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Abstract  

The Sixth Generation (6G) of mobile networks offers the 
promise of a global interconnected system, serving a large set of 
applications across multiple fields such as satellite, air, ground, 
and underwater networks. It will evolve towards a unified 
network compute fabric that facilitates convergence across 
ecosystems, fostering design and innovation of new Internet of 
Things (IoT) applications and services, further leading to an 
exponential growth of IoT use cases in the post-6G era. This 
profound evolution will also contribute to further evolving the 
threat landscape, adding new threat actors, and leading to a new 
set of cyber security challenges. This paper reviews 6G 
applications and analyzes their evolved security challenges and 
existing solutions, covering both the network, application and 
data layers. It introduces a new concept to security monitoring 
and attack detection in 6G-enabled IoT systems, leveraging on 
hierarchical and collaborative approaches, while also satisfying 
the main 6G’s Key Performance Indicators (KPIs) such as 
trustworthiness, latency, connectivity, data rate and energy 
consumption. The proposed solution implements a multi-level 
Federated Learning (FL) approach between IoT devices and 
edge computing applications. As compared to current 
centralized security monitoring and detection solutions, it better 
conciliates between the attack detection accuracy and the 
network overhead for implementing this model. We 
demonstrate the use of the proposed solution through an 
example scenario involving an Internet of Vehicles that 
communicate over a 6G network.  

Keywords—6G, Security scheme, Attacks and KPIs.  

I. INTRODUCTION  
The Sixth Generation (6G) network is the latest revolution 

of wireless communications. It provides a fully connected 
Internet of Things (IoT) and promotes the development of 
new IoT use cases and applications [1]. To build a global 
smart connected world, the 6G technology gathers 
underwater, ground, air and space communication networks. 
Researchers from industry and academia have already started 
specifying the first technological building blocks of the 6G 
architecture as illustrated for instance in these recent works 
[2, 3, 4]. In [4], Letaief et al. introduce a roadmap for 6G 
deployment and describe a set of AI-enabled use cases such 
as distributed machine learning for AI-based mobile 
applications aiming at improving QoS. Gui et al., [2] describe 
four communication services that will be provided by the 6G 
architecture: Massive Low Latency Machine Type 
communication (MLLMT), Mobile Broad Bandwidth and 
Low Latency communication (MBBLL), Massive Broad 
Bandwidth Machine Type communication (MBBMT) and 

6G-Lite. 6G-Lite mainly targets Cooperative Intelligent 
Transportation Systems (C-ITS). Mao et al., [3] highlight the 
main characteristics of IoT in the context of 6G-enabled IoT 
applications. They emphasize on various IoT device 
constraints, usually considered as resource-impoverished in 
terms of processing and battery capacities, to perform heavy-
computational machine learning algorithms or adapt radio 
resources from high-frequency bands to short-range ones.  

Despite the obvious advantages of this new generation of 
mobile networks, its benefits are often accompanied by new 
cybersecurity challenges (in the form of new threat actors or 
new attack surfaces) partly due to the new embedded 
technologies like for virtualization and adversarial machine 
learning [5], as well as economic and geopolitical stakes 
behind this technology and its usages. Therefore, the security 
of 6G networks, including protection against both external 
attackers and insiders, will continue to be a major 
requirement, and a key enabler to accelerate future 6G 
deployments.  

There is a common consensus within the security research 
community about AI-based security, and the fact of it being a 
main building block of the 6G architecture [1][2]. These AI-
based security systems rely on hybrid detection techniques 
[6]. They combine conventional detection methods (e.g., 
signatures-based detection) with more advanced machine 
learning techniques to capture deviations in the behavior of 
mobile devices, and further attribute them to either attacks or 
security breaches. Compared to conventional detection 
techniques, AI-based misbehavior detection provides both a 
higher detection accuracy as against unknown zero-day 
attacks, as well as a reduced false detection rate. In this scope, 
Federated Learning (FL) is a promising technique that offer 
to address different 6G security use cases, such as 
monitoring, attack detection, and orchestration. This is partly 
due to two reasons: (i) the centralized and distributed 
compute logic, where each device locally executes the FL 
algorithm and exchange only the hyper-parameters of the 
learning models, making it even harder to the attacker to 
tamper with the training data, and also interfere with the 
learning process, and (ii) The distributed and centralized 
nodes require a low computation overhead as they process 
only the training models.  

