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Abstract
Traffic forecasting has attracted widespread attention recently. In reality, traffic data
usually contains missing values due to sensor or communication errors. The Spatio-
temporal feature in traffic data brings more challenges for processing such missing
values, for which the classic techniques (e.g., data imputations) are limited: (1) in
temporal axis, the values can be randomly or consecutively missing; (2) in spatial
axis, the missing values can happen on one single sensor or on multiple sensors simul-
taneously. Recent models powered by Graph Neural Networks achieved satisfying
performance on traffic forecasting tasks. However, few of them are applicable to such
a complex missing-value context. To this end, we propose GCN-M, a Graph Con-
volutional Network model with the ability to handle the complex missing values in
the Spatio-temporal context. Particularly, we jointly model the missing value pro-
cessing and traffic forecasting tasks, considering both local Spatio-temporal features
and global historical patterns in an attention-based memory network. We propose as

Responsible editor: Albrecht Zimmermann and Peggy Cellier.

This research has been developed for the most part in the context of the main author’s Ph.D. at DAVID
Lab, UVSQ, Université Paris-Saclay.

B Jingwei Zuo
jingwei.zuo@tii.ae

Karine Zeitouni
karine.zeitouni@uvsq.fr

Yehia Taher
yehia.taher@uvsq.fr

Sandra Garcia-Rodriguez
sandra.garciarodriguez@cea.fr

1 Technology Innovation Institute, 9639 Masdar City, Abu Dhabi, UAE

2 DAVID Lab, UVSQ, Université Paris-Saclay, Versailles, France

3 Data Analysis and Systems Intelligence Laboratory, CEA, LIST, Gif Sur Yvette, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00903-7&domain=pdf
http://orcid.org/0000-0002-3251-6939


914 J. Zuo et al.

well a dynamic graph learning module based on the learned local-global features. The
experimental results on real-life datasets show the reliability of our proposed method.

Keywords Traffic forecasting · Missing values · Graph convolutional networks ·
Memory networks · Neural networks · Deep learning

1 Introduction

Traffic forecasting has played a critical role in intelligent transportation systems,which
helps the transportation department better manage and control traffic congestion. Gen-
erally represented by geo-locatedMultivariate Time Series (MTS), traffic data not only
shows the typical characteristics of MTS, i.e., temporal dependency (Zuo et al. 2021),
but also integrates the spatial information of the traffic network, i.e., the spatial depen-
dency between the sensor traffic nodes over the road network.

In recent years, by leveraging the spatial-temporal patterns in traffic data,many deep
learning models based on recurrent neural network (RNN) (Li et al. 2018), temporal
convolutional network (TCN) (Wu et al. 2019), graph convolutional networks (GCN)
(Li et al. 2021), etc., have been applied in traffic forecasting tasks and achieved state-
of-the-art performance. They all have a strong assumption that the data is complete
or has been well-preprocessed (Yu et al. 2018). However, since the traffic data is
generally collected from geo-located sensors, sensor failures or communication errors
will result in missing values in the collected data, thus deteriorating the performance
of the forecasting model. We should remark that the missing measures are usually
marked as zero in traffic data (Li et al. 2021), which should be distinguished from
the non-missing measures but with zero values. A typical example (Tian et al. 2018)
comes from the traffic flow data: no vehicles are detected during the night, then the
traffic measures are marked as zero instead of being considered as missing. This can
be commonly observed from real-life traffic data for which the missing rate evolves
periodically during the day (Lopez 2018).

Themissing values can either be ignored in the learningmodel when calculating the
loss function (Wang et al. 2020) or be considered before or during the training process
(Cui et al. 2020b). Ignoring themissingvalues, especiallywhen themissing ratio is high
(Cui et al. 2020b), hinders themodel from benefiting from the rich data information for
better performance. When considering the missing values in traffic data, most work
(Cirstea et al. 2019) conducts data imputation during the preprocessing step, then
imports the completed data into the training step, i.e., two-step processing. Recent
work tends to jointly consider the missing values and the forecasting modeling during
the training step (i.e., one-step processing) and declared better performance than the
two-step processing (Che et al. 2018; Cui et al. 2020a, b; Tian et al. 2018; Tang et al.
2020). However, the above-mentioned work suffers from three major issues. First, the
missing and zero values are usually considered to be the same, leading to unnecessary,
even harmful data imputations, thus contradicting the raw data information. Second,
most of the work (Che et al. 2018; Cui et al. 2020a; Tian et al. 2018; Tang et al. 2020)
considers missing values from the temporal aspect, ignoring the rich information from
the spatial perspective. Third, they are generally designed for processing the missing
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Fig. 1 Missing measures of traffic speed data from METR-LA dataset (Li et al. 2018). left) long-range
missing on entire network (i.e., Spatio-temporal block) and partial network (i.e., temporal block); right)
short-range random missing on partial network (i.e., temporal values) and entire network (i.e., Spatio-
temporal vectors)

values in some basic scenarios, such as random missing values or temporal block
missing values, but lack power for the complex scenarios as shown in Fig. 1. In the
real world, the missing values in traffic data occur in both long-range (e.g., device
power-off ) and short-range (e.g. device errors) settings, in partial (e.g., local sensor
errors) and entire transportation network (e.g., control center errors). Therefore, a
holistic approach is required for handling various types of missing values together in
complex scenarios.

To handle both the Spatio-temporal patterns and complex missing-value scenarios
in traffic data, we proposeGraphConvolutionalNetworks for Traffic Forecasting with
Missing Values (GCN-M). The graph neural network-based structure allows jointly
modeling theSpatio-temporal patterns and themissing values in a one-step process.We
construct local statistical features from spatial and temporal perspectives for handling
short-range missing values. This is further enhanced by a memory module to extract
global historical features for processing long-range missing blocks. The combined
local-global features allow not only for identifying the missing measures from the
inherent zero values but also for enriching the traffic embeddings, thus generating
dynamic traffic graphs tomodel the dynamic spatial interactions between traffic nodes.
The missing values on a partial and entire network can then be considered from spatial
and temporal perspectives.

We summarize the paper’s main contributions as follows:

• Complexmissing valuemodeling:We study the complex scenario wheremissing
traffic values occur on both short & long ranges and on partial & entire transporta-
tion networks.

• Spatio-temporal memory module: We propose a memory module that can be
used by GCN-M to learn both local Spatio-temporal features and global historical
patterns in traffic data for handling the complex missing values.

• Dynamic graph modeling: We propose a dynamic graph convolution module
that models the dynamic spatial interactions. The dynamic graph is characterized
by the learned local-global features at each timestamp, which not only offset the
missing values’ impact but also help learn the graph.

• Joint model optimization: We jointly model the Spatio-temporal patterns and
missing values in one-step processing, which allows processing missing values
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specifically for traffic forecasting tasks, thus bringing better model performance
than two-step processing.

• Extensive experiments on real-life data: The experiments are carried out on two
real-life traffic datasets. We provide detailed evaluations with 12 baselines, which
show the effectiveness of GCN-M over state-of-the-art.

The rest of this paper starts with a review of the most related work. Then, we formulate
the problems of the paper. Later, we present in detail our proposal GCN-M, followed
by the experiments on real-life datasets and the conclusion.

2 Related works

We start with defining the notions used in the paper:

Definition 1 (One-step processing). For one-step processing models, the missing val-
ues and the traffic forecasting are jointly modeled in one single step.

Definition 2 (Two-step processing). The two-step processing models first handle the
missingvalues in a preprocessing step, then apply a forecastingmodel on the completed
data.

