with the transmission spectrum obtained with the FIREFLy data
reduction pipeline. ScCHIMERA, PICASO 3.0, and ATMO produce fits with reduced χ2

between 3.2–3.3, while the PHOENIX grid obtains a reduced χ2 of 4.3. The reduced χ2 is
defined as the total χ2 calculated from all the data points divided by the total number of data
points. While PICASO 3.0, ScCHIMERA, and ATMO predict the metallicity of the
atmosphere to be about 10×solar, PHOENIX finds a best-fit metallicity to be a 100×solar
which might be due to the larger grid spacing of the PHOENIX grid along both the cloud and



metallicity dimensions. While the models qualitatively match the data, the reduced χ2

obtained by the best-fitting models from these grids are also > 3, which suggests that these
are not fitting the data particularly well. These relatively poor fits could arise for multiple
reasons, such as the region of the data affected by saturation, the presence of disequilibrium
chemistry in the atmosphere due to vertical mixing or photochemistry, and the non-grey
nature of scattering in the upper atmosphere. Table 3 provides a summary of the best-fit
atmospheric parameters obtained by the four different grids with different fitting methods
(grid retrievals and grid search). In order to explore the effect of the saturated region on the
best-fit parameters, we inflate the transit depth errors in the saturated regions (0.68 µm – 1.91
µm) by a factor of 1000 and recompute the best-fit models using the grid retrieval framework
with both the PICASO 3.0 and ScCHIMERA grids. We find that this did not significantly
change any of the best-fit parameters including the metallicity and the C/O ratio. Table 3 lists
the best-fit parameters obtained when the saturated region error bars were inflated by a factor
of 1000.We summarize the main results obtained by these 1D grids here and refer the reader
to ref. 22 for detailed descriptions of each of these model grids.

Figure 11: Best-fit models from ScCHIMERA, PICASO 3.0, ATMO, and Phoenix 1D RCTE
model grids for WASP-39b, with the FIREFLy reduction overlaid are shown in the top panel.
The top left inset panel shows the data and the models between 0.5-1.2 µm. All these models
prefer super-solar atmospheric metallicities and cloudy atmospheres for WASP-39 b. The C/O
ratio estimated by these models lies in the range 0.6– 0.7. Additional SO2 was injected in the
PICASO 3.0 and ScCHIMERA grids to estimate the abundance of SO2 required to explain the
4.0 µm feature, in a Bayesian framework. The ATMO and PHOENIX models are shown
without any additionally injected SO2 to emphasize that RCTE models do not predict such an
SO2 feature and chemical disequilibrium effects are required to explain the observed feature.
The bottom panel shows the residuals from each best-fit model divided by the noise in the



transit depth as a function of wavelength.

Table 3: Overview of the best-fit model parameters obtained from each grid. PICASO 3.0
and ScCHIMERA grids follow the grid retrieval (GR) framework to obtain the best-fit
models whereas ATMO and PHOENIX use the reduced χ2 minimization based grid search
method (GS). To test the effect of the saturated region on the obtained best-fit parameters, the
PICASO 3.0 and ScCHIMERA grid were used to also do a fit with the error bars in the
saturated region (0.68 µm – 1.91 µm) inflated 1000 times. The best-fit parameters did not
show any significant change due to this exercise but are still listed in the table under the w/o
SR column. The best-fit parameters obtained by fitting the full spectrum are listed under the
w/ SR column. Note that even though the w/o SR fits were obtained by inflating the errorbars
in the saturated region, the reduced χ2 reported in the w/o SR column are computed without
the points in the saturated region for direct comparison with the reduced χ2 obtained from
fitting the full spectrum. Also, note that the ATMO models include cloud opacities with an
adjustable multiple of the H2 Rayleigh scattering opacity at 350 nm. Therefore the 5×H2 in
this table for the ATMO grid corresponds to a gray cloud opacity which is 5× the H2 Rayleigh
scattering opacity at 350 nm between 1 to 50 mbar pressures

PICASO 3.0 ScCHIMERA ATMO PHOENIX

Parameter w/ SR w/o SR w/ SR w/o SR w/ SR w/ SR
[M/H] +1.0 +1.0 +1.0 +1.0 +1.0 +2.0
C/O 0.68 0.68 0.65 0.65 0.7 0.9

κcld [cm2/g] 10−2.07 10−2.04 10−2.46 10−2.52 5×H2 Opaque
Pcld – – – – 1-50 mbar 1 mbar

Rayleigh Scattering H2 only H2 only H2 only H2 only 10×multigas H2 only
log10(SO2) -5.2 -5.1 -5.7 -5.7 – –

χ2/N 3.3 3.2 3.2 2.9 3.3 4.3
Method GR GR GR GR GS GS



Detection Significance of Gases
We quantify the detection significance of each species through a Bayes factor analysise.g.,72.
To do so within the ScCHIMERA grid retrieval framework, we remove each gas during the
transmission spectrum computation step (the 1D RCTE atmosphere models remain
unchanged) one at a time and re-run the nested sampler. We compare the Bayesian evidence
of each removed-gas run to that of the grid retrieval with all of the gases. There is no change
in the number of parameters with the exception of the cloud and SO2 mixing ratio parameters.
Table 4 shows the result of this exercise summarized as the log-Bayes factor and a conversion
to the detection significancee.g.,73.