While we highlight in this work importance of securing 
the 6G network, we propose a new security scheme that aims 
to enhance detection of attacks within 6G-enabled IoT 
networks. First, we introduce an example of a reference 6G 
architecture, and present a detailed review of the current 
cybersecurity concepts currently being studied in the 6G 



context. Then, we propose a hierarchical defense scheme 
based on Federated Learning, and that offers to enhance the 
ability to monitor and detect network attacks in 6G IoT 
networks. Finally, we illustrate the use of this approach, and 
demonstrate its efficiency in the context of a 6G-enabled 
Internet of Vehicles (IoV) network.  

II. ARCHITECTURE OF 6G-ENABLED IOT NETWORK 
Further expanding the scope of 5G-enabled use-cases, the 

6G architecture will further enhance convergence between 
heterogeneous networks, including for satellite, air, ground 
and underwater communication networks [1], as depicted in 
Figure 1. By integrating satellite and underwater 
communications (as compared to 5G use-cases), the 6G aims 
at significantly reducing the latency between the different 
networks, and more importantly to lay down the ground for 
new usage scenarios, such as support for a universal device-
to-device communication network, increased convergence 
between the physical and digital universes (also called 
metaverse), and a far richer set of use-cases in support for 
new verticals. Below we briefly introduce the scope of each 
physical network, and the interconnections between the 
different networks.  

● IoT based air network: this network encompasses 
different types of flying devices such as airplanes, Unmanned 
Aerial Vehicles (UAV), balloons, and helicopters, to cite a 
few. To achieve global coverage and prevent network 
outages, the flying devices will co-establish communication 
links not only together but also with IoT devices deployed in 
the ground and underwater. 

● IoT based ground network: the heterogeneous ground 
network is connecting static and mobile devices such as 
sensors, actuators, smart meters, vehicles.  These devices are 
connected to the 6G cellular network through TeraHertz 
(THz) and millimeter Wave (mmWave) communications by 
using Micro and Nano antennas. In a 6G architecture, the 
ground IoT devices are aimed to be smarter, and will achieve 
an efficient Device-to-Device (D2D) communication with a 
high data rate [1].  

● IoT based underwater network: the underwater 
network interconnects a set of heterogeneous underwater 
devices such as sensors, underwater vehicles and submarines 
deployed in a wide and deep-sea area. These devices ensure 
collaborative data analysis tasks. The sonar is considered as 
the primary communication means to build an underwater 
cooperative ad-hoc network [1][2].  

● Satellite network:  the satellite network offers a variety 
of services related to earth observation for weather forecast, 
system navigation, television broadcasting, etc…. In the 6G 
context, the integration of satellite communication with the 
air-ground-underwater networks will guarantee an 
enhancement on data broadcasting and relaying, reliable and 
seamless services, high quality of service and reliable 
disaster-recovery communications [7]. China is the first 
country that deployed a 6G satellite network with the exact 
purpose of increasing the current 5G broadcast speed by 100. 

 
Figure 1. Architecture of 6G-enabled IoT network. 

 

III. CYBER SECURITY IN 6G WIRELESS NETWORKS  
In this section, we review the current security mechanisms 

that are designed to ensure security and privacy properties and 
protect the future 6G architecture from common cyber-
attacks. In the following, we present different approaches at 
the application and the infrastructure levels: 