2.1 Graph convolutional networks for traffic forecasting

Graph Convolutional Network (GCN) is a special kind of Convolutional Neural Net-
work (CNN) generalized for graph-structured data. Most of the GCN-related work
focuses on graph representation, which learns node embedding by integrating the
features from the node’s local neighbors based on the given graph structure, i.e., adja-
cencymatrix. The traffic data shows strong dependencies between the spatial nodes, for
which GCN can be naturally suitable. Various work (Li et al. 2018; Wu et al. 2020; Yu
et al. 2018; Wang et al. 2020) empowered by GCN achieved remarkable performance
when doing traffic forecasting tasks, relying on spatial and temporal completion of the
data, or calculating loss function for non-zero entries, i.e., only calculating the loss on
entries that contain valid sensor readings. However, these techniques may introduce
derivations when modeling the Spatio-temporal relations between the sensor nodes.
In other words, where non-missing measures are required to characterize the dynamic
graph at each timestamp, missing values may hinder the traffic graph learning (Li et al.
2021), especially dynamic graph learning (Guo et al. 2021).

2.2 Missing value processing

The simplest solution for processingmissing values inMTSwould be data imputation,
such as statistic imputation (e.g., mean, median), EM-based imputation (García-
Laencina et al. 2010), K-nearest neighborhood (Batista et al. 2002), and matrix
factorization (Dong et al. 2022). It’s generally believed that those methods fail to
model temporal dynamics in a time series (Tang et al. 2020). In other words, they
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are not applicable for handling long-range missing values. Recent generative mod-
els (Yoon et al. 2019; Dong et al. 2022) show reliable performance for long-range
time series imputation. However, isolating the imputation model from the forecasting
model leads to two-step processing, and may generate sub-optimal results (Cirstea
et al. 2019; Wells et al. 2013; Che et al. 2018). To handle this issue, recent studies
(Che et al. 2018; Tang et al. 2020; Wang et al. 2021; Zhong et al. 2021) jointly model
the missing values and forecasting task in one-step processing. For instance, GRU-D
(Che et al. 2018) considers the nearby temporal statistical features to do imputations
inside GRUs, whereas LSTM-I (Cui et al. 2020a) infers missing values at the current
time step from preceding LSTM cell states and hidden states, and SGMN (Cui et al.
2020b) improved the state transition process via a Graph Markov Process. Limited
to short-period missing context, those methods are further enhanced by LGnet (Tang
et al. 2020) with the global temporal dynamics to handle the long-range missing issue,
and by LSTM-M (Tian et al. 2018) with multi-scale modeling to better explore his-
torical information. However, the above-mentioned models handle missing values by
focusing on the temporal aspect without considering the complex Spatio-temporal
features in traffic data. Specifically, the strong spatial connections between the sensor
nodes should provide us with more information to handle the missing values. More-
over, one-step processing models are generally designed for single-step forecasting
without considering the multi-step settings. Table 1 shows the method comparison for
traffic forecasting with missing values.

3 Problem formulation

We aim to predict future traffic data by leveraging historical traffic data. Traffic data
can be represented as a multivariate time series on a traffic network. Let the traffic
networkG = {V, E},whereV = {v1, . . . , vN } is a set of N traffic sensor nodes andE =
{e1, . . . , eE } is a set of E edges connecting the nodes. Each node contains F features
representing traffic flow, speed, occupancy, etc. We use X={Xt }τt=1 ∈ RN×F×τ to
denote all the feature values of all the nodes over τ time slices, Xt = (x1t , . . . , x

N
t ) ∈

RN×F denotes the observations at time t , where xi
t ∈ RF is the i-th variable of Xt . We

define a mask sequence M={Mt }τt=1 ∈ RN×F×τ , Mt = (m1
t , . . . ,m

N
t ) ∈ RN×F .

mi
t ∈ {0, 1}F denotes the features’ missing status for the i-th variable. To simplify,

we adopt xi
t ∈ R and mi

t ∈ R to denote respectively the observation and mask value
of one single feature for the i-th variable of Xt . We take mi

t = 0 if xi
t is missing,

otherwise mi
t = 1.

We aim to build a model f , which can take an incomplete traffic sequence {X ,M}
and the traffic network G as input, to predict the traffic data for the next Tp time steps
Y = {yτ+1, . . . , yτ+Tp } ∈ RN×Tp .

4 Proposal: GCN-M

Traffic data is collected under complex urban conditions. Apart from the Spatio-
temporal patterns in the traffic data, we also consider the scenarios of complexmissing
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Fig. 2 Main architecture of GCN-M

values. We design a solution that models the local Spatio-temporal features and global
historical patterns in a dynamic manner. The complex missing values are considered
when building the forecasting model, i.e., one-step processing.

4.1 Model architecture

The global structure of GCN-M is shown in Fig. 2, integrating a Multi-scale Memory
Network module, an Output Forecasting module, and l Spatio-Temporal (ST) blocks.
Each ST block integrates three key components: Temporal Convolution, Dynamic
Graph Construction, and Dynamic Graph Convolution. The input traffic observations
X ∈ RN×F×τ and the mask sequence M ∈ RN×F×τ are fed into the multi-scale
memory network to extract the local statistic features and global historical patterns
thus enriching the traffic embeddings. On the one hand, the enriched embeddings
Hi on each ST block are used to mark the dynamic traffic status, thus generating
dynamic graphs by combining both static node embeddings and predefined graph
information. On the other hand, the learned dynamic graphs are combined with the
temporal convolutionmodule via a dynamic graph convolution to capture temporal and
spatial dependencies in the traffic embeddings.We adopt residual connections between
the input and output of each ST block to avoid the gradient vanishing problem. The
output forecasting module takes the skip connections on the output of the final ST
block and the hidden states after each temporal convolution for final prediction.

4.2 Multi-scale memory network

Toextract the local statistic features andglobal historical patterns then formanenriched
embedding, we adopt the concept of memory network, which was firstly proposed in
(Weston et al. 2015) with primary application in Question-Answer (QA) systems. As
shown in Fig. 3, the main idea of our memory network is to learn from historical
memory components which conserve the long-range multi-scale patterns, i.e., recent,
daily-periodic, and weekly-periodic dependencies. The scale range depends on the
data characteristics. Specifically, we first extract local Spatio-temporal features as
keys to query the memory components; the weighted historical long-range patterns
will be cooperated with the local statistic features to eliminate the side effect from the
missing values. Then, the local-global features will be output as the enriched traffic
embeddings.
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Fig. 3 Memory module enriches traffic embeddings with multi-scale global features

4.2.1 Local spatio-temporal features

We first extract the Spatio-temporal features using the contextual information from
observed parts of the time series. Unlike prior studies (Che et al. 2018), we consider
both temporal and spatial aspects for generating the following statistic features of
every timestamp:

Empirical Temporal Mean: The mean of previous observations reflects the recent
traffic state and serves as a contextual knowledge of xi

t . Therefore, for a missing value
xi

t ∈ R, we construct its temporal mean using L past samples xi∗ before time t :

x̄ i
t =

t−1∑

l=t−L

mi
l xi

l /

t−1∑

l=t−L

mi
l (1)

Last Temporal Observation: We adopt the assumption in (Che et al. 2018) that
any missing value inherits more or less the information from the last non-missing
observation. In other words, the temporal neighbor stays close to the current missing
value. We use ẋ i

t to denote the last temporal observation of xi
t , their temporal distance

is defined as δ̇i
t .

