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A B S T R A C T   

That climate variability and change can potentially force multiple simultaneous breadbasket crop yield shocks 
has been established. But research quantifying the mechanisms behind such simultaneous shocks has been 
constrained by short records of crop yields. Here we compile a dataset of subnational crop yields in 25 countries 
dating back to 1900 to study the frequency and trends in multiple breadbasket yield shocks and how large-scale 
climate anomalies on interannual timescales have affected multiple breadbasket yield shocks over the last 
century. We find that major simultaneous breadbasket yield shocks have occurred in at least three, four, or five of 
nine breadbaskets 10.3%, 2.3% and 1.1% of the time for maize and 18.4%, 4.6% and 2.3% of the time for wheat. 
Furthermore, we find that multiple breadbasket yield shocks decreased in frequency even as those breadbaskets 
experience increasingly frequent climate-related shocks. For both maize and wheat breadbaskets, there were 
fewer simultaneous yield shocks during the 1975–2017 time period as compared to 1931–1975. Finally, we find 
that interannual modes of climate variability - such as the El Niño Southern Oscillation (ENSO), the Indian Ocean 
Dipole (IOD), and the North Atlantic Oscillation (NAO) - have all affected the relative probability of simultaneous 
yield shocks in pairs of breadbaskets by up to 20–40% in both maize and wheat breadbaskets. While past 
literature has focused on the effects of ENSO, we find that at the global scale the NAO affects the overall number 
of wheat yield shocks most strongly despite only affecting northern hemisphere breadbaskets.   

1. Introduction 

In recent decades international trade has become an increasingly 
important part of the global food system, with a majority of people now 

depending on food imports to meet daily caloric requirements (Porkka 
et al., 2013; Puma et al., 2015). Domestic food supply in heavily 
import-dependent countries is not always less stable than those that 
grow a larger fraction of their food (Bren d’Amour and Anderson 2020) 
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as trade can either create conditions of food supply instability (Bren 
d’Amour et al., 2016) or lead to greater stability (Lybbert et al., 2014) 
depending on the context. But reliance on global food trade does present 
the unique risk that production shocks in remote countries can lead to 
reduced availability of food, which can contribute to price spikes that 
make food unaffordable (Bren d’Amour et al., 2016, Heslin et al., 2020, 
Marchand et al., 2016, Puma et al., 2015). In this context, the possibility 
of multiple simultaneous breadbasket yield shocks presents a potential 
risk to food security by limiting options for import diversification and 
raising the risk of export restrictions (Gaupp et al., 2020; Gaupp et al., 
2019; Janetos et al., 2017, Mehrabi and Ramankutty, 2019, Tigchelaar 
et al., 2018, Toreti et al., 2019). 

Large-scale modes of interannual climate variability - such as the El 
Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and 
the North Atlantic Oscillation (NAO)- are plausible mechanisms capable 
of affecting crop yields in multiple breadbaskets simultaneously 
(Anderson et al., 2020, 2019, 2018; Iizumi et al., 2014; Najafi et al., 
2020; Singh et al., 2018). ENSO, the IOD, and the NAO refer to naturally 
occurring modes of climate variability in the ocean and atmosphere that 
affect atmospheric circulation, surface temperature, and precipitation 
on regional-to-global scales. These modes of climate variability, there
fore, connect the growing conditions of distant regions and seasons to 
one-another (Anderson et al., 2018). While the potential for these 
climate modes to affect crop yields in multiple breadbaskets at once has 
been established using a few case studies (Anderson et al., 2019; Singh 
et al., 2018), the importance of this mechanism to multiple breadbasket 
yield shocks as compared to those forced by random weather or 
non-climate factors is still poorly understood. A primary reason is that to 
date, research on multiple climate-forced breadbasket yield shocks has 
been limited by short statistical records of 38–47 years (Gaupp et al., 
2020; Kornhuber et al., 2020; Mehrabi and Ramankutty, 2019; Tig
chelaar et al., 2018) as noted in a recent review on multiple breadbasket 
failures (Hasegawa et al., 2022). Modes of climate variability such as 
ENSO, however, are complex phenomenon (Timmerman et al., 2018) 
that vary on interdecadal timescales in terms of amplitude and 
return-period (Wittenberg, 2009). The length of records used by previ
ous analyses, therefore, is insufficient to quantify the observed effects of 
these modes of variability on multiple breadbasket failures or to remove 
their potentially confounding effects from an analysis of observed his
torical trends (Hasegawa et al., 2022). 

Our analysis addresses this constraint by collating a century-long 
maize and wheat yield dataset to provide the most complete picture to 
date of multiple breadbasket yield shocks, including observed trends 

and how climate modes have affected them. We compile a dataset of 
subnational crop yield anomalies for maize and wheat consisting of over 
34,000 observations from 132 subnational units in 25 countries dating 
back to 1900 (Fig. 1), which we use to robustly estimate (1) the prob
ability of multiple breadbasket yield shocks, (2) changes to that proba
bility over the last century, and (3) to characterize how interannual 
modes of climate variability have affected the probability of such yield 
shocks in the historical record. The results presented here represent the 
most comprehensive assessment to date of the historical risk posed by 
climate variability to multiple maize and wheat breadbasket yield 
shocks. 