A. Application and data levels 
Li et al. [1] proposed a cyber protection scheme that relies 

on blockchain technology to ensure communication security 
in a 6G-enbaled IoT network. The protection scheme is based 
on four entities: an edge server, a public blockchain platform, 
a central authority and distributed devices. These entities 
cooperate together to protect the exchanged data from the 
malicious IoT users. The blockchain relies on a reputation 
algorithm, where each IoT device has a reputation value 
determined according to its normal and malicious behaviors. 
Their proposed solution protects against tampering threats 
where an attacker aims at modifying the reputation score. 
Mousa et al. [8] conceived a lightweight authentication 
protocol based on a public key encryption scheme and adapted 
to heterogeneous wireless networks, such as a 6G network. 
The authentication process is performed between a base 
station and the devices that store the encryption keys. In their 
analysis, Mousa et al.  claim that their authentication scheme 
is secure against common attacks, namely replay, spoofing 
and man-in-the-middle attacks, while being simple and easy 
to implement compared to blockchain-based solutions. Li et 
al. [9] addressed the data confidentiality requirement in 6G 
wireless communications through the implementation of a 
caching system and the deployment of a physical layer 
security mechanism. They proposed a secure probabilistic 
model based on a probability caching and redundancy rate to 
secure the 6G transmission links against the eavesdropping 
attacks. Their simulations showed acceptable performance 
results in terms of secure transmission rates as compared to 
previous works. Although the aforementioned solutions [1, 8, 
9] are secure against external attackers, they fail to detect 
internal adversaries, such as malicious base stations or 
infected edge servers. 



B. Infrastructure level 
Stergiou et al. [10] developed a data management 

protocol for 6G networks. They designed a cache decision 
system that operates over a smart building to help end-users 
browse the Internet, share and manage large-scale data. The 
proposed decision system is proven secure against internal 
and external attacks. It relies on two main servers, namely an 
edge and a cloud server that collaborate to monitor the traffic 
and to detect attacks, while taking into account the network 
latency and energy consumption. However, the authors do not 
evaluate the performances of their proposed mechanism 
against attacks that could target the 6G network. In [11], Li 
et al. studied the application of Federated Learning (FL) in 
the context of a 6G architecture. Specifically, they used a 
secure FL approach to thwart attacks targeting the wireless 
communication and machine learning-based algorithms. 
They analyzed three FL defense strategies, namely a 
detection mechanism, a reputation management algorithm 
and an aggregation scheme. However, the authors do not 
provide an experimental analysis of the proposed FL defense 
strategies in terms of accuracy, robustness and efficiency. 
Mao et al. [3] proposed an AI-based security system based on 
Kalman filtering to protect the low-resource IoT devices from 
the attackers that target the energy consumption of the 
legitimate entities. The main purpose of this work is to ensure 
a tradeoff between the quality of service and the security in 
the context of 6G network. According to their experimental 
results, the authors proved that their proposed solution 
achieved a high level of security and it is adapted for energy-
constrained devices. However, the authors do not perform an 
experimental analysis of their security system against the 
well-known attacks targeting the constrained IoT network 
such as resource exhaustion attacks.  

Table I presents a comparison between the 
aforementioned solutions in terms of functional properties, 
security properties and Key Performance Indicators (KPIs).  
Among the 6G’s KPIs we consider:  

● Energy consumption: this KPI mainly focuses on 
evaluating the energy consumption rate of resource-
constrained devices of the network. Indeed, the resource 
exhaustion attacks target the resource-limited devices of the 
network (such as sensors and drones). The attack consists of 
forcing the legitimate IoT devices to carry out further 
computation and communication tasks and hence decrease 
promptly their lifetime by exhausting their batteries. 

● Connectivity: the tactile IoT is considered as one of 
the main MBBMT services and it requires a massive 
connectivity for the large-scale deployed devices to exchange 
the gathered and processed data in an efficient manner [2]. To 
enhance the quality of connectivity in 6G-enabled IoT 
networks, one major technical challenge is improving the 
positioning accuracy, specifically for mobile IoT devices as 
explained in [2]. For instance, the GPS spoofing is considered 
as one of the critical cyber threats that target the positioning 
accuracy of mobile devices, by altering their GPS 
coordinates. The Signal Strength Intensities (SSIs) generated 
by the monitored devices is defined by security experts as the 
main feature that should be monitored to detect GPS spoofing 
[12].  

● Latency: this KPI is considered as a main metric of 
6G-Lite scenarios, such as intelligent transportation systems. 
Here, malicious entities compel legitimate IoT devices or 

edge servers to run unnecessary computation tasks leading to 
an increase of the network latency.  