Empirical Spatial Mean: Another contextual knowledge of xi
t is from the nearby

nodes, which reflects the current local traffic situation. For each missing value xi
t , we

construct its empirical spatial mean using S nearby samples x∗
t of the sensor node i :

¯̄xi
t =

S∑

s=1

ms
t xs

t /

S∑

s=1

ms
i (2)

Nearest Spatial Observation: Typically, the state of a graph node remains relatively
similar to its neighbors, especially in a traffic graph where the nearby nodes share
similar traffic situations. We define ẍ i

t as the nearest spatial observation of xi
t , their

spatial distance is denoted as δ̈i
t .

Generally, when δ̇i
t or δ̈i

t is smaller, we tend to trust ẋ i
t or ẍ i

t more. When the
spatial/temporal distance becomes larger, the spatial/temporal mean would be more
representative. Under this assumption, we model the temporal and spatial decay rate
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γ as

γt (δ̇
i
t ) = exp{−max(0, wi δ̇i

t + bi } (3)

γs(δ̈
i
t ) = exp{−max(0, wt δ̈

i
t + bt } (4)

wherewi ,wt ,bi andbt aremodel parameters thatwe train jointlywith other parameters
of the traffic forecasting model. We chose the exponentiated negative rectifier (Che
et al. 2018) so that the decay rates γt and γs decrease monotonically in the range
between 0 and 1. Considering the trainable decays, our proposed model incorporates
the spatial/temporal estimations to define the local features of xi

t :

zi
t = mi

t x
i
t + (1 − mi

t )(γt ẋ
i
t + γs ẍ i

t + (1 − γt )x̄ i
t + (1 − γs) ¯̄xi

t ) (5)

Therefore, for Xt ∈ RN×F , we can get its local features Zt ∈ RN×F .

4.2.2 Multi-scale memory construction

Global historical patterns play a critical role in building an enriched traffic embed-
ding. The historical observations in multiple scales (e.g., hourly, daily, weekly) can be
embedded intomemory as complement information for the local featuresZt ∈ RN×F .
The main idea is to adopt local features to query similar historical patterns in the mem-
ory and output a weighted feature representation for the current timestamp. In this
manner, the enriched multi-scale historical and local features allow not only eliminat-
ing the side effect ofmissing values but also improving the current feature embeddings.
At time t , the query qt of Xt can be embedded from the local features Zt ∈ RN×F :

qt = Zt Wq + bq ∈ RN×d (6)

where Wq ∈ RF×d , bq ∈ RN×d are parameters, d is the embedding dimension.
The input memory components are the temporal segments of multiple scales:

• The recent (e.g., hourly) segment is: Xh = {Xi }t−1
i=t−τ ∈ RN×F×nhτ , with nh recent

periods (e.g., hours) before t , each period contains τ observations.
• The daily-periodic segment is: Xd = {Xi } ∈ RN×F×ndτ with i ∈ [t −nd Td −τ/2 :

t − nd Td + τ/2] ‖ [t − (nd − 1)Td − τ/2 : t − (nd − 1)Td + τ/2] ‖ …‖
[t − Td − τ/2 : t − Td + τ/2], we store τ samples around time t for each of
the past nd days. Td denotes the sample number during one day, and ‖ indicates
the concatenation operation.

• The weekly-periodic segment is: Xw = {Xi } ∈ RN×F×nwτ with i ∈ [t − nwTw −
τ/2 : t − nwTw + τ/2] ‖ [t − (nw − 1)Tw − τ/2 : t − (nw − 1)Tw + τ/2] ‖ …‖
[t − Tw − τ/2 : t − Tw + τ/2], we store τ samples around time t for each of the
past nw weeks. Tw denotes the sample number during one week, and ‖ indicates
the concatenation operation.

The input set of {Xi } = [Xh‖Xd‖Xw] ∈ RN×F×(nd+nw+nh)τ are embedded into the
input memory vectors {mi } and output memory vectors {ci }:

mi = Xi Wm + bm ∈ RN×d (7)
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922 J. Zuo et al.

ci = Xi Wc + bc ∈ RN×d (8)

where Wm, Wc ∈ RF×d , bm, bc ∈ RN×d are parameters.
In the embedding space, we compute the attention score between the query qt and

each memory mi by taking the inner product followed by a Softmax:

pt,i = Sof tmax(qT
t mi ) (9)

The attention score represents the similarity of each historical observation to the query.
Any pattern with a higher attention score is more similar to the context of targeting
missing values. As shown in Fig. 3, the response vector from memory is then a sum
over the output memory vectors, weighted by the attention score from the input:

ot = ∑(nd+nw+nh)τ
i=1 ci pt,i ∈ RN×d (10)

We can finally integrate both local Spatio-temporal and global multi-scale features
and output the enriched traffic embeddings:

ht = (qt‖ot )Wh + bh ∈ RN×d (11)

where Wh ∈ R2d×d , bh ∈ Rd are parameters, and ‖ denotes the concatenation
operation. Therefore, for input X = {Xt }τt=1 ∈ RN×F×τ , we can get its enriched
traffic embeddings H = {ht }τt=1 ∈ RN×d×τ .

4.3 Dynamic graph construction

Apredefined graph is usually constructedwith the distance or the connectivity between
the spatial nodes. However, recent studies (Wang et al. 2020; Wu et al. 2020; Li
et al. 2021) show that the cross-region dependence does exist for those nodes which
are not physically connected but share similar patterns. Learning dynamic graphs
should show better performance than learning static graphs or adopting the predefined
graphs. Considering the missing values in traffic data, instead of using the raw traffic
observations to mark the dynamic traffic status (Li et al. 2021; Han et al. 2021b), we
construct dynamic graphs (i.e., adjacencymatrix) with the enriched traffic embeddings
Hi at each ST block, which integrates both local and global multi-scale patterns at
each time step. This allows capturing the spatial relationship between traffic nodes
robustly. As shown in Fig. 4, the main idea here is to generate dynamic filters from
the predefined graphs G and the traffic embeddingsHi ∈ RN×d×τi (τi is the sequence
length at the i-th ST block), which are applied on the randomly initialized static node
embeddings to construct dynamic adjacency matrices. In more detail, the core steps
in Fig. 4 are illustrated as follows:
[Dynamic Filter Generation] Given Hi = {ht } ∈ RN×d×τi , the traffic embedding
ht at time t is firstly combined with the predefined adjacency matrix AG ∈ RN×N

to generate dynamic graph filters via a diffusion convolution layer as proposed in Li
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Fig. 4 Dynamic graph construction from the enriched traffic embeddings

et al. (2018):

Ft = ∑K
k=0 Pkht Wk ∈ RN×d (12)

where K denotes the diffusion step, Pk= AG /rowsum(AG) represents the power series
of the transition matrix (Wu et al. 2019), and Wk ∈ Rd×d is the model parameter
matrix.
[Hybrid Node Embedding Construction] Considering both the source and target
traffic node,we initialize two randomnode embeddings E1, E2 ∈ RN×d , representing
the static node features (Wang et al. 2020) which are not reflected in the observations
but learnable during training. Thus, two dynamic filters are applied over the static node
embeddings:

