N

N
N

HAL

open science

Interactive Segmentation With Incremental Watershed

Cuts

Quentin Lebon, Josselin Lefevre, Jean Cousty, Benjamin Perret

» To cite this version:

Quentin Lebon, Josselin Lefevre, Jean Cousty, Benjamin Perret. Interactive Segmentation With Incre-
mental Watershed Cuts. Iberoamerican Congress on Pattern Recognition (CIARP), Inés Domingues;

Verénica Vasconcelos, Nov 2023, Coimbra, Portugal. hal-04069187v1

HAL Id: hal-04069187
https://hal.science/hal-04069187v1
Submitted on 14 Apr 2023 (v1), last revised 4 Dec 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04069187v1
https://hal.archives-ouvertes.fr

INTERACTIVE SEGMENTATION WITH INCREMENTAL WATERSHED CUTS

1,2

Quentin Lebon* Josselin Lefevre

Jean Cousty' Benjamin Perret*

1 LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France
2Thermo Fisher Scientific, Bordeaux, France

ABSTRACT

In this article, we propose an incremental method for com-
puting seeded watershed cuts for interactive image segmen-
tation. We propose an algorithm based on the hierarchical
image representation called the binary partition tree to com-
pute a seeded watershed cut. We show that this algorithm
fits perfectly in an interactive segmentation process by han-
dling user interactions, seed addition or removal, in time lin-
ear with respect to the number of affected pixels. Run time
comparisons with several state-of-the-art interactive and non-
interactive watershed methods show that the proposed method
can handle user interactions much faster than previous meth-
ods, thus improving the user experience on large images.

Index Terms— Interactive segmentation, watershed, bi-
nary partition tree, minimum spanning tree

1. INTRODUCTION

Image segmentation consists in partitioning an image into
meaningful regions. A classical approach to this problem is
the watershed (WS) where the image is seen as a topological
relief and the regions corresponds to catchment basins: this
method constitutes a fundamental stage of many image analy-
sis workflows. The first approaches for WS on images consid-
ered an image as a vertex-weighted graph [1} 2]. Nowadays,
state-of-the-art WS methods are defined on edge-weighted
graphs [3]], allowing to characterize WS cuts as solutions to
a global optimization problem related to Minimum Spanning
Trees (MST). Further advanced WS are based on hierarchical
representations describing how catchments basins are pro-
gressively merged into the most significant structures [4} [5].
In this context, the authors of [6] have proposed an algorithm
to compute a WS cut from a hierarchical representation called
the Binary Partition Tree (BPT) [7].

One of the major drawbacks of WS is over-segmentation
as each minimum of the image induces a catchment basin. To
overcome this problem, weakly supervised WS segmentation
through interactivity is a popular solution. By substituting the
minima of the image by user-defined seeds, this procedure
makes it possible on the one hand to avoid over segmentation
and on the other hand to introduce semantic information into
the output segmentation.

But often, the segmentation has to be corrected by suc-
cessively refining seeds i.e., adding or removing seeds, until

a result close to the desired segmentation is reached. Clas-
sical seeded WS algorithms cannot handle such incremental
process and each update of the seeds requires to completely
recompute the result on the whole image, even if a small num-
ber of pixels is affected by the change. This problem can se-
riously limit the speed of user interactions on large images or
3D volumes. This issue has been addressed in the framework
of the Image Foresting Transform (IFT) [8] with the Differ-
ential Image Foresting Transform (DIFT) [9] a WS-based and
fuzzy-connected segmentation, whose response time for in-
teractive segmentation is proportional to size of the modified
regions of the scene. Interactivity has also been addressed in
the context of object segmentation with hierarchical represen-
tations, especially for trees based on threshold decomposition
i.e., component trees [10] or tree of shapes [11}[12].

In this work, we propose a seeded WS cut algorithm
within the framework of BPTs. We show that this algo-
rithm is particularly well suited for interactive segmenta-
tion as it can handle user interactions in time linear with
the number of affected pixels. The method is assessed on
several images where users were asked to interactively seg-
ment an object of interest by adding/removing seeds. The
run-time comparisons with state-of-the-art incremental and
non-incremental methods show a significant advantage for
the proposed method.