● Data rate: almost all of MBBLL applications, e.g., 
augmented and virtual reality, require high data rate and low 
latency in order to achieve high-definition video transmission 
as discussed in [2]. The Denial of Service (DoS) attacks could 
drop the relevant packets and hence decrease the data rate 
or/and send a huge number of unwanted packets, thus 
impacting the network latency.  

TABLE I.  COMPARISON BETWEEN CYBERSECURITY SOLUTIONS FOR 
6G-ENABLED IOT APPLICATIONS 

 

IV. HIERARCHICAL FEDERATED LEARNING SECURITY 
SCHEME FOR 6G-ENABLED IOT NETWORKS 

We introduce in this section a new concept for security 
monitoring in 6G networks. The new concept aims to achieve 
a high level of resilience against insider and outsider attacks 
(e.g., attackers compromising or hijacking distributed security 
agents in the network), as well as a higher efficiency for threat 
detection and diagnosis. This concept leverages on 
hierarchical Federated Learning. It fosters a collaborative 
approach for security monitoring where decentralized agents 
are trained to detect attacks in the 6G network and further 
exchange the learnt model without exposing real data. Such 
decentralized approach would contribute to reducing the 
network overhead (due to the sharing of real-time data) and 
provide better privacy assurance as the monitored data (both 
control and user plane data) never leaves the local processing 
node.  

 

A. Overview 
The proposed security scheme involves three entities, 

namely the distributed IoT nodes, the edge servers, and the 
Security Information and Event Management (SIEM). Those 
entities contribute to implementing and operating a 
hierarchical Federated Learning approach for security 
monitoring, all contributing to the Federated Learning 
process, as shown in Figure 2. They collaborate together to 
detect common attacks against the 6G network, as follows: 

-Distributed IoT nodes: We distinguish two types of IoT 
nodes Cluster Head (CH) and Cluster Member (CM) nodes. 
The election of the CH node depends on its Maliciousness 
Level (ML) and the network requirements of the 6G-enabled 
IoT network summarized by the aforementioned KPIs. KPIs 

Solution Approach Internal 
attacks 

External 
attacks 

Accuracy of 
attacks 

detection 

Energy 
consumption 

Connectivity Latency Data 
rate 

[1] Blockchain Non 
detectable 

Detectable Medium High Medium High NA 

[9] Cryptographic- 
based solution 

Non 
detectable 

Detectable Medium High  Medium Low NA 

[8] Caching system Non 
detectable 

Detectable Medium NA NA High NA 

[10] Caching 
decision system 

Detectable Detectable Medium Medium Medium Low High 

[11] Federated 
Learning (FL) 

Detectable Detectable NA NA High Low High 

[3] Kalman filtering NA Detectable High Medium NA Low High 

Proposal Hierarchical FL Detectable Detectable High Medium Medium Low High 

 



define latency, data rate, connectivity and energy 
consumption levels that a node must satisfy to be selected as 
a CH [1][2]. The CH monitors the behaviors of its CM nodes 
by applying intrusion detection techniques based on a FL 
algorithm, which will be explained in the hierarchical FL-
Security framework paragraph below. Indeed, when an attack 
is detected at a CM level, the CH sends an Alert message to 
the edge server, which in turn forwards it to SIEM for further 
analysis. The Alert message includes the identity of the 
suspected node, and the values of ML and 6G network’s KPIs 
that the suspected node exhibits. It is noted that, the CM 
monitors the CH by applying a signature-based attacks 
detection.   

-Edge server: It has a powerful computation capability and 
a mass storage capacity that are used to analyze the huge 
amount of data and Alert messages received from the IoT 
nodes. The FL algorithm is used as a detection technique to 
verify the malicious behaviors of suspected CM nodes, 
detected by the CH nodes. The edge server analyzes the 
behavior of CHs (that are located within the edge server’s 
range) with a goal to determine the malicious CH nodes. Then, 
the edge server sends a Report message including the identity 
of suspected nodes (CMs or/and CHs) and their KPIs to the 
SIEM for further analysis and decision making regarding 
suspected CM or CH as malicious.  