Ê1
t = tanh(α(F1

t � E1)) ∈ RN×d

Ê2
t = tanh(α(F1

t � E2)) ∈ RN×d
(13)

where � denotes the Hadamard product (Wu et al. 2019). Ê1
t and Ê1

t are hybrid node
embeddings combining both static and dynamic settings of the traffic data.
[Graph Construction]As mentioned in the previous study (Wu et al. 2020), in multi-
variate time series forecasting, we expect that the change of a node’s condition causes
the change of another node’s condition such as traffic flow. Therefore the learned
relationship is supposed to be uni-directional. We construct the graph by extracting
uni-directional relationships between traffic nodes. The dynamic adjacency matrix is
constructed from the hybrid embeddings:

At = ReLU
(

tanh(α(Ê1
t Ê2

t
T − Ê2

t Ê1
t

T
))

)
∈ RN×N (14)

Therefore, we can construct the dynamic graphs ADi = {At } ∈ RN×N×τi for the
enriched traffic embeddingsHi ∈ RN×d×τi at the i-th ST block. As the computation
and memory cost grows quadratically with the increase of graph size, in practice, it is
possible to adopt a sampling approach (Wu et al. 2020), which only calculates pairwise
relationships among a subset of nodes.
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Fig. 5 Temporal convolution module with dynamic graph convolution

4.4 Temporal convolutionmodule

The temporal convolution network (TCN) (Lea et al. 2017) consists of multiple dilated
convolution layers, which allows extracting high-level temporal trends. Compared to
RNN-based approaches, dilated causal convolution networks are capable of handling
long-range sequences in a parallel manner. The output of the last layer is a represen-
tation that captures temporal dynamics in history. As shown in Fig. 5, considering the
temporal dynamics in traffic data, we adopt the temporal convolution module (Wu
et al. 2019) with the consideration of the gating mechanism over the enriched traffic
embeddings Hi . One dilated convolution block is followed by a tangent hyperbolic
activation function to output the temporal features. The other block is followed by a
sigmoid activation function as a gate to determine the ratio of information that can
pass to the next module. In particular, the sigmoid gate controls which input of the
current states is relevant for discovering compositional structure and dynamic vari-
ances in time series. Applying the sigmoid nonlinearity on the input states differs from
other well-known architectures (e.g., LSTM or GRU), which ignore the compositional
structure features in time series (Yu et al. 2018).

Given the enriched traffic embeddings Hi = {ht } ∈ RN×d×τi , a filter F ∈ R1×K,
K is the temporal filter size, K = 2 by default. The dilated causal convolution operation
of Hi with F at time t is represented as:

Hi�Fi (t) = ∑K
s=0 Fi (s)Hi (t − d × s) ∈ RN×d×τi+1 (15)

where � is the convolution operator, d is the dilation factor, d is the embedding dimen-
sion size, τi+1 is the new sequence length after the convolution operation, which equals
to one on the last layer. Figure 5 shows a three-layer dilated convolution block with
K = 2, d ∈ [1, 2, 4]. Considering the gating mechanism, we define the output of the
temporal convolution module:

hi = tanh(WF1�Hi ) � σ(WF2�Hi ) ∈ RN×d×τi+1 (16)

where WF1 , WF2 are learnable parameters of convolution filters, � denotes the
element-wise multiplication operator, σ(·) is the sigmoid function.

A classic temporal convolution module stacks the temporal features at each time
step t . Therefore, the upper layer contains richer information than the lower layer.
The gating mechanism allows filtering the temporal features on the lower layers by
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weighting features on different time steps without considering the spatial node inter-
actions at each time step. Moreover, the spatial interactions in traffic data always show
a dynamic nature (Wu et al. 2020). To this end, the gating mechanism from a dynamic
spatial aspect is envisaged to better capture the Spatio-temporal patterns.

4.5 Dynamic graph convolution

Spatial interactions between the traffic nodes could be used to improve traffic fore-
casting performance. The dynamic spatial interaction leads to considering a dynamic
version of graph convolution to conduct it on different graphs at different timestamps.
Different from previous work (Li et al. 2021) which uses raw traffic observations
to mark the dynamic traffic status, we adopt the enriched traffic embeddings, which
consider the missing-value issues to generate robust dynamic graphs.

As shown in Fig. 5, we apply the dynamic graph convolution on hi , i.e., the output
of the temporal convolution module, to further select the features at each time step
from the spatial perspective. As mentioned in Sect. 4.3, the dynamic graphs ADi ∈
RN×N×τi are generated from the enriched traffic embeddingsHi ∈ RN×d×τi at the i-
th ST block. At reflects the spatial relationships between nodes at time t . The temporal
features hi (t) aggregate spatial information according to the adjacency matrix At .
Inspired by DCRNN (Li et al. 2018), we consider the traffic situation as the diffusion
procedure on the graph. The graph convolution will generate the aggregated spatial
information at each time step:

H′
i (t) = ∑K

k=0

(
ADi (t)

)k hi (t)Wk ∈ RN×d (17)

where K denotes the diffusion step, and Wk is the learnable parameter matrix. We
adopt the residual connection (He et al. 2016) between the input and output of each
ST block to avoid the gradient vanishing issue in the model’s training. Therefore, the
input of the (i + 1)th ST block is defined as:

Hi+1(t) = Hi (t) + H′
i (t) (18)

4.6 Output forecastingmodule

The outputs hi ∈ RN×d×τi+1 of the middle temporal convolution modules and Hl ∈
RN×d×1 of the last ST block are considered for the final prediction, which represent
the hidden states at various Spatio-temporal levels.We add skip connections on each of
the hidden stateswhich are essentially 1×τi+1 standard convolutions ( τi+1 denotes the
sequence length at the output of the i-th ST block). The concatenated output features
are defined as follows:

O = (h0W 0
s + b0s )‖ . . . ‖(hi W i

s + bi
s)‖ . . . ‖(hl−1W l−1

s + bl−1
s ) ‖(Hl W

l
s + bl

s)

(19)
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where O ∈ RN×(l+1)d , W i
s , bi

s are learnable parameters for the convolutions. Two
fully-connected layers are added to project the concatenated features into the desired
output dimension:

Ŷ = (ReLU (OW 1
f c + b1f c))W 2

f c + b2f c ∈ RN×Tp (20)

where W 1
f c, W 2

f c, b1f c, b2f c are learnable parameters for the fully-connected layers, N
is the node number, Tp denotes the forecasting steps.

Given the ground truth Y ∈ RN×Tp and the predictions Ŷ ∈ RN×Tp , we use mean
absolute error (MAE) as our model’s loss function for training:

L = 1

N Tp

∑N
n=1

∑Tp
t=1|Ŷ

n
t − Yn

t | (21)

5 Experiments

In this section, we demonstrate the effectiveness of GCN-M 1 with real-life traffic
datasets. The experiments were designed to answer the following research questions
(RQs):

RQ 1 Performance on raw benchmark datasets: How well does our model perform
on traffic datasets with a few missing values or without?

RQ 2 Complex scenarios of missing values: How successful is our model at forecast-
ing traffic data considering the complex missing values scenarios?

RQ 3 Dynamic graph modeling: How does our method perform on dynamic graph
modeling considering the missing values?

RQ 4 One-step processing VS two-step processing: How will our method perform
when adopting distinct missing-value processing strategies?