2. Materials and methods 

2.1. Data 

Crop yield data are taken from the Twentieth Century Crop Statistics 
Data Set version 1, from which we use 34,000 observations from 132 
subnational units in 25 countries dating back to 1900 (Anderson et al., 
2022). The data used in this analysis are crop statistics at the subnational 
and national level, largely collected by national statistics agencies or 
departments and ministries of agriculture. Some of the data used has 
been previously analyzed, such that of Austria, Croatia, Czech Republic, 
and Belgium (Trnka et al., 2016), subnational data in France (Schau
berger et al., 2018, 2022; Ceglar et al., 2020), Subnational data in 
southern Brazil (Cunha et al., 1999), and data in Argentina (Podestá 
et al., 1999), subnational data in Spain and Portugal (Páscoa et al., 
2017), as well as multiple publications that have used the data in the 
United States, Australia, South Africa, and Canada. Other data was 
digitized from statistical yearbooks by Anderson et al. (2022), including 
the crop statistics from Italy, Spain, Indonesia, China, Mexico, Uruguay, 
Sweden, and Morocco. See SI Tables 3–4 for detailed information on the 
resolution and source of the statistics used in each country. No data on 
management was available for the full time period. To account for 
management trends that enabled higher yields over time we detrend the 
data. 

Following past research identifying potentially damaging climate 
conditions relating to multiple breadbasket failures, we use temperature 
and moisture variables to identify damaging climate conditions (Gaupp 
et al., 2019; Zampieri et al., 2019). With the exception of (Zampieri 
et al., 2019), however, existing work on multiple breadbasket failures 
has often excluded moisture stress from the analysis (Tigchelaar et al., 
2018; Kornhuber et al., 2020) or has focused on precipitation (Gaupp 

Fig. 1. Maize breadbasket regions included in this analysis (a) with breadbasket wheat-growing political units colored for: North America (1; NAm), Mexico (2; 
MEX), Southeast South America (3; SESA), Italy and France (4; ItFr), South Africa (5; SAf), India (6; IND), Northern China (7; NCh), Southern China (8; SCh), 
Indonesia (9; IDN). Total maize production included in the wheat breadbasket regions (light gold) compared to total global wheat production according to FAOSTAT 
(dark gold; b). Wheat breadbasket regions included in this analysis (c): Northern North America (1; NNAm), Southern United States Great Plains (2; USA), Southeast 
South America (3; SESA), Northern Europe (4; NEU), Mediterranean (5; MED), Australia (6; AUS), India (7; IND), Northern China (8; NCh), and Southern China (9; 
SCh). Total wheat production included in the wheat breadbasket regions (light gold) compared to total global wheat production according to FAOSTAT (dark 
gold; d). 
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et al., 2019; Kent et al., 2017; Sarhadi et al., 2018). Using precipitation 
rather than soil moisture as a measure of moisture supply, however, 
poorly captures the relationship between moisture supply and atmo
spheric moisture demand that leads to observed patterns of crop yield 
loss (Proctor et al., 2022; Rigden et al., 2020). To address this, we use 
hydroclimate variables that account for both supply and demand of 
moisture, including land surface model (LSM) based estimates of soil 
moisture from the Noah LSM in the Global Land Data Assimilation 
System (GLDAS) 2.0 over 1950–2009 (Rodell et al., 2004, 2013) and the 
self-calibrating Palmer Drought Severity Index (PDSI) for 1902 – 2017 
(van der Schrier, 2013). 

To calculate potentially damaging temperatures, we calculate both 
damaging maximum temperature and damaging minimum temperature 
during the crop growing season for maize and wheat in each location 
using the Berkeley Earth daily temperature dataset (Rohde 2013). 
Because crop yields respond nonlinearly to extreme heat (Schlenker and 
Roberts, 2009), we calculate extreme degree days (EDDs) as the sum of 
maximum temperatures exceeding an optimum threshold (29 ◦C for 
maize or 26 ◦C for wheat) over the growing season for each crop (San
chez et al., 2014). Likewise, to calculate damaging minimum tempera
tures we calculate chilling degree days (CDDs) as the sum of daily 
minimum temperatures falling below an optimum threshold (8 ◦C for 
maize or 0 ◦C for wheat) over the growing season for each crop. Because 
crops may respond differently to these extreme temperatures in either 
very hot or very cold climates, however, we next convert both EDDs and 
CDDs to a z-score at the subnational level. In this way, we incorporate 
information about both baseline absolute temperature threshold ex
ceedance and information on the frequency of such exceedance at the 
local scale. 