We also quantify the detection significances of different gases following the procedure used
in ref. 22. To calculate the detection significance of each gas, the best-fit transmission
spectrum model from the PICASO 3.0 grid ([M/H] = +1.0, C/O= 0.68) is re-calculated
without that gas. The wavelength ranges where the particular gas has the most prominent
effect are first identified and then a residual spectrum is calculated by subtracting the model
without the gas from the data. The residual spectra for H2O, CO2, CO, Na, SO2 and CH4 are
shown in the six panels of Fig. 12. We fit each of these residual spectra with two functions, a
Gaussian/double Gaussian/Voigt function and a constant line. We use the Dynesty
nested-sampling routine to perform the fits and to determine the Bayesian evidence
associated with each fit. The Bayes factor between the fits of the residual spectrum with the
Gaussian/Voigt function and the constant line is then used to determine the detection
significance of a gas. For example, for computing the detection significance of H2O, two
adjacent H2O features between 1 and 2.2 µm are used. We note that H2O is expected to be the
dominant opacity source in other wavelength ranges (e.g., 2.2–3 µm) as well, so choosing
two features for this analysis would produce a lower limit on the detection significance of
H2O. The best–fit double Gaussian function to these features along with its 1σ and 2σ
envelopes are shown with the red line and shaded regions in Fig. 12 top–left panel. The same
residual spectrum is also fitted with a straight line shown with blue colour in Fig. 12. The
logarithm of the Bayes factor between the two models is found to be lnB=242, which shows
that the model with H2O is significantly favored over a model without any H2O. The
detection significance of H2O corresponding to this Bayes factor is calculated using the
prescription in ref. 73 and is found to be 22σ. The same methodology, but with a single
Gaussian function, is also followed for CO2, CO, SO2, H2S, and CH4 to get their detection
significance summarized in Table 4 last column. Our Gaussian residual fit significance for
CO2 matches the initial analysis of the NIRSpec PRISM data presented in ref.22.

As shown in Table 4, the detection significance of all gases increases with the Bayes factor
analysis technique relative to the Gaussian/Voigt function technique. This is notably also the
case for SO2, lending confidence to the detection and identification of the molecule, as the
feature is better fit by its respective opacity profile.



Resolution Bias and the detection Significance of CO
The Resolution-Linked Bias effect (RLB) serves to dilute the measured amplitudes of
planetary atmospheric features due to overlapping absorption lines in the stellar atmosphere.
While this effect is negligible for most stars earlier than M dwarfs, some stellar CO
absorption is expected in WASP-39, meaning the measured planetary CO abundance may be
biased. Following Eq. 4 of ref.74 and using high-resolution (R ∼ 105) PHOENIX models of the
planet and the star, we quantify an upper limit on the magnitude of this bias effect. We find
that the planetary CO feature is biased by 30 to 40 ppm in the 4.5-5.1 µm region, leading to
as much as a ∼1-σ underestimate of the planetary CO absorption strength, and subsequently a
similar underestimate of its abundance. We note that this effect is potentially weakened by
Doppler broadening of the molecular lines (which is unaccounted for by PHOENIX) due to
stellar rotation, planetary orbital radial velocity, and planetary winds. Future work, which
may benefit from more detailed modeling and high-resolution observations of WASP-39’s
CO band heads, will better quantify the magnitude of this dilution.