5.1 Experimental settings

[Datasets] We base our experiments on the public traffic datasets: PEMS-BAY and
METR-LA released by Li et al. (2018), which are widely used in the literature. PEMS-
BAY records six months of traffic speed on 325 sensors in the California Bay Area.
METR-LA records four months of traffic flow on 207 sensors on the highways of
Los Angeles County. Both datasets contain some zero and/or missing values, though
PEMS-BAY has been pre-processed by the domain experts from the data provider
(Caltrans 2015) to interpolate most of the missing values. Following Li et al. (2018),
the datasets are split with 70% for training, 10% for validation, and 20% for testing.
In order to validate the model in complex scenarios of missing values, we introduce
complex missing values in the datasets (see details in Sect. 5.4). In practice, the model
should forecast future values from the input data with missing values. Therefore, in the
testing set,wemask out the observations from the input sequenceX (i.e., injectmissing

1 The source code is publicly available in https://github.com/JingweiZuo/GCN-M
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values) but maintain the complete information for the target Y. We use recent τ= 12
timestamps as input to predict the next Tp timestamp. Considering that the missing
values are marked as zeros, we scale the input by dividing it with the max speed of the
training set instead of applying Z-score normalization. This avoids changing the zero
values and facilitates the computation process. Table 2 shows the summary statistics
of the datasets.
[Evaluation metrics] The forecasting accuracy of all tested models is evaluated by
three metrics: mean absolute error (MAE), root mean square error (RMSE) and mean
absolute percentage error (MAPE).

M AE(Y, Ŷ) = 1

N Tp

∑N
n=1

∑Tp
t=1|Ŷ

n
t − Yn

t |

RM SE(Y, Ŷ) =
√

1

N Tp

∑N
n=1

∑Tp
t=1|Ŷ

n
t − Yn

t |2

M AP E(Y, Ŷ) = 1

N Tp

∑N
n=1

∑Tp
t=1| Ŷ

n
t −Yn

t
Yn

t
|

(22)

and N denotes the node numbers, Tp represents the forecasting steps.
When evaluating each model’s performance on the testing set, we mask out the

inherent zero values in the prediction targets when computing the metrics.
We conduct statistical tests to assess the statistical significance of the differences

between the models. In order to compare the forecasters over multiple datasets (Ismail
Fawaz et al. 2019), we adopted the critical difference diagrams recommended by
Demšar (2006) and used the Friedman test (Friedman 1940) to reject the null hypoth-
esis (i.e., check whether there are significant differences at all). We followed the
pairwise post-hoc analysis recommended by Benavoli et al. (2016) and adapted the
critical difference diagrams (Demšar 2006) with the change that all forecasters are
compared with pairwise Wilcoxon signed-rank test (Wilcoxon 1992). Additionally,
we formed cliques using Holm’s alpha (5%) correction (Holm 1979) rather than the
post-hoc Nemenyi test originally used in Demšar (2006).
[Execution and Parameter Settings] The proposed model is implemented by
PyTorch 1.6.0 and is trained using the Adam optimizer with a learning rate of 0.001.
All the models are tested on a single Tesla V100 GPU of 32 Go memory. In the multi-
scale memory module, L , S are set to 12 and 5. nh , nd , nw are all set to 2. We apply
four ST blocks in which the Temporal Convolution module contains two dilated layers
with dilation factor d ∈ [1, 2]. The embedding dimension d is set to 32.

5.2 Baseline approaches

We only compare with the baseline models whose source code is publicly available.
We follow the default parameter settings described in each paper for training each
model. According to the strategy for handling missing values, the baseline models can
be organized into two categories:
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1. Ignore themissing values when optimizing themodel, i.e., consider missing values
in the input sequence as actual zero values and mask out the missing values when
computing the loss error:

• DCRNN (Li et al. 2018): Based on the predefined graphs, DCRNN integrates
GRU with dual directional diffusion convolution.

• STGCN (Yu et al. 2018): Based on the predefined graphs, STGCN combines
graph convolution into 1D convolutions.

• Graph WaveNet (Wu et al. 2019): Graph WaveNet learns an adaptive graph
and integrates diffusion graph convolutions with temporal convolutions.

• MTGNN (Wu et al. 2020): MTGNN learns an adaptive graph and integrates
mix-hop propagation layers in the graph convolution module. Moreover, it
designed the dilated inception layers in temporal convolutions.

• AGCRN (Bai et al. 2020): AGCRN learns an adaptive graph and integrates
with recurrent graph convolutions with node adaptive parameter learning.

• GTS (Shang et al. 2020): GTS learns a probabilistic graph which is combined
with the recurrent graph convolutions to do traffic forecasting.
Note: In practice, anymodel can ignore themissingvalues in their optimization

process. We list here some classic models and the most recent models
designed specifically for traffic forecasting.

2. Jointly model the missing values and forecasting task, i.e., one-step processing
models:

• GRU (Chung et al. 2014): Gated Recurrent Unit (GRU) can be considered as
a basic structure for traffic forecasting.

• GRU-I (Che et al. 2018): A variation of GRU, which infers the missing values
with the predictions from previous steps.

• GRU-D (Che et al. 2018): Based onGRU,GRU-Dhelps improve the prediction
performance by incorporating the missing patterns, including the masking
information and time intervals between missing and observed values.

• LSTM-I (Cui et al. 2020b): Based on LSTM, LSTM-I is similar to GRU-I for
inferring the missing values.

• LSTM-M (Tian et al. 2018): Based on LSTM, LSTM-M is designed for traffic
forecasting on data with short-period and long-period missing values.

• SGMN (Cui et al. 2020b): Based on the graph Markov process, SGMN does
traffic forecasting on datawith randommissing values by corporating a spectral
graph convolution.

5.3 RQ 1: performance on raw benchmark datasets

Recently, a lot of traffic forecasting models (Jiang and Luo 2022) have been pro-
posed, achieving remarkable performance on the benchmark datasets PEMS-BAY
and METR-LA. Our objective is not to beat all the models in terms of forecasting
accuracy, but to validate our proposal for jointly modeling missing values and fore-
casting. Therefore, it’s essential to know how GCN-M performs in a primary setting,
i.e., on the original datasets with a fewmissing values or without.We pick three classic
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Fig. 6 Critical difference diagrams showing rankings by various evaluation metrics and the statistical
difference comparison of 13 forecasting models on PEMS-BAY and METR-LA datasets under multiple
forecasting horizons

models (DCRNN (Li et al. 2018), STGCN (Yu et al. 2018) and Graph WaveNet (Wu
et al. 2019)) and the three most recent models (MTGNN (Wu et al. 2020), AGCRN
(Bai et al. 2020) and GTS (Shang et al. 2020)), which focus on the Spatio-temporal
modeling of traffic data, and generally ignore the missing values when training the
model. Additionally, we consider the group of works (Che et al. 2018; Cui et al. 2020b;
Tian et al. 2018) which are specifically designed for modeling the missing values in
the forecasting model, i.e., one-step processing models.

Tables 3 and 4 show the performance comparison on the raw PEMS-BAY and
METR-LA datasets, respectively. It should be noted that the original datasets already
containmissing values (0.0031%missed in PEMS-BAY, 8.11%missed inMETR-LA).
We train the models for single-step (horizon=1) and multi-step (horizon =3,6,12) fore-
casting. We report the evaluation errors on each horizon step. We observe from the
results that no model achieved evident better performance than the others. However,
the first group of works (e.g., DCRNN) performs better than the one-step process-
ing models, which is not surprising as they incorporate the advanced graph models
(e.g., mix-hop propagation (Wu et al. 2020)) and training techniques (e.g., curriculum
learning (Wu et al. 2020)) to improve the Spatio-temporal forecasting performance.
Surprisingly, among the one-step processing models, GRU-D (Che et al. 2018) shows
much worse performance than the others, probably due to the fact that it has been
designed for health care applications, whose data is more stable than dynamic traffic
data. LSTM-M (Tian et al. 2018) and SGMN (Cui et al. 2020b), designed for traffic
forecasting with missing values, show relatively good performance in PEMS-BAY
especially on single-step forecasting. However, they did not show a clear advan-
tage over the first group of works. The one-step processing models are generally
designed for single-step forecasting; their performance gap with the first group of
works becomes larger under a multi-step forecasting setting.