Interannual modes of climate variability are assessed using the Niño 
3.4 sea surface temperature (SST) index (5S-5 N and 170–120 W) and 
the Dipole Mode Index, which is the difference between western (50E- 
70E, 10S-10 N) and eastern (90E – 110E, 10S-0 N) Indian Ocean SSTs, 
both calculated by NOAA Physical Sciences Laboratory based on the 
HadISST1.1 dataset (Rayner et al., 2003), available for download at htt 
ps://psl.noaa.gov/gcos_wgsp/Timeseries. The HadISST dataset uses a 
two-stage reduced-space optimal interpolation procedure, followed by a 
superposition of quality-improved gridded data. It improves on previous 
long reconstruction data in terms of SST mode variance and persistence 
through time. The North Atlantic Oscillation was identified using a 
station-based index, which, while noisier than an index derived from a 
full atmospheric pressure field, has the advantage of being defined by 
constant stations through time back to the mid-ninteenth century, thus 
eliminating the potential complication of changing observation systems 
(Hurrell et al., 1995). 

2.2. Methods 

2.2.1. Breadbasket yield shocks 
To remove crop yield trends, we use the low-frequency Gaussian 

filter with a kernel density of five years, which is similar to the fifteen 
year running mean. We next convert yield anomalies at the subnational 
scale to percent anomalies by dividing the absolute yield anomalies by 
the expected yield. We define breadbaskets by identifying those coun
tries that collectively contribute to 90% of maize or wheat production in 
2010 and include all countries for which data is available. Based on 
these criteria, a total of 75% of maize production and 67% wheat pro
duction was available in our yield dataset from which we select bread
baskets that account for 66% and 58% of maize and wheat production, 
respectively. To decide how to define breadbaskets we consider average 
temperature and moisture regimes as an indication of agroclimate 
growing conditions. This procedure results in a total of nine breadbas
kets for both maize and wheat. See SI Table 1 for the size of each 
breadbasket with respect to global total wheat or maize production in 
2010, and SI Figure 1 for total production by breadbasket over time. 

We aggregate the historical climate moisture availability and 

temperature stress variables to the subnational scale by averaging across 
the relevant crop growing seasons, defined using Sacks et al. (2010), and 
the subnational cropped region, defined as any cell having at least 10, 
000 ha of planted maize or wheat area as defined using the average of 
three estimates of crop extents: Portmann et al. (2010); You et al. 
(2014), and Fischer et al. (2001). The goal of this analysis is not to 
evaluate how breadbaskets have shifted over time, but rather to rigor
ously evaluate risks to present-day breadbaskets. As such, we aggregate 
absolute crop yield anomalies up to a time series of production anom
alies for each breadbasket using static harvested area measurements 
averaged over 2005–2010 to represent present-day production systems. 
This results in a single time series for each breadbasket, which is con
verted to a percent yield anomaly as described earlier for the subna
tional and national-scale time series. For results using the historical 
dataset rather than static breadbaskets, which may be of interest with 
respect to the observed frequency of breadbasket yield shocks, see SI 
Figure 1. 

Breadbasket failures have been defined either as the lower quartile of 
observed yield anomalies (Gaupp et al., 2020; Raymond et al., 2022) or 
as a 10% deviation from expected yields (Caparas et al., 2021; Tigche
laar et al., 2018). The lower quartile of yield anomalies in our bread
baskets generally corresponds to yield deficits of between ~5% and 
10%. Accordingly, we define a yield shock at two thresholds: 5%, rep
resenting moderate yield shocks, and 10%, representing major yield 
shocks. Note that because we are using time-invariant harvested areas, 
our 10% yield threshold is equivalent to a 10% production threshold, 
which is the threshold used by Tigchelaar et al., (2018). Because a 10% 
threshold yields relatively few events, even in a century-long dataset, we 
additionally use the 5% threshold to be consistent with past literature 
and as an indication of moderate regional-scale yield deficits. Taken 
together, these two thresholds demonstrate the robustness of results. 

To test whether the frequency of multiple breadbasket shocks have 
increased in the most recent period compared to earlier reporting pe
riods we plot the probability density functions for the frequency of yield 
shocks in each period and use a two-tailed Kolmogorov-Smirnov test to 
evaluate whether the two distributions are statistically significantly 
different from one another. To remove the influence of World War I from 
our results, we exclude the years 1914–1919 in the Mediterranean and 
Europe breadbaskets. To remove the influence of World War II, we 
exclude the years 1940–1945 from the Mediterranean, Europe, India, 
and both North and South China breadbaskets. 

To calculate the relative probability of joint yield shocks in pairs of 
breadbaskets and of multiple yield shocks globally during specific modes 
of interannual climate variability, we calculate the probability of an 
event occurring in each phase of the climate mode (e.g. ENSO, NAO, 
IOD) and difference the two (Fig. 2). See SI Table 4 for a list of years 
classified into each phase of each mode of variability using intensity 
thresholds of 0.5, 1.0, and 1.5 standard deviations. The probability of a 
yield shock occurring is calculated using a simple counting method as 
the number of years in which a major yield shock occurs in one bread
basket or multiple breadbaskets divided by the number of years 
included. The total subset of years in each case is constrained to be those 
years with a particular mode of variability active in a particular phase. 
While this approach is relatively simple, it leverages the long data record 
without making assumptions about the structure of the distribution or of 
the joint distribution. 