Metallicity, C/O Ratio and CH4 abundance
The best–fitting atmospheric metallicity for WASP-39 b is found to be ∼10× the solar
metallicity using the model grids. The top panel in Fig. 13 shows the observed transmission
spectrum of the planet between 2.0–5.3 µm (where variations due to metallicity are most
prominent), along with multiple transmission spectrum models assuming different
atmospheric metallicities ranging from sub-solar values (e.g., 0.3×solar) to super-solar values
(e.g., 100×solar). The bottom panel demonstrates the effect of different atmospheric C/O
ratios at 10×solar metallicity on multiple transmission spectrum models along with the data.
Since the star WASP-39 has near-solar elemental abundances83, scaled solar abundances are a
reasonable choice for this star. The CH4 feature between 3.1–4 µm and 2.2–2.5 µm is very
prominent in sub-solar and solar metallicity thermochemical equilibrium models shown in
Fig. 13. The absence of such a CH4 feature in the data is evident. This, combined with the
large CO2 feature between 4.3–4.6 µm and measurable CO feature at 4.7 µm, led to a
super-solar (10×) metallicity estimate for the planet. The C/O ratio of the RCTE models
significantly affects the predicted gas abundances, and therefore the calculated transmission
spectrum. Fig. 13 bottom panel shows that for metal-rich atmospheres (e.g., >10× solar) with
C/O ratios lower than 0.7, the transmission spectrum is dominated by features of
oxygen-bearing gases (H2O, CO2, CO) e.g.,84,85,67. But for higher C/O ratios (e.g., 0.916), the
transmission spectrum becomes CH4 dominated at wavelengths greater than 1.5 µm. We
obtain an upper limit on the C/O ratio of WASP-39 b at about ∼ 0.7. However, these
interpretations are based on single-best fits from model grids assuming thermochemical
equilibrium. Other chemical disequilibrium processes like atmospheric mixing and
high–energy stellar radiation-induced photochemistry can also potentially affect this
interpretation. These disequilibrium chemistry effects require further exploration in the
context of WASP-39 b and will be discussed in future work (Welbanks et al. (in prep), Tsai et
al. (in prep)).



Figure 12: Each panel shows the residual spectrum of a particular gas. This residual spectrum
was obtained by removing one gas at a time from the best-fit model atmosphere and
subtracting the recalculated model transmission spectrum without that gas from the data. This
residual spectrum was then fitted with a Gaussian distribution (and a Voigt profile for Na) and
a constant offset, in a Bayesian framework. The median fit (solid lines) along with the 1σ and
2σ confidence intervals are shown with shaded red and blue regions for the Gaussian fits and
the constant offset fits, respectively. The Bayes factor between the two functional fits was
used to determine the detection significance of each gas. Note that the wavelength range
covered in each panel is different.



Figure 13: A comparison of cloud-free PICASO 3.0 RCTE models across a span of
metallicities with the best-fit C/O ratio (0.68) is shown in the top panel. Each line coloured
from faded to deep pink represents models with different metallicities between sub-solar to
super-solar values. The simultaneous lack of a prominent CH4 feature at 2.3 and 3.3 µm and
the presence of a strong CO2 feature indicate that the observations disfavor a low-metallicity
atmosphere. The bottom panel shows transmission spectrum models with different C/O ratios
from sub-solar to super-solar values at 10×solar metallicity compared with the observed
spectrum. The cloudy best-fit model obtained with the grid retrieval framework also has been
shown in both the panels with the grey line.



Table 4: Detection significances of individual opacity sources with our two techniques:
Bayes factor analysis with gas removal, and Gaussian/Voigt fits to the residual absorption
profiles. Note, a negative ln(B) indicates that that specific opacity source is not preferred by
the data.

Bayesian gas removal Residual fit

Gas ln(B) σ ln(B) σ
H2O75 537.7 32.9 242.3 22.1
CO2

76 374.3 27.5 348.9 26.5
CO77 24.6 7.3 10.68 5.0
H2S78 -44.9 N/A -0.4 N/A
CH4

79 -8.9 N/A -0.05 N/A
SO2

80 2.2 2.7 1.6 2.3
Na81 173.9 18.8 73.2 12.3
K82 0.6 1.7 -1.0 N/A

Cloud 209.8 20.6 N/A N/A

Fig. 14: The heat map shows the contribution function, as a function of wavelength in the
lower x-axis and pressure in the y-axis, highlighting the parts of the atmosphere probed by the
transmission observed data as a function of wavelength. The contribution function was
calculated using the best-fit model. This shows that the data mostly probe pressure ranges
between 0.1 to 2 mbars. The various shaded lines in pink show the volume mixing ratio of
CH4 (upper x-axis), from thermochemical equilibrium models, with different atmospheric
metallicities at the best-fit C/O ratio of 0.68.



The best-fitting metallicity models can be used to place an upper limit on the CH4 abundance,
if the pressure ranges probed by the transmission spectrum are estimated. To estimate the
pressure ranges probed by the data, we use the best-fit PICASO 3.0 model to calculate a
pressure- and wavelength-dependent transmission contribution function of the atmosphere86 .
This contribution function for the best-fit 10×solar metallicity PICASO 3.0 model is shown
as a heat-map in Fig. 14. This shows that the data mostly probes pressure ranges between
0.1–2 mbars. We also computed contribution functions for models with solar metallicity and
find that they probe similar pressure ranges as well. Fig. 14 also shows the pressure
dependent CH4 abundances in models with different metallicities presented in Fig. 13 top
panel. As only super-solar metallicity thermochemical equilibrium models are preferred by
the data, the abundance profiles in Fig. 14 help us in putting an upper limit of / 5×10−6 on the
CH4 volume mixing ratio between 0.1–2 mbars.