We present in Fig. 6 the critical difference diagrams (Demšar 2006) which show
the average rankings and visualize the statistical difference between the forecasting
models, where a thick horizontal line shows a group (i.e., clique) of models that are
not significantly different in terms of evaluation metrics. From Fig. 6, we observe
that even though GCN-M belongs to the one-step processing models, its performance
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remains close to the first group of works. GCN-M is not significantly different to
MTGNN, GTS, and GraphWaveNet on all three evaluation metrics. Moreover, the
advanced graph models and training techniques in recent work (Wu et al. 2020) can
be considered to have improved the performance of GCN-M further.

5.4 RQ 2: complex scenarios of missing values

In this section, we demonstrate the power of GCN-M in handling complex scenarios
of missing values for the purpose of traffic forecasting.

As mentioned previously in Fig. 1, there are several scenarios of missing values in
real-life traffic datasets (e.g., METR-LA): short-range or long-range missing; partial
or entire network missing. The results in Tables 3 and 4 did not show the superiority
of GCN-M over other models on the original datasets with a low missing rate. To
test the model’s capability of handling complex missing values, we have designed
three scenarios with various missing rates (10%, 20%, and 40%), and removed the
observations from the datasets accordingly. We use x̂i ∈ Rn× f ×t to represent each
of the observation tensors to be removed from X ∈ RN×F×τ , therefore a local mask
tensor m̂i ∈ Rn× f ×t can be defined accordingly. This annotates the locations of
missing values in the original dataset. All the local mask tensors constitute the global
mask sequenceM = {m̂i }which allows injectingmissing values with a givenmissing
rate. Then, we designed the scenarios of:

• Short-range missing: we randomly set n ∈ [1, . . . , N ], f = F , t = 1
• Long-range missing: we randomly set n ∈ [1, . . . , N ], f = F , t = τ

• Mix-range missing: we randomly set n ∈ [1, . . . , N ], f = F , t ∈ [1, . . . , τ ]
In Tables 5 and 6, we show the performance comparison on the PEMS-BAY

and METR-LA datasets under various missing value scenarios. We highlight the
best results among the one-step processing models (underlined values) and all the
models (bold values). Globally, GCN-M shows the best performance under all the set-
tings when compared with other one-step processing models. The graph-based model
SGMN (Cui et al. 2020b) performs much worse than other one-step processing mod-
els under long-range and mix-range missing settings, indicating that it applies only to
simple missing scenarios, i.e., short-range random missing. GCN-M does not always
show superiority compared with the first group of works, especially in the short-
range missing scenario, where MTGNN and GTS usually show good performances.
MTGNN typically performs better than GCN-M when the missing rate is low (10%),
except under the mix-range missing scenario of PEMS-BAY. We can draw a conclu-
sion from this observation: a robust Spatio-temporal forecasting model can offset the
impact of the missing values to some extent, as it allows exploring the information
thoroughly from the observed measures. GCN-M becomes the best forecasting model
when the missing rate gets higher, as the missing values become a more critical factor
that impacts the forecasting model than Spatio-temporal pattern modeling.

Compared to the short-rangemissing scenario, GCN-Mshows amore robust perfor-
mance under long-range and mix-range missing scenarios, where the recent temporal
values and the nearby nodes’ values are not always observed. The multi-scale memory
block in GCN-M allows enriching the traffic embedding at each timestamp, thus mak-
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Fig. 7 Critical difference diagrams showing rankings by various evaluation metrics and the statistical
difference comparison of 13 forecasting models on PEMS-BAY and METR-LA datasets with various
missing rates under mix-range missing scenario

ing the model robust in the two complex scenarios. The memory block searches for
the periodic global patterns from historical data and the valuable local features from
nearby nodes or recent observations at each timestamp. When nearby node values are
unobserved, GCN-M favors more recent observations and vice versa. As the zero val-
ues usually show periodicity while missing values show contingency (Caltrans 2015),
the memory module with the periodic historical patterns can distinguish the inherent
zero values from the missing values. The current node readings combined with the
historical patterns will eliminate the effect of missing values but conserve that of zero
values.

In Fig. 7, we show the critical difference diagrams (Demšar 2006) on PEMS-BAY
andMETR-LA datasets under the mix-range missing scenario. A thick horizontal line
shows a group of models that are not significantly different in terms of different eval-
uation metrics. We can also observe that GCN-M is significantly different from other
model groups on all the evaluation metrics, which validates the model’s performance
for processing missing values under complex scenarios.

In Fig. 8, we show the effects of the memory module’s parameters L and S on the
model’s performance. The two parameters represent the searching range of the local
temporal and spatial features, respectively.We report themodel’s evaluation errorswith
various missing rates. From the results in Fig. 8, we observe that when the searching
range becomes more extensive, the model’s performance decreases more. This can be
explained by the mean value of a larger space and the less recent observations will
lead to a weaker information dependency with the current timestamp, thus affecting
the information enrichment of the traffic embedding. In real-life datasets, we can set
the parameters from a small value, such as considering local features during the last
one hour (L=12) with five nearest sensor nodes (S=5).

5.5 RQ 3: dynamic graphmodeling

In the dynamic traffic system, the spatial dependency can be considered as a dynamic
system status, which evolves over time (Han et al. 2021b). The traffic observations at
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Fig. 8 Parameters effects: we report the model errors of GCN-M on METR-LA dataset considering (a–c)
L observed samples before current timestamp for constructing the Empirical Temporal Mean in equation
1; (d–f) S observed samples nearby current node for constructing the Empirical Spatial Mean in equation
2

each timestamp are always adopted to characterize the dynamic traffic status and help
learn the dynamic graphs (Li et al. 2021). However, due to the missed observations,
the traffic status at certain timestamps can not be characterized, thus affecting the
dynamic graph learning process.

This issue can be handled by the enriched traffic embeddings proposed in GCN-M.
It allows considering the local static features and global historical patterns, which
avoids the deviation introduced by the missing values and helps learn the dynamic
graphs. To validate the performance of the learned dynamic graphs, we designed the
following variants of our GCN-M model:
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• GCN-M-obs: instead of using the enriched traffic embeddings, the raw traffic
observations (Li et al. 2021) are adopted to construct dynamic graphs.

• GCN-M-adp: instead of learning dynamic graphs and applying dynamic convolu-
tion, an adaptive static graph (Wuet al. 2019) is learned to do the graph convolution.

• GCN-M-pre: instead of learninggraphs from the traffic embeddingor observations,
the predefinedgraphs (Li et al. 2018) calculatedwith the directed distances between
traffic nodes are adopted for doing graph convolution.

• GCN-M-com: combine both predefined and learned static graphs (Wu et al. 2019)
to do the graph convolution.

We show in Table 7 the performance comparison on various model variants of the
spatial graph modeling. We report the model errors on multiple horizons. We consider
the complex scenario of mix-range missing values with a missing rate of 40% on
both PEMS-BAY and METR-LA datasets. The results in Table 7 suggest that the
dynamic graphs learned from the enriched traffic embeddings perform the best when
compared to other variants. In contrast, the model obtains the worst performance when
learning the dynamic graphs from the raw observations, which is mainly due to the
missing values hindering the graph learning process in inferring the dynamic traffic
status. GCN-M-obs performs evenworse thanGCN-M-adp in which the static graph is
learned from the entire observations, eliminating the effect from local missing values.