To test for statistical significance, we adopt a bootstrap-based 
approach, which preserves the statistical properties of each bread
basket time series and takes into account the sample size (see SI Table 4) 
of each composite used to calculate probabilities of joint yield shocks in 
each phase of a given climate mode. To calculate the null hypothesis for 
each climate mode, we randomly draw n samples from each breadbasket 
time series without replacement, where n is the number of observed 
years in which the given climate mode is in a particular phase, and 
calculate the probability of joint yield shocks between each pair of 
breadbaskets. We repeat this process 1000 times to produce a 
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distribution for each calculated joint yield shock probability and identify 
the 5th and 95th percentiles of each to use to test statistical significance. 

While decadal and multi-decadal climate variability may also affect 
crop yields (Schillerberg and Tian, 2020; Tian et al., 2015), our analysis 
focuses on interannual modes of climate variability. Quantifying the 
impacts that decadal climate variability has had on crop yields would 
require careful methodological consideration unique to the problem of 
decadal variability. As such, we do not consider modes such as the 
Atlantic Multidecadal Oscillation or the Pacific Decadal Oscillation, 
focusing instead on ENSO, the NAO, and the IOD. 

2.2.2. Breadbasket climate stress 
We aggregate the historical climate variables to the subnational scale 

using global cropping calendars and major cropped area, defined as any 

cell having at least 10,000 ha of planted maize or wheat area, before 
converting each time series to a z-score (see SI for details). We relate the 
climate stress covariates to the yield anomalies using a generalized ad
ditive model (GAM) for each breadbasket. We choose a GAM structure 
because it is a flexible, nonlinear model and as such can estimate climate 
conditions that would be damaging to yields due to both excess or deficit 
temperature, moisture, and their interaction (Hastie and Tibshirani, 
2009). We restrict the complexity of each GAM model to include a 
maximum of five spline terms. We consider two bivariate tensor terms in 
each GAM, one for maximum temperature stress and moisture stress, 
and one for minimum temperature stress and moisture stress, such that 
each model is as follows: 

Yldikj = s
(
SMikj

)
+ te1

(
KDDikj, SMikj

)
+ te2

(
CDDikj, SMikj

)
+ Tjk 

Fig. 2. Flowchart demonstrating the data, methods, and results of the analysis.  

Fig. 3. Regional crop yield surplus and deficit exceedance curves. Exceedance probabilities for wheat (a) and maize (b) surpluses and deficits (e,f) of between 1% and 
10% occurring simultaneously in between 0 and 8 breadbasket regions over the entire 1901–2017 time period. Difference between the probabilities of exceedance in 
the earliest period for which all regions report data (1931–1975) and the more recent period (1975–2017) for wheat (c) and maize (d) surpluses and deficits (g,h). 
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where Yldikj is the crop yield anomaly in national or subnational unit i 
from breadbasket k for year j, while KDDikj, CDDikj, and SMij represents 
the killing degree days, chilling degree days, and soil moisture anoma
lies in the national or subnational unit i from breadbasket k for year j 
that corresponds to the resolution of the crop yield data, and Tjk rep
resents a time fixed effect for year j in breadbasket k. Note that the time 
fixed effect is only applied to breadbaskets containing more than one 
administrative unit. The function s() is a spline function while the 
functions te1(), and te2() are tensor products, which serve as the 
multidimensional basis functions with restricted degrees of freedom, in 
this case five, to prevent over-fitting (Hastie et al., 2009). Constructing 
the GAM models using soil moisture information from the Noah land 
surface model or using PDSI yields similar results for the overlapping 
time period. We show results using the soil moisture model as data al
lows, which is everywhere except for Fig. 3, where information prior to 
1950 is required and a PDSI-based model is used. See SI Section 3 for 
further details on the GAM model specification, fit, and evaluation. 
Climate conditions that are damaging in each breadbasket are identified 
as those that produce at least 10% yield deficits according to the GAM 
models fit for each breadbasket. By holding either temperature or 
moisture at average conditions but allowing the other variable to vary in 
time, we can isolate the effect of univariate climate stress as compared to 
bivariate stress. In the event that both univariate and bivariate climate 
stress produces damaging conditions at a particular point in space and 
time, the univariate stress indicator is used. 