Clouds
The observed spectrum shows somewhat muted transit depths, across the entire wavelength
range, compared with the depths expected from clear atmospheric models. This hints toward
some additional opacity source in the atmosphere with weak wavelength dependence. Opacity
sources such as clouds can mute the spectral features in a transmission spectrum2,4. We
post–process the transmission spectrum models with grey (i.e., wavelength-independent)
cloud opacities to check whether they are preferred over clear atmospheric models by the
data. However, the treatment of clouds differ between the four 1D RCTE model grids.
PICASO 3.0 and ScCHIMERA grids implemented the cloud opacities using the following
equation,

(3)

where τi,cld is the cloud optical depth of the i’th atmospheric layer in the model with
pressure–width δPi and g represents the gravity of the planet. The best-fit value of the grey
cloud opacity κcld = 10−2.07 cm2/g is calculated in a Bayesian framework by post-processing the
RCTE model grid with this cloud opacity and comparing these post-processed models with
the data. The ATMO grid includes grey cloud decks at multiple pressures between 1 and 50
mbars, but with variable factors 0, 0.5, 1, and 5 governing cloud opacity with respect to H2’s
scattering cross-section at 0.35 microns, where a factor 0 implies a cloud-free model
spectrum. The PHOENIX grid includes similar cloud decks but between 0.3-10 mbars with
cloud optical depth enhancement factors (identically defined as the ATMO grid) 0 and 10. We
find that the cloudy models better fit the data than clear models across all four model grids.
The contribution of clouds in limiting the depths of the gaseous features across the entire
wavelength range is also shown in Fig. 4 with the grey shaded region.



4 µm SO2 feature identification
None of the 1D RCTE models are able to capture the 4µm absorption feature seen in the data.
We searched for multiple candidate gas species that could produce this feature if their
abundances differ from the expected abundances from thermochemical equilibrium. The list
of searched chemical species include C-bearing gases like C2H2, CS, CS2, C2H6, C2H4, CH3,
CH, C2, CH3Cl, CH3F, CN, and CP. Various metal hydrides, bromides, flourides and chlorides
such as LiH, AlH, FeH, CrH, BeH, TiH, CaH, HBr, LiCl, HCl, HF, AlCl, NaF, and AlF were
also searched as potential candidates to explain the feature. SO2, SO3, SO, and SH are among
the sulphur-based gases which were considered. Other species which were considered include
gases like PH3, H2S, HCN, N2O, GeH4, SiH4, SiO, AsH3 , H2CO, H+

3 , OH+, KOH, Brα-H,
AlO, CN, CP, CaF, H2O2, H3O+, HNO3, KF, MgO , PN, PO, PS, SiH, SiO2, SiS, TiO, and VO.

Among all these gases, SO2 was the most promising candidate in terms of its spectral shape
and chemical plausibility, although the expected chemical equilibrium abundance of SO2 is
too low to produce the absorption signal seen in the data. However, previous work exploring
photochemistry in exoplanetary atmospheres27,26 have shown that higher amounts of SO2 can
be created in the upper atmospheres of irradiated planets through photochemical processes.
Therefore, we post-process the PICASO 3.0 and ScCHIMERA chemical equilibrium models
with varying amounts of SO2 in a Bayesian framework to estimate the SO2 abundance
required to explain the strength of the 4-µm feature. The required volume mixing ratio of SO2

was found to be ∼10−5–10−6. Note that in obtaining this estimate we assumed that the SO2

volume mixing ratio does not vary with pressure for simplicity. In a photochemical scenario
this assumption is likely not realistic, though the pressure ranged probed by SO2 is also
limited. Whether photochemical models can produce this amount of SO2 in the atmospheric
conditions of WASP-39 b is a pressing question which the ERS team is currently exploring
(Welbanks et al. (in prep), Tsai et al. (in prep)). Whether this feature can be better explained
by any other gaseous absorber is also currently under investigation by the ERS team.

Data Availability
The data used in this paper are associated with JWST program ERS 1366 and are available
from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu).

Code Availability
The codes used in this publication to extract, reduce, and analyse the data are as follows;
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(https://docs.pymc.io/en/v3/index.html), ExoTEP 49,50,51, Batman33
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(https://zkbt.github.io/chromatic/),
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