5.6 RQ 4: one-stepVS two-step processing

In this section, we show the performance comparisonwhen adopting differentmissing-
value processing strategies for traffic forecasting. As a one-step processing model,
GCN-M jointly models the Spatio-temporal patterns and missing values for traffic
forecasting. The two-step processing models handle the missing values in a prepro-
cessing step, then apply a forecasting model to the completed data.

To compare the processing strategies fairly, we use GCN-M as a base model to test
the two-step processing approaches. A preprocessing step is adopted to replace the
GCN-M memory module designed to handle missing values.

We consider the following imputation methods to fill in missing values and apply
GCN-M to the completed data.

• MEAN (García-Laencina et al. 2010): This approach replaces missing values
with the mean of observed measures based on the respective feature of the input
sequence.

• KNN (Batista et al. 2002): This method replaces missing values with the mean of
k-nearest temporal neighbors. We linearly interpolate the missing values with k =
2, considering the previous and next non-empty values.

• MICE (Van Buuren and Groothuis-Oudshoorn 2011): MICE is the multiple impu-
tation method that fills the missing values from the conditional distributions by
Markov chain Monte Carlo (MCMC) techniques.

We show in Table 8 the performance comparison between one-step processing (i.e.,
GCN-M) and two-step processing (i.e., GCN-M variants) models. We conducted the
experiments under the complex scenario of missing values (i.e., mix-range missing)
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with missing rates varying from 10 to 40%. Table 8 shows that the preprocessing
step with different imputation techniques leads to worse performance than the one-
step setting. Even though authors in Shleifer et al. (2019) justified that the imputation
techniques in the preprocessing step improve the model’s performance under simple
scenarios of missing values (e.g., random short-rangemissing), they are not applicable
for complex scenarios of missing values with the results obtained from Table 8. On the
one hand, the complex missing values (e.g., on short & long ranges, partial & entire
variables) challenges the imputation tasks in considering local and global Spatio-
temporal patterns; on the other hand, the patterns of missing values modeled in the
preprocessing step are totally isolated from forecasting models, which may not be
valuable for the forecasting tasks.

5.7 Discussions

Our approach has several advantages. First, starting from the real-world data, GCN-M
considered the complex scenarios of missing values in traffic data. Different from the
previous work (Che et al. 2018; Cui et al. 2020b; Tian et al. 2018) which consider
the missing value from a part of the real-life scenarios: either under the short-range
or long-range missing settings, under partial or entire networking missing settings.
GCN-M considers the complex mix-missing value context covering various real-life
scenarios for missing values.

Second, GCN-M is capable of handling such complex missing value scenarios with
a multi-scale memory module. This combines local Spatio-temporal features (short-
rangemissing, partial and entire networkmissing) and global historical patterns (long-
range missing) to generate the enriched traffic embeddings. The embeddings allow
distinguishing the inherent zero values from the missing values. In this way, GCN-M
jointlymodels the Spatio-temporal patterns andmissing values in one-step processing,
which generally allows a bettermodel performance than two-step processing (Cui et al.
2020b).

Third, GCN-M allows generating reliable dynamic graphs from the enriched traffic
embeddings, which opens a path for learning robust dynamic graphs under missing
value settings. Moreover, the generated dynamic graphs can cooperate with various
advanced graph convolution modules (Wu et al. 2020) to improve the model’s perfor-
mance further.

Last but not least, even though GCN-M is designed for traffic forecasting, it is
applicable to wider application domains sharing similar Spatio-temporal character-
istics and missing-value scenarios, such as crowd flow forecasting (Xie et al. 2020),
weather and air pollution forecasting (Han et al. 2021a; El Hafyani et al. 2022; Abboud
et al. 2021), etc. The Spatio-temporal patterns in those data and the missing values
caused by the sensor issues or control center errors form similar research problems to
this paper.

However,GCN-Mdoes have a limitation in terms of computational efficiency. Table
9 shows the per epoch training time comparison on the full datasets between GCN-M
and the baseline models. The one-step processing baseline models are much more
efficient than other models. This is basically because of their simple structure without
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Table 9 Model efficiency: training time per epoch (s)

Models PEMS-BAY METR-LA Models PEMS-BAY METR-LA

DCRNN 468.22 178.23 GRU 3.65 2.45

STGCN 55.32 27.70 GRU-I 4.22 3.67

GraphWaveNet 118.77 48.16 GRU-D 7.82 5.43

MTGNN 86.20 38.70 LSTM-I 4.32 4.64

AGCRN 67.40 32.9 LSTM-M 8.12 5.76

GTS 191.4 62.3 SGMN 3.45 2.38

GCN-M (ours) 241.69 118.65 – – –

integrating the costly graph convolution modules. GCN-M still performs better than
DCRNN, but worse than other forecasting models. This is mainly caused by two fac-
tors: 1) generating the enriched traffic embeddings requires a huge computation cost
on the attention score’s calculation in the memory module; 2) generating the dynamic
graphs for graph convolution requires learning a large number of parameters, thus
increasing computation cost. Possible solutions might be to reduce the time complex-
ity for calculating the attention with ProbSparse Attention proposed in Zhong et al.
(2021), and to apply more efficient dynamic graph convolution such as graph tensor
decomposition (Han et al. 2021b) and node sampling when generating the graphs (Wu
et al. 2020).

6 Conclusion

In this paper, we propose GCN-M, a graph convolutional network-based model for
handling complex missing values in traffic forecasting. We studied the complex sce-
nario where missing traffic values occur on both short & long ranges and on partial &
entire transportation networks. The enriched traffic embeddings learned by a Spatio-
temporalmemorymodule allowhandling the complexmissing values and constructing
dynamic traffic graphs to improve the model’s performance. A joint model optimiza-
tion is applied to considermissing values and traffic forecasting in one-step processing.
We compare GCN-M with the one-step processing models, which are specifically
designed for processing incomplete traffic data and the recent advanced traffic fore-
casting models. The extensive experiments on two benchmark traffic datasets with
12 baselines demonstrate that GCN-M shows a clear advantage under various sce-
narios of complex missing values, as compared to the advanced traffic forecasting
models, while at the same time maintaining comparable performance on complete
traffic datasets. These experiments also provide an up-to-date comparison of the traf-
fic forecasting models would it be with or without missing values. In future work, we
will explore the aforementioned optimizations to reduce computational costs. From
a longer-term perspective, one can consider noisy data or external events that may
impact the predictions.