3. Results 

We assess two yield anomaly magnitudes: a yield deficit of 10% 
relative to expected yields, which we will refer to as a major yield shock, 
and one at a 5%, which we will refer to as a moderate yield shock (see 
Methods). Note that the number of breadbaskets experiencing simulta
neous yield shocks is closely related to total breadbasket production (SI 

Figure 3). 
In nearly a century, major crop yield shocks tended to occur in two to 

three, but rarely more than three maize or wheat breadbaskets simul
taneously (Fig. 3e,f). From 1930–2017 major yield shocks occurred in at 
least three, four, or five maize breadbaskets 10.3%, 2.3% and 1.1% of 
the time, respectively. Simultaneous major wheat yield shocks were 
nearly twice as common, occurring in three, four, or five breadbaskets 
18.2%, 4.6%, and 2.3% of the time, respectively. Moderate yield shocks 
are more common, occurring more regularly in three to four maize or 
wheat breadbaskets. We characterize the complete probability profile of 
multiple breadbasket yield shocks and surpluses of magnitudes between 
1% and 10% in Fig. 5. A major yield shock occurred in at least two maize 
or wheat breadbaskets 35–40% of the time, while a moderate yield 
shock occurred in at least two breadbaskets 68–72% of the time (Fig. 4 
and Fig. 5c,d). Major wheat yield surpluses (+10%), on the other hand, 
occurred in at least two breadbaskets 43% of the time while major maize 
yield surpluses only simultaneously occurred in at least two breadbas
kets 22% of the time. 

Wheat and maize breadbasket yield shocks have not been increasing 
in frequency over the last hundred years, regardless of which yield 
threshold is used (Figs. 3 and 5). In fact, the number and prevalence of 
simultaneous maize and wheat shocks has been lower (p<0.1) at both 
the 5% and 10% yield threshold in recent decades (1975–2017) as 
compared to earlier decades (1931–1975). This is true regardless of 
whether the analysis is conducted for present-day static breadbaskets 
(Fig. 3e,f) or using breadbaskets with historical time-varying harvested 
areas (SI Figure 2). The statistical significance of the decrease in major 
yield shocks is robust to the definition of early and late periods, as well 
as to the decision to include World Wars 1 and 2 or the decision to 
include Northern China and India, which have experienced large 
changes in irrigated area (SI Figure 4, SI Tables 5 and 6). Only the 5% 
yield threshold for wheat is sensitive to the decision of excluding areas 
with a change in irrigation, indicating that for wheat breadbaskets 

Fig. 4. Probability distribution functions for the frequency of having a yield shock in between one and eight breadbaskets simultaneously in the 1931–1975 period 
compared to the 1976–2017 period for maize and wheat at yield thresholds of 5% and 10%. 
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irrigation may have played a role in reducing the frequency of minor 
yield shocks. When comparing maize and wheat yield shocks at all yield 
anomaly magnitudes from the more recent period to those in the earlier 
period (Fig. 4), we find yield shocks occurring in 2–4 breadbaskets 
simultaneously became up to 30% less frequent. Simultaneous maize 
yield surpluses, on the other hand, have remained constant while 

simultaneous wheat yield surpluses of greater than 5% have decreased. 
See SI Figures 5–6 for the 1975–2010 and 1931–1975 return periods for 
maize and wheat. 

The decline in the frequency of crop yield shocks in breadbasket 
areas is observed despite an increase in the frequency of damaging 
climate stress in breadbasket areas, particularly after the year 2000 

Fig. 5. Regional crop yield surplus and deficit exceedance curves. Exceedance probabilities for wheat (a) and maize (b) surpluses and deficits (e,f) of between 1% and 
10% occurring simultaneously in between 0 and 8 breadbasket regions over the entire 1901–2017 time period. Difference between the probabilities of exceedance in 
the earliest period for which all regions report data (1931–1975) and the more recent period (1975–2017) for wheat (c) and maize (d) surpluses and deficits (g,h). 

Fig. 6. Probability of joint crop yield shocks in breadbasket regions during ENSO events. Observed fractional wheat (a) and maize (b) yield anomalies during 1σ 
strength El Niños as compared to La Niñas events. Climate-forced fractional wheat (c) and maize (d) yield anomalies (see methods) during El Niño as compared to La 
Niña events. Difference in the probability of joint wheat (e) and maize (f) yield shocks for pairs of breadbasket regions during El Niño as compared to La Niña. 
Shading intensity for each point signifies ENSO event definition using a standard deviation threshold of 0.5, 1.0, or 1.5. Only pairs of regions with statistically 
significant points (p<0.05 based on a bootstrap test for significance, see Methods) are shown. USA-Northern China pair is additionally included for maize. Filled 
symbols indicate statistical significance, unfilled symbols indicate that differences were not significant at the 95% level. 
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(Figs. 3g,h). In addition to the post-2000 increase in climate shocks, 
there is decadal variability in the extent of damaging climate stress. 
Comparing the widespread frequency of damaging climate conditions 
affecting wheat and maize breadbaskets in the 1930s and 1940s to the 
relatively low levels in the 1960s and 1970s makes clear that both 
decadal variability and long-term climate change affect the incidence of 
dry and hot anomalies in breadbasket areas. This is consistent with the 
findings of Lesk and Anderson (2021), and highlights the importance of 
considering both natural variability and climate change as a potential 
driver of climate-related yield shocks. 

3.1. Climate-drivers of multiple breadbasket shocks 

The general lack of widespread breadbasket yield shocks in Figs. 3–5 
lends credibility to the notion that producing crops in breadbaskets with 
relatively uncorrelated risks buffers against the probability of multiple 
simultaneous crop yield shocks. However, as pointed out by Anderson 
et al. (2019), global modes of climate, such as the El Niño Southern 
Oscillation (ENSO), may affect the climate in such a way that increases 
the likelihood of these simultaneous crop yield shocks relative to other 
years. 