-SIEM:  It is a centralized cloud server that manages the 
distributed edge servers deployed within the 6G-enabled IoT 
network. SIEM carries out the correlation and detection 
process to determine the malicious IoT devices with a high 
accuracy. In the correlation process, SIEM aggregates the 
relevant information extracted from Report and Alert 
messages to generate a global Report message, which includes 
the updated values of ML and 6G network’s KPIs related to 
each monitored IoT node. In the detection process, the FL 
algorithm is used to analyze the behaviors of monitored targets 
to detect the misbehaving edge server, and malicious CM and 
CH devices.  

-Hierarchical FL-security framework: A FL-based 
attacks detection approach is used to identify the malicious 
IoT devices. These malicious devices strive to decrease the 
quality of service by impacting the main KPIs of the 6G 
network, as explained in the attacker model section below. As 
shown in Figure 2, the hierarchical FL algorithm is performed 
at the IoT and edge levels. 

In the IoT level, the FL algorithm is divided into three 
phases: the clustering, the training and the detection phases. 
During the clustering phase, a set of secure IoT clusters is 
created with respect to the network requirements of 6G 
architecture, as explained in the case study section. At each 
cluster, the trusted CH device joins the nearest edge server for 
sharing the training models and all attacks’ detection events. 
During the training phase, each edge server sends to its 
respective CH devices the pre-trained global models, denoted 
𝑤IJ, where 𝑖 = {1,… , 𝐾	} and K is the number of edge servers. 
The CH device uses its local data sets and trains the global 
model 𝑤IJ to obtain the updated global training model 𝑤IK!

L , 
where 𝑗 = {1,… , 𝐾′}  and 𝐾′  is the number of CH devices. 
Each CH uploads the updated model 𝑤IK!

L  to its respective 
edge server and this latter aggregates all the received models 
𝑤IK!
L  to obtain the new global model 𝑤IK!J . The CH devices 

download from their edge server the latest global model 𝑤IK!
L . 

In the detection phase, the CHs and edge server categorize the 

behaviors of their respective monitored devices, CMs and 
CHs either as normal or as malicious according to the global 
training model obtained during the training process. As 
indicated above, in case of detected attacks, the Alert and 
Report messages are forwarded to SIEM for further analysis.   

The execution of the FL algorithm at the edge level is 
divided into two phases: the training and the 
detection/decision phases. The process of training is similar to 
the one performed at the IoT level, where the goal is to 
determine a general model 𝑤IK!  shared between the edge 
servers and the SIEM. In the detection/decision phase, the 
SIEM monitors the behaviors of edge servers and analyzes the 
information extracted from the Alert and Report messages to 
verify whether the suspected CH or CM device is malicious. 
The security experts validate the SIEM decisions. Indeed, the 
experts append relevant security data and update the SIEM by 
adding new attacks features. As such, they improve the 
training process and hence increase and decrease the attacks 
detection and false detection rates, respectively.   

 

 

 
Figure 2. Hierarchical FL-based defense architecture  

B. Attacker model 
For the attacker model, we consider two main types of 

adversaries defined as follows:  

-External adversaries: include malicious entities that seek 
to hijack main security properties such as data confidentiality 
or integrity, as well as network service availability. They may 
also include other form of attacks, such as the one aiming to 
deteriorate the featured 6G KPIs, such as to increase latency, 
to exhaust network resources, generate overhead, or increase 
the energy footprint (e.g. altering the signal strength 
intensities). Note that data that is relevant to each KPI defined 
above, i.e., energy consumption, Signal Strength Intensities 
(SSIs), computation and communications overheads, and data 
rate can be used by the agent as input for executing the 
Federated Learning approach and for attack detection. 
Similarly, other 6G’s KPIs such as capacity and bandwidth 
consumption can be monitored in the same way, to train the 
system so as to detect other kinds of attacks, including 
examples like distributed botnet and aggressive fuzzing.  

-Internal adversaries: include malicious IoT devices and 
malicious edge servers that could target the hierarchical FL-
security system by modifying the training vectors and hence 
altering the trainings models (𝑤IK!