123



Graph convolutional networks for traffic forecasting… 945

Acknowledgements This research was supported by DATAIA convergence institute as part of the
Programme d’Investissement d’Avenir, (ANR-17-CONV-0003) operated by DAVID Lab, University of
Versailles Saint-Quentin, and the MASTER project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie-Sklodowska Curie grant agreement N.
777695. The authors would like to thank as well the publication support from the Technology Innovation
Institute.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AbboudM, ElHafyani H, Zuo J, et al (2021)Micro-environment recognition in the context of environmental
crowdsensing. In: Workshops of the EDBT/ICDT joint conference, EDBT/ICDT-WS

Bai L, Yao L, Li C, et al (2020) Adaptive graph convolutional recurrent network for traffic forecasting. Adv
Neural Inf Process Syst (NeurIPS) 33

Batista GE, Monard MC et al (2002) A study of k-nearest neighbour as an imputation method. His 87(251–
260):48

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach
Learn Res (JMLR) 17(1):152–161

Caltrans (2015) An introduction to the caltrans performance measurement system (pems). https://pems.dot.
ca.gov/PeMS_Intro_User_Guide_v5.pdf

Che Z, Purushotham S, Cho K et al (2018) Recurrent neural networks for multivariate time series with
missing values. Sci Rep 8(1):1–12

Chung J, Gulcehre C, Cho K, et al (2014) Empirical evaluation of gated recurrent neural networks on
sequence modeling. In: NIPS 2014 workshop on deep learning

Cirstea RG, Yang B, Guo C (2019) Graph attention recurrent neural networks for correlated time series
forecasting. MileTS19@ KDD

Cui Z, Ke R, Pu Z et al (2020a) Stacked bidirectional and unidirectional LSTM recurrent neural network
for forecasting network-wide traffic state with missing values. Transp Res Part C Emerg Technol
118(102):674

Cui Z, Lin L, Pu Z et al (2020b) Graph markov network for traffic forecasting with missing data. Transp
Res Part C Emerg Technol 117(102):671

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res (JMLR)
7(1):1–30

Dong H, Ding F, Tan H et al (2022) Laplacian integration of graph convolutional network with tensor com-
pletion for traffic prediction with missing data in inter-city highway network. Physica A 586(126):474

El Hafyani H, Abboud M, Zuo J, et al (2022) Learning the micro-environment from rich trajectories in the
context of mobile crowd sensing. Geoinformatica. https://doi.org/10.1007/s10707-022-00471-4

Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann
Math Stat 11(1):86–92

García-Laencina PJ, Sancho-Gómez JL, Figueiras-Vidal AR (2010) Pattern classification withmissing data:
a review. Neural Comput Appl 19(2):263–282

Guo S, Lin Y, Wan H, et al (2021) Learning dynamics and heterogeneity of spatial-temporal graph data for
traffic forecasting. IEEE Trans Knowl Data Eng (TKDE)

Han J, Liu H, Zhu H, et al (2021a) Joint air quality and weather prediction based on multi-adversarial spa-
tiotemporal networks. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI)

123

http://creativecommons.org/licenses/by/4.0/
https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf
https://pems.dot.ca.gov/PeMS_Intro_User_Guide_v5.pdf
https://doi.org/10.1007/s10707-022-00471-4


946 J. Zuo et al.

Han L, Du B, Sun L, et al (2021b) Dynamic and multi-faceted spatio-temporal deep learning for traffic
speed forecasting. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery &
data mining, pp 547–555

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 770–778

Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 65–70
Ismail Fawaz H, Forestier G, Weber J et al (2019) Deep learning for time series classification: a review.

Data Min Knowl Discov 33(4):917–963
Jiang W, Luo J (2022) Graph neural network for traffic forecasting: a survey. Expert Syst Appl 117921
Lea C, Flynn MD, Vidal R, et al (2017) Temporal convolutional networks for action segmentation and

detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
156–165

Li Y, Yu R, Shahabi C, et al (2018) Diffusion convolutional recurrent neural network: data-driven traffic
forecasting. In: International conference on learning representations (ICLR)

Li F, Feng J, Yan H, et al (2021) Dynamic graph convolutional recurrent network for traffic prediction:
benchmark and solution. ACM Trans Knowl Discov Data (TKDD)

Lopez AL (2018) Traffic state estimation and prediction in freeways and urban networks. Ph.D. thesis,
Université Grenoble Alpes

Shang C, Chen J, Bi J (2020) Discrete graph structure learning for forecasting multiple time series. In:
International conference on learning representations (ICLR)

Shleifer S, McCreery C, Chitters V (2019) Incrementally improving graph wavenet performance on traffic
prediction. arXiv preprint arXiV:1912.07390

Tang X, Yao H, Sun Y, et al (2020) Joint modeling of local and global temporal dynamics for multivariate
time series forecasting with missing values. In: Proceedings of the 34th AAAI conference on artificial
intelligence (AAAI), pp 5956–5963

Tian Y, Zhang K, Li J et al (2018) LSTM-based traffic flow prediction with missing data. Neurocomputing
318:297–305

Van Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputation by chained equations in R. J
Stat Softw 45:1–67

Wang X, Ma Y, Wang Y et al (2020) Traffic flow prediction via spatial temporal graph neural network. Proc
Web Conf 2020:1082–1092

Wang S, Gao M, Wang Z et al (2021) Fine-grained spatial-temporal representation learning with missing
data completion for traffic flow prediction. In: International conference on collaborative computing:
networking. Springer, Applications and Worksharing, pp 138–155

Wells BJ, Chagin KM, Nowacki AS, et al (2013) Strategies for handling missing data in electronic health
record derived data. EGEMS 1(3)

Weston J, Chopra S, Bordes A (2015) Memory networks. In: International conference on learning repre-
sentations (ICLR)

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer,
pp 196–202

WuZ, Pan S, LongG, et al (2019) Graphwavenet for deep spatial-temporal graphmodeling. In: Proceedings
of the 28th international joint conference on artificial intelligence (IJCAI), pp 1907–1913

Wu Z, Pan S, Long G, et al (2020) Connecting the dots: multivariate time series forecasting with graph
neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp 753–763

Xie P, Li T, Liu J et al (2020) Urban flow prediction from spatiotemporal data using machine learning: a
survey. Inf Fus 59:1–12

Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative adversarial networks. Adv Neural Inf
Process Syst (NeurIPS) 32

Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework for
traffic forecasting. In: Proceedings of the 27th international joint conference on artificial intelligence
(IJCAI)

Zhong W, Suo Q, Jia X, et al (2021) Heterogeneous spatio-temporal graph convolution network for traffic
forecasting with missing values. In: 2021 IEEE 41st international conference on distributed computing
systems (ICDCS), IEEE, pp 707–717

123

http://arxiv.org/abs/1912.07390


Graph convolutional networks for traffic forecasting… 947

Zhou H, Zhang S, Peng J, et al (2021) Informer: Beyond efficient transformer for long sequence time-
series forecasting. In: Proceedings of the 35th AAAI conference on artificial intelligence (AAAI), pp
11,106–11,115

Zuo J, Zeitouni K, Taher Y (2021) Smate: Semi-supervised spatio-temporal representation learning on
multivariate time series. In: 2021 IEEE international conference on data mining (ICDM), IEEE, pp
1565–1570

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Graph convolutional networks for traffic forecasting with missing values
	Abstract
	1 Introduction
	2 Related works
	2.1 Graph convolutional networks for traffic forecasting
	2.2 Missing value processing

	3 Problem formulation
	4 Proposal: GCN-M
	4.1 Model architecture
	4.2 Multi-scale memory network
	4.2.1 Local spatio-temporal features
	4.2.2 Multi-scale memory construction

	4.3 Dynamic graph construction
	4.4 Temporal convolution module
	4.5 Dynamic graph convolution
	4.6 Output forecasting module

	5 Experiments
	5.1 Experimental settings
	5.2 Baseline approaches
	5.3 RQ 1: performance on raw benchmark datasets
	5.4 RQ 2: complex scenarios of missing values
	5.5 RQ 3: dynamic graph modeling
	5.6 RQ 4: one-step VS two-step processing
	5.7 Discussions

	6 Conclusion
	Acknowledgements
	References