Using our century-long yield dataset, we find that modes of climate 
variability have had a large effect on the probability of joint yield shocks 
in pairs of breadbaskets. The probability of joint yield shocks differs by 
up to 40% in opposite phases of major climate modes (Figs. 6–8). For 
both wheat and maize, the IOD and ENSO affect crop yields in a 
balanced manner, increasing the probability of joint yield shocks in 
some breadbaskets and reducing the probability of joint yield shocks 
elsewhere (Figs. 6–7). The North Atlantic Oscillation (NAO), however, 
exerts a unidirectional influence on the probability of joint wheat or 
maize breadbasket shocks, although its influence on maize is limited 
(Fig. 8). 

El Niño events create damaging climate conditions for wheat relative 
to La Niña events in parts of Southeast South America due to excess 
precipitation (Anderson et al., 2018; Anderson et al., 2019; Cunha et al., 
2001) and in the Mediterranean and Australia due to drought (Anderson 
et al., 2018: Yuan and Yamagata, 2015, Ummenhofer et al., 2009) 
(Fig. 6c). These adverse climate conditions reduce wheat yields in these 
breadbaskets (Fig. 6a) and increase the probability of joint wheat yield 
shocks between pairs of breadbaskets that include Australia, the Medi
terranean, or Southeast South America by up to 20–40% with the 
strongest influence on the joint probability of moderate yield shocks in 
Australia and the Mediterranean. On the other hand, El Niños increase 
winter precipitation that leads to increased springtime soil moisture and 
improves wheat yields in the Great Plains of North America (Anderson 
et al., 2017a, 2018; Mauget and Upchurch, 1999), which decreases the 
probability of a joint wheat yield shock in these breadbaskets by up to 
45%. 

For maize, El Niños increase precipitation and reduce the incidence 
of damaging maximum temperatures relative to La Niñas in Southeast 
South America (Anderson et al., 2017a, 2018; Cunha et al., 2001; 
Podestá et al., 1999) and the US Midwest (Anderson et al., 2017a, 
2017b; Handler 1984) (Fig. 6d), which translates into above-expected 
maize yields (Fig. 6b). El Niños, however, also force drought in South 
Africa (Anderson et al., 2019; Funk et al., 2018), India (Selvaraju et al., 
2003), and Northern China (Liu et al., 2014), which translates to 
below-expected maize yields in these breadbaskets during El Niños 
relative to La Niñas (Fig. 6b). As a result of these teleconnections, El 
Niños tend to increase the probability of joint yield shocks in pairs of 
breadbaskets that include South Africa by 10–40%, most notably 
modifying the probability of joint yield shocks in South Africa and 
Northern China, and South Africa and India. However, El Niño tele
connections also tend to decrease the likelihood of joint maize yield 
shocks in pairs of breadbaskets that include Southeast South America or 

Fig. 7. Probability of joint crop yield shocks in breadbasket regions during IOD events. Observed fractional wheat (a) and maize (b) yield anomalies during 1σ 
strength positive phases of the IOD as compared to negative phases. Climate-forced fractional wheat (c) and maize (d) yield anomalies (see methods) during positive 
phases of the IOD as compared to negative phase. Difference in the probability of joint wheat (e) and maize (f) yield shocks for pairs of breadbasket regions during 
positive phases of the IOD as compared to negative phase. Shading intensity for each point signifies IOD event definition using a standard deviation threshold of 0.5, 
1.0, or 1.5. Only pairs of regions with statistically significant points (p<0.05 based on a bootstrap test for significance, see Methods) are shown. USA-Northern China 
pair is additionally included for maize. Filled symbols indicate statistical significance, unfilled symbols indicate that differences were not significant at the 95% level. 
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Northern North America by ~10–35%. Of particular relevance to global 
maize production are the offsetting ENSO teleconnections in Northern 
North America and Northern China (see Anderson et al., 2018), such 
that the probability of a joint yield shock in the two breadbaskets during 
ENSO events is unaffected. 

The IOD has an effect similar, but not identical, to that of ENSO in 
many breadbaskets in terms of both climate stress and yield anomalies 
(Anderson et al., 2019; Chan et al., 2008; Funk et al., 2018; Goddard 
et al., 1999; Liu et al., 2014, Yuan and Yamagata, 2015) although it has 
less of an influence on climate and crop yields in North America and 
Europe (Fig. 7). Because of this, the effect the IOD has on the probability 
of joint yield shocks is statistically significant in fewer of the pairs of 
breadbaskets compared to ENSO, although it can still affect the proba
bility of joint yield shocks in pairs of breadbaskets by up to ~30%. The 
strongest influence of the IOD on joint wheat yield shocks is between 
pairs of breadbaskets that include Australia, where a positive IOD in
creases the probability of drought and wheat failures in Southeast 
Australia (Yuan et al., 2015). For maize it most strongly affects the 
probability of joint crop yield shocks in pairs of breadbaskets that 
include South Africa, where a positive IOD increases the probability of 
drought (Funk et al., 2018; Goddard et al., 1999) that damages maize 
yields, and Southeast South America, where a positive IOD increases 
precipitation in Argentina (Chan et al., 2008), which is improves maize 
yields. 

The NAO does not significantly affect as many breadbaskets as does 
ENSO or the IOD, but the direction of its influence is the same in all 
breadbaskets that it does affect (Fig. 8). Positive NAO events reduce the 
risk of frost kills and produce wet, mild winters that improve crop yields 
in North America and Northern Europe (Baek et al., 2017; Cantelaube 
et al., 2004; Maignan et al., 2008), mixed precipitation conditions in the 
North China Plain (Baek et al., 2017), and drought in the Mediterranean 
and India (Baek et al., 2017; Cantelaube et al., 2004; Lamb et al., 1987; 
Maignan et al., 2008). These teleconnections reduce the probability of 
joint wheat yield shocks in pairs of breadbaskets that include Northern 
China, the Southern Great Plains, and Northern Europe by ~10–25%, 

while negative NAO events increase the probability of joint wheat yield 
shocks in these breadbaskets. The NAO affects very few maize bread
baskets, although it does affect the probability of joint maize yield 
shocks in three pairs of breadbaskets, most notably the US Great Plains 
and Europe in the growing season following an NAO event. 

When these regional probabilities are aggregated to the global scale, 
we find that the NAO and ENSO affect the probability of multiple 
breadbasket yield shocks by up to 30% and 40%, respectively, while the 
IOD has fewer statistically significant effects (Fig. 9). El Niños decrease 
the probability of over four simultaneous maize yield shocks as 
compared to La Niñas, but increase the likelihood of 2–3 simultaneous 
shocks, although the latter is not statistically significant. The negative 
phase of the NAO is most strongly associated with an increased proba
bility of simultaneous wheat breadbasket shocks despite ENSO affecting 
a larger geographic area and a greater number of breadbaskets than does 
the NAO, which only affects the climate of the northern hemisphere. But 
the NAO either increases or decreases the likelihood of wheat shocks in 
all breadbaskets that it affects, depending on the phase, which is why at 
a global scale it affects the probability of multiple wheat breadbasket 
shocks more strongly than ENSO. 

3.2. Discussion and conclusions 

Using our century-long dataset of national and subnational crop 
yields, we find that simultaneous yield shocks in wheat and maize 
breadbaskets have been less frequent in recent decades as compared to 
mid-century. While damaging climate stress during maize and wheat 
growing seasons has increased in breadbasket areas after the turn of the 
century, - particularly the incidence of joint moisture-temperature stress 
for maize - the frequency of multiple simultaneous wheat and maize 
breadbasket yield shocks has decreased (see Figs. 3–5). These results are 
consistent with Gaupp et al. (2020) and Sarhadi et al. (2018), who found 
increases in the frequency of temperature- and precipitation-related 
risks across breadbaskets and agricultural areas, respectively, in recent 
decades. Our results, however, indicate that such risks have not yet 

Fig. 8. Probability of joint crop yield shocks in breadbasket regions during NAO events. Observed fractional wheat (a) and maize (b) yield anomalies during 1σ 
strength positive phases of the NAO as compared to negative phases. Climate-forced fractional wheat (c) and maize (d) yield anomalies (see methods) during positive 
phases of the NAO as compared to negative phase. Difference in the probability of joint wheat (e) and maize (f) yield shocks for pairs of breadbasket regions during 
positive phases of the NAO as compared to negative phase. Shading intensity for each point signifies NAO event definition using a standard deviation threshold of 0.5, 
1.0, or 1.5. Only pairs of regions with statistically significant points (p<0.05 based on a bootstrap test for significance, see Methods) are shown. USA-Northern China 
pair is additionally included for maize. Filled symbols indicate statistical significance, unfilled symbols indicate that differences were not significant at the 95% level. 
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translated into substantially more frequent maize or wheat breadbasket 
yield shocks to date (Fig. 3). 

Our results furthermore highlight the discrepancy between observed 
and expected trends in multiple breadbasket failures. As the climate 
continues to warm, we expect an increased frequency of hot-and-dry 
conditions to damage crop yields in major maize and some wheat 
breadbaskets (Caparas et al., 2021; Gaupp et al., 2019, 2020; Jägermeyr 
et al., 2021: Raymond et al., 2022: Sarhadi et al., 2018: Tigchelaar et al., 
2018). In most wheat breadbaskets, average global yields are expected 
to continue to increase and stabilize due to the CO2 fertilization effect 
despite warming temperatures (Caparas et al., 2021: Jägermeyr et al., 
2021, Liu et al., 2019, 2021). The exception to the expected stability of 
wheat breadbaskets is India (Liu et al., 2019, 2021), where the combi
nation of growing season temperature increases and constraints on 
irrigation are likely to make yields more variable and crop failures more 
common (Caparas et al., 2021; Jain et al., 2021; Liu et al., 2019, 2021). 
For maize breadbaskets, which will not greatly benefit from increased 
CO2, increasing temperatures will lower global average yields, increase 
the frequency of crop yield shocks, and increase the frequency of mul
tiple maize breadbasket failures (Caparas et al., 2021; Gaupp et al., 
2020; Jägermeyr et al., 2021; Raymond et al., 2022; Tigchelaar et al., 
2018). That the future instability of maize breadbaskets is well sup
ported by multiple lines of evidence (e.g. using both statistical models 
(Raymond et al., 2022; Tigchelaar et al., 2018) and process based 
models (Caparas et al., 2021; Jägermeyr et al., 2021)) indicates that a 
climate-forced signal of increasing breadbasket failures is robust, but 
our results indicate that it has not yet emerged. The present period of 
infrequent simultaneous maize breadbasket yield shocks, therefore, may 
represent an historic period of maize breadbasket stability relative to 
both the past and future. 

In terms of the physical modes of climate variability that affect 
multiple breadbasket failures, we find that ENSO and the NAO have a 
large effect on the relative likelihood of simultaneous crop yield shocks 
in maize and wheat breadbaskets, respectively (see Figs. 6–8). ENSO, the 
NAO, and the IOD all affect the relative probability of multiple maize or 
wheat yield shocks in pairs of breadbaskets by up to 20–40%. This effect, 
however, does not always translate to an increase in the expected 
number of global wheat or maize breadbaskets experiencing yield 

shocks (Fig. 9). For example, ENSO increases the probability of wheat 
yield shocks in some breadbaskets and decreases it in others such that its 
effect at the global scale is less prominent as compared to its effect on the 
probability of joint crop yield shocks in pairs of breadbaskets. 

The NAO, however, uniformly increases or decreases the probability 
of joint yield shocks in breadbaskets. As a result, the NAO is the mode of 
climate variability that most strongly affects the overall number of 
wheat breadbasket shocks globally. This finding is somewhat surprising 
provided that the NAO affects cropped areas only in the Northern 
Hemisphere, while ENSO affects cropped areas globally. The NAO, 
furthermore, forces both wet and dry precipitation teleconnections. The 
dissonance between precipitation teleconnections and wheat yield tel
econnections is likely because a positive phase of the NAO reduces 
precipitation in many of the same locations where wheat yields benefit 
from irrigation, and have done so for nearly a century (Klein et al., 2017; 
Siebert et al., 2010, 2015; Wang et al., 2021) (SI Fig. 4). 

Our analysis relies on subnational and country-level crop statistics, 
largely collected by national statistics agencies, and departments or 
ministries of agriculture. There are known systematic errors in statistical 
data, such as the over-reporting of achievements in China (Liu et al., 
2020), and random errors, such as the divergent estimates of crop yields 
in Malawi reported by the Ministry of Agriculture, the National Census 
of Agriculture and Livestock, and the Integrated Household Survey 
conducted by the National Statistics Office ((Carletto et al., 2013). Our 
approach of taking averages over many years at different yield shock 
thresholds used in Figs. 6–9 is designed to mitigate the potential effects 
of such errors. Likewise, our approach of analyzing changes in the fre
quency of yield shocks at multiple magnitudes in Figs. 3g,h, 4, and 5 
demonstrates the robustness of results across yield thresholds. We 
furthermore ensure that our results are not due to unreliability of sta
tistical data in the early portion of the data by repeating all the analyses 
from Figs. 4–9 using the more recent period of 1950–2017, for which the 
crop yield statistics are more reliable (SI Figures 7–10). The results are 
robust to this decision. And while establishing statistical significance for 
some effects in SI Figure 9 is not possible using this shorter time period, 
the sign and magnitude of results remain similar. Finally, we compare 
the results of Figs. 6–9 to regional studies on how modes of climate 
variability affect moisture, temperature, and crop yields to ensure that 

Fig. 9. Probability of multiple simultaneous crop yield shocks in breadbasket regions. Anomalous probability of zero-one, two-three, or over four wheat (a-c) and 
maize (d-f) breadbasket yield shocks during the positive phase as compared to the negative phase of ENSO (a,d), the IOD (b,e), and the NAO (c,f). 
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our statistical results are consistent with past literature on the dynamics 
of how ENSO, the IOD, and the NAO affect crop yields. 

Overall, our results demonstrate that modes of climate variability, in 
particular ENSO and the NAO, have large effects on both the pattern and 
number of simultaneous maize and wheat yield shocks in breadbaskets. 
We furthermore demonstrate that the frequency of such simultaneous 
wheat and maize yield shocks has decreased from the 1930s to present 
despite a modest increase in the frequency of adverse growing condi
tions. Our ability to continually adapt our food system to a warming 
world will depend on both the degree of warming and on investments in 
agricultural research and development. It is critical that we continue to 
improve our understanding of how both climate change and climate 
variability affect global breadbaskets as part of those efforts. 
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