L ,	𝑤IK!) of FL algorithms 
(these are also referred to as poisoning attacks against the 
distributed security monitoring framework). The current state 
of the art already provides solutions how to limit the effect of 



poisoning attacks, as in [11][13] where the authors proposed a 
security solutions that leverage on aggregation and reputation 
algorithms to evaluate the information sent by the cooperative 
nodes executing the FL algorithms. In the context of future 6G 
networks, the collaborative nodes mainly refer to the three 
acting entities that execute the Federated Learning process, 
which are the distributed IoT nodes, the edge servers, and the 
security orchestration framework( as SIEM).   

C. Case study: Securing IoV network in 6G-Lite  
The Internet of Vehicles (IoV) network is considered as 

one of  the main 6G-enabled IoT networks adapted for 6G-
Lite. The 6G-enabled IoV network involves several 
heterogeneous mobile devices, e.g., automotive vehicles, 
drones and underwater vehicles as shown in Figure 1, that are 
particularly distinguished by the high mobility characteristic. 
This makes significant the assurance of high data rate, low 
latency and massive connectivity indicators [2]. The IoV 
network is based on a clustering architecture, where mobile 
devices that are located within the same radio range are 
organized into a one-hop cluster, as depicted in Figure 2. The 
election of the CH device of a particular cluster depends on its 
Maliciousness Level (ML) and the agreed 6G’s KPIs that the 
elected CH should satisfy, defined as follows: 

-ML: Before clusters creations, each IoV node monitors its 
neighboring devices by executing signature-based attacks 
detection technique. Indeed, it assigns ML values to 
monitored devices, where ML should increase or decrease 
with respect to their normal or suspicious behaviors. The 
neighboring IoV devices exchange periodically the computed 
MLs related to the monitored neighboring devices. After 
cluster formation, each CH is running the anomaly detection 
model trained using FL and assigns MLs to its CM. For more 
details on how to compute the ML in a cluster based secure 
IoV network, we refer the reader to reference [14].  MLs are 
computed using authentic data which are securely exchanged 
after mutual authentication between the different devices. The 
choices of the authentication protocol and the encryption 
algorithm are out of scope. 

-Latency: the neighboring IoV devices exchange 
periodically the required computation time (in m/s) for 
running specific tasks such as the model training and 
misbehavior detection.  

-Connectivity degree: it refers to the number of IoV 
devices (CMs) and edge servers connected to the candidate 
CH. The connectivity degree related to each monitored IoV 
device is periodically exchanged among the neighboring 
mobile devices.  

-Data rate: it corresponds to the maximum number of bits 
per second that the IoV device can disseminate. Each IoV 
device broadcasts the value of its data rate to its neighboring 
devices. 

-Energy consumption: each resource constrained IoV 
device such as UAV broadcasts periodically the value of its 
remaining energy to its neighboring IoV devices.   

The IoV device that is elected as a CH is the node with the 
lowest ML and which ensures a network tradeoff between low 
latency, high connectivity, high data rate and low energy 
consumption (when the CH candidate is an UAV). Here, 
ensuring the network tradeoff means that the elected CH 
should satisfy at least one requirement of the aforementioned 
6G’s KPIs. For instance, the latency of the elected CH might 

be lower than its CMs or/and the connectivity degree of the 
elected CH is higher than its CMs, etc. After the CHs election 
at each cluster, the CH devices and their respective CMs 
monitor mutually their behaviors by running the FL algorithm 
and signature-based detection, respectively. When the ML of 
CH is higher than its CMs or/and this CH does not ensure a 
network tradeoff of 6G’s KPIs requirements; one of the CMs 
is elected as a new CH.  

D. Simulation results 
  For our experiments, we simulate a set of distributed nodes 
that simulate individual devices with an IoV network (e.g., 
Ground vehicles, Drones and Underwater vehicles), where a 
total number of 40 nodes are deployed within the network. 
One of the use cases that the cooperative IoV nodes could 
perform is the search and rescue operations of vulnerable 
entities located in the distressed vessels and aircrafts. At the 
beginning of our simulation, for each IoV node, we fix the 
values of latency, connectivity degree, data rate and energy 
consumption. Then these values will be changed randomly 
over time. The federated learning setup is configured as 
follow: learning rate = 0.5, maximum number of iteration =50 
and batches sizes of CH, edge server and SIEM = (5, 30, 60). 
We use a fully connected feed-forward neural network with 
40 input neurons, where the network is trained with cross 
entropy loss. To conduct the different experiments, we 
consider the major attacks that target the wireless 
communication, relying on the attacks dataset, introduced in 
[15]. The latter serves to assess the performance evaluation of 
the proposed hierarchical security scheme. This dataset 
corresponds to the real cyber-threats against the IoT devices 
and edge networks; where these cyber-threats may be 
performed against the radio access of 5G and 6G networks.  