2. WATERSHED CUTS

In this section, we briefly review the notion of a WS cut, recall
its relation to minimum spanning trees and forests and high-
light the important BPT datastructure that is used in the fol-
lowing. WS cuts are deeply related to MSTs [3]]. In the semi-
supervised case where an edge-weighted graph (representing
the image) and a set of marked vertices are given, a WS cut
can be obtained as the cut induced by a minimum spanning
forest where each tree is rooted in one of the seeds [[13]. The
BPT is a hierarchical datastructure that allows one to repre-
sent a MST and to efficiently browse its edges. The BPT is
obtained as a by-product of the efficient Kruskal’s MST al-
gorithm. Figure [I] illustrates the BPT of an edge-weighted
graph and its relation to the MST of this graph (bold edges).
In particular, it can be seen that the the leaves of the BPT
are mapped to the vertices of the MST and that each non-leaf
node is a mapped to an edge of the MST (this mapping is rep-

resented by the dashed segments in Figure[I)). Intuitively, we
can say that every non-leaf node of the BPT represents the
addition of an edge to the MST during Kruskal’s algorithm,
the added edge being used to merge the two connected re-
gions that contain the edges extremities. An efficient WS cut
algorithm based on BPT is presented in [[14} (6] to handle the
non-supervised case with no seed provided.

Fig. 1. The three working areas: grayscale image, graph, and
BPT. The dashed red lines depict the bijection between non-
leaf nodes and edges of the MST (in bold).

3. SEMI-SUPERVISED WATERSHED CUT
ALGORITHM WITH INTERACTIONS

In this section, we present a novel WS cut algorithm that
is able to (i) compute a seeded WS cut from user-provided
seeds, and to (ii) efficiently update this WS cut from user’s
feedback given in the form of successive deletions and addi-
tions of seeds. The workflow of the method, presented in Fig-
ure[2] comprises three main parts: 1) Computation of an MST
and an associated BPT; 2) Identification of WS cut edges by
browsing the BPT, taking into account the seeds provided by
the user. These edges correspond to the edges that must be
removed from the MST to obtain a minimum spanning forest
rooted in the given seeds. 3) Partitioning and labeling of the
graph vertices according to the connected components (CC)
of the forest resulting from step 2. This labeling is the result-
ing WS cut segmentation. Step 1 can be performed using the
algorithm presented in [6]. Section [3.1] presents an efficient
algorithm for step 2, Section discusses the labeling in-
volved at step 3, and Section shows how to incrementally
update the results of the workflow based on user’s feedback.

3.1. Tree-node marking

This section is devoted to Algorithm [I] that identifies the WS
edges from the BPT of the image for some user provided
seeds. The algorithm proceeds seed by seed in an incremental
manner. For each seed, taken in any order, one edge of the ini-
tial MST must be removed to cut the region of this seed from
the regions of the current partition (obtained with the previous
seeds). To this end, we search in the BPT for the lowest node

that merges a region of the new seed with a region of the al-
ready processed seeds. In order to prevent” this merging and
to cut the region of the new seed from the rest of the partition,
the MST edge associated to this node is tagged WS and added
to the set of edges to be deleted from the MST.

To make this idea practicable, we consider an array
visitCount that marks each BPT node with the num-
ber of times that this node was visited during the successive
searches. At the beginning, visitCount is initialized to
0 for each node. Then, for each leaf node of the tree corre-
sponding to a seed to add, we browse its ancestors and update
visitCount accordingly. Let p be a parent of the consid-
ered seeded node, if visitCount [p] = 0 then this value
has to be incremented and the traversal continues by consid-
ering the parent of p. However, if visitCount [p] = 1,
then node p has already been visited by a previous seed: it
must then become a WS node separating 2 different seeds.
We thus increment the value of visitCount [p] to 2 and
the MST edge associated to p (denoted by H.mstEdge [p])
is added to the edge set WS. Note that the traversal stops
when visitCount [p] = 2 as the separation induced by
the addition of the new seed has been found. When a seed
is added, only the nodes in the path from this seed to its
closest WS node are visited. We can see this on Figure [3[b),
where adding seed S5 results in browsing only three nodes.
During a call or a succession of calls to Algorithm [T} each
node is visited at most twice, leading to an overall linear-time
complexity with respect to the number of vertices.

Algorithm 1: ADD SEED

Data: H : a BPT, seeds : a set of seeds and
visitCount;
Result: ws a set of edges to be removed and
visitCount updated.
1 ws <0
2 foreach leaf n of seeds do
while n # H.root and visitCount|n] # 2 do
n := H.parent[n]
visitCount[n] := visitCount[n] + 1
if visitCount[n] = 2 then
L ws = ws U {H.mstEdgelp|}

BN - N N

3.2. Pixel labeling

Once the WS nodes set is computed, we return to the image
domain to compute the segmentation. First, we compute the
minimum spanning forest representing the WS cut: for each
added WS node, the corresponding WS edge is removed from
the MST. Then we perform a labeling of the CCs of the forest
with a simple Breadth First Search (BFS) algorithm.

e

Tree construction

Image

\ 4

User interactions

Tree-node (un)marking

. Y
ComPu.te binary Add/Remove seeds
partition tree

R o

N R

N)

Pixel Labeling

Display the
segmentation

A labeling of the
image

/\

A marked tree/cut set

—»Split/Merge segments

Fig. 3. Integer labels on non-leaf nodes represent the value of
visitCount. (a) Initialization with S; and S5 as seeds. (b)
Update after the addition of S3 as an additional seed.

3.3. Incremental workflow

The workflow presented in the previous sections can be
adapted to work in an incremental way, by considering the
addition or removal of seeds and the differential update of the
resulting WS cut and all intermediary structures.

Firstly, we adapt Algorithm(]to obtain Algorithm2]which
accounts for seed removal. Such removal induces the merg-
ing of two regions and the disappearance of a WS node. The
traversal procedure is the same as for adding seeds except that
for each parent p, visitCount [p] is decremented and the
parent browsing stops if visitCount [p] = 1 after decre-
mentation. Indeed, if the value was decremented to 1, the
current node is no longer be a WS node.

Regarding the labeling, Algorithm 2]can now restore WS
edges which induces the merging of two CCs. That can be
efficiently performed by constraining BFS to explore only the
smallest CC associated with one extremity of a cut edge. The
label of the larger CC is then spread on the smaller one. This
can be done by keeping track of the size of each CC resulting
in a linear time merging w.r.t. the number of vertices of the
smallest CC. Note that when a WS edge is removed, we also
only need to relabel the components at the two extremities of
this edge. The split of a component thus also runs in time
linear with the number of pixels in the affected component.

As a result, this incremental workflow enables updating
of the segmentation in a time proportional to the number of
pixels in the region affected by the seed refinement.

Algorithm 2: REMOVE SEED
Data: H : a BPT, seeds : a set of seeds and
visitCount;
Result: ws a set of edges to be added and
visitCount updated.
ws < 0
foreach leaf n of seeds do
while n # H.root and visitCount|n] # 1 do
n := H.parent[n]
visitCount[n] := visitCount[n] — 1
if visitCount[n] = 1 then
| ws :=ws U {H.mstEdge[p]}

IS I N N L

Method Init Average Max Accumulated
IWS 210.0 9.2 89.3 514.1
NIWS 210.0 82.2 94.8 3164.4
DIFT 14.0 478.4 622.8 15886.3
OpenCV 0 141.7 174.8 5089.4
Higra 0 829.1 1239.4 29012.0

Table 1. Computation time (ms) of the methods. The first
column corresponds to the initialization time. The second and
third columns give the average and maximum computation
time over all user interactions. The last column gives the total
computation time (initialization plus all user interactions).

4. EXPERIMENTS

For assessments, we confronted a user with a binary segmen-
tation problem on three images from the INRIA Holidays
dataset [15]] and on one provided by ourselves. The images
are all the same size: 2048 by 1536 pixels. To retrieve seeds,
we ask the user to segment the images with an interactive tool:
he could draw green seeds for the object of interest and red
seeds for the background and if a mistake was made, he could
remove seeds with an eraser tool. Each user interaction was
recorded in batches of added/removed green/red seeds. The
same sets of seeds was used for each tested method.

Fig. 4. Three stages in an interactive segmentation session. The red lines represent background seeds, the green lines represent
object seeds, and the yellow lines represent the segmentation produced by the current set of seeds.

Plant 106

Time in ms

0 5 10 15 20 25 0 10 20 30 40 50 60
Tower 106

Time in ms

Fig. 5. Computation time of OpenCV (dot-dash blue), DIFT
(dotted purple), Higra (dashed orange), NIWS (plain red) and
IWS (dashed green) along an interactive segmentation session
compared to the number of pixels to be updated (plain black).

In this study, we consider two versions of the proposed
method: (i) a non incremental version (denoted IWS) where
we first compute the BPT and then, at each user interac-
tion, we completely recompute the WS edges (using only
Algorithm [I) and the induced labeling; and (ii) an incre-
mental version (denoted IWS) where at each interaction we
update visitCount (Algorithms [T] and [2) and the label-
ing by considering only the added/removed seeds. We also
consider two state-of-the-art implementations of seeded WS,
namely OpenCV [16} [17] (highly optimized library for image
processing) and Higra [18] (generic library for hierarchical

graph analysis) and another incremental method: the Dif-
ferential Image Foresting Transform (DIFT) [9]. ITWS and
NIWS have been tested with a C++ implementation available
at https://github.com/lebong/incremental_]
watershed. We used a C implementation of DIFT avail-
able atlhhttps://github.com/tvspina/ift—demol

The results are presented in Figure [5]and in Table [T} We
see that the initialization cost (BPT creation) of both NIWS
and IWS version of our method is quickly amortized during
the segmentation process: IWS and NIWS have a much lower
average execution time than other methods. In addition, we
can see that the execution time of IWS is proportional to the
number of pixels affected by seed updates as expected from
the theoretical study. The upper bound is given by the first
interaction, which labels all pixels (the first step is therefore
equivalent to NIWS), and spikes in computation time occurs
during mid- or end-interactions if the user updates seeds in a
large CC, resulting in a significant number of pixel changes.
Our results also indicate that there is no significant difference
in computation time between adding or removing seeds.

5. CONCLUSION

We proposed an interactive seeded WS segmentation method
that is compliant with an incremental process exploiting the
causality within the interactive sessions to achieve remarkable
performances significantly improving responsiveness. In fu-
ture works, we plan to test it on larger images or 3D volumes
and to better optimize the splitting algorithm by inferring re-
gion size to ensure that the region to label is the smallest.

https://github.com/lebonq/incremental_watershed
https://github.com/lebonq/incremental_watershed
https://github.com/tvspina/ift-demo

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

6. REFERENCES

L. Vincent and P. Soille, “Watersheds in digital spaces:
an efficient algorithm based on immersion simulations,”
IEEE TPAMI, vol. 13, no. 6, pp. 583-598, 1991.

S. Beucher and F. Meyer, “The morphological approach
to segmentation: The watershed transformation,” Math-
ematical Morphology in Image Processing, vol. Vol. 34,
p- 433-481, 01 1993.

J. Cousty, G. Bertrand, L. Najman, and M. Cou-
prie, “Watershed Cuts: Minimum Spanning Forests and
the Drop of Water Principle,” IEEE TPAMI, vol. 31,
pp- 13621374, Aug. 2009.

L. Najman and M. Schmitt, “Geodesic saliency of wa-
tershed contours and hierarchical segmentation,” IEEE
TPAMI, vol. 18, no. 12, pp. 1163-1173, 1996.

F. Meyer, “The watershed concept and its use in seg-
mentation : a brief history,” Feb. 2012. arXiv:1202.0216
[cs].

L. Najman, J. Cousty, and B. Perret, “Playing with
Kruskal: algorithms for morphological trees in edge-
weighted graphs,” in ISMM, pp. 135-146, 2013.

P. Salembier and L. Garrido, “Binary partition tree as
an efficient representation for image processing, seg-
mentation, and information retrieval,” TIP, vol. 9, no. 4,
pp. 561-576, 2000.

A. Falcdo, J. Stolfi, and R. de Alencar Lotufo, “The im-
age foresting transform: theory, algorithms, and appli-
cations,” IEEE TPAMI, vol. 26, no. 1, pp. 