For our analysis, we define a new metric called secure 
IoV4_6G. It is computed as the ratio of the number of secure 
and efficient IoV clusters with respect to the total number of 
IoV clusters. The secure and efficient IoV clusters correspond 
to the trusted IoV clusters (i.e., their CHs have lowest MLs) 
that satisfy the requirements of 6G’s KPIs. As shown in Figure 
3, after cluster formation we vary the number of iterations 
from 5 to 50 iterations: at each iteration, the hierarchical FL 
algorithm is run at both IoT devices and edger servers and 
covers the training and the detection/decision phases as 
explained in hierarchical FL-security framework. From 
Figure 3, it is clear that when the number of iterations 
increases the secure IoV4_6G metric improves, specifically 
when the number of iterations is equal to 50. This result is 
attributed mainly to the following reasons: (i) hybrid detection 
and mitigation: by combining between signature-based 
detection and FL based attacks detection techniques the CH 
and its CMs monitor mutually their behaviors; and also each 
CM monitors its CM neighbors by using signature detection 
technique. Furthermore, each edge server monitors the 
behavior of its CHs by using the FL algorithm. (ii) Tradeoff 
between the network and security constraints: as explained in 
the case study subsection, creation of IoV clusters is based 
mainly on ensuring a high number of secure clusters, while 
taking into account the main requirements of 6G’s KPIs such 
as latency, connectivity and data rate.  

 

 

 



(b) 

 
Figure 3. Security IoV4_6G rate of the proposed hierarchical security 

scheme.  
 

In Figure 4, the proposed hierarchical security scheme is 
compared to the centralized security schemes such as [9][10], 
where in these centralized schemes the cyber protection, 
attacks detection and mitigation processes are performed in 
centralized nodes such as edge servers. Here, the attack 
detection rate and computation overhead are evaluated. As 
shown in Figure 4.(a), the detection rate of attacks targeting 
the IoT devices and edge servers is high for the hierarchical 
and centralized security schemes since for both  security 
schemes  almost of attacks occurring within the edges ‘range 
are detected with a high accuracy, specifically when the 
number of iterations is high. However, as shown in Figure 4. 
(b), the computation overhead generated by the centralized 
security scheme is high since in a centralized scheme a huge 
amount of data is processed in a centralized node (i.e., edge 
server) to prevent the external and internal attacks on 
executing cyber threats. In a hierarchical scheme the generated 
computation overhead is less since to lighten the cyber defense 
process (i.e., attacks detection and mitigation process) at the 
edge server (and SIEM), three defense layers are used to 
secure the network, which are executed at IoT device and edge 
levels.  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Hierarchical and centralized security schemes: a) attacks 

detection rate; b) computation overhead. 

V. CONCLUSION   
The implementation of 6G ultra-dense and heterogeneous 

networks, applications and services is drawing the attention of 
IT and telecommunication companies. However, the 
deployment of efficient security mechanisms in the context of 
6G architectures has yet to be explored. In this research work, 
we have proposed a new collaborative cyber security system, 
based on a multi-level FL algorithm, to secure 6G-enabled 
heterogeneous IoT networks from attacks targeting the main 
KPIs of 6G architectures. To the best of our knowledge, we 
are the first to propose a concrete construction of a hierarchical 
defense system run by IoT nodes, edge server and SIEM, in 
the context of 6G networks. The proposed solution is a new 
step in the research and development of cybersecurity 
mechanisms and machine learning algorithms in emerging 
6G-enabled IoT networks, and will be beneficial to the 
scientific and industrial communities.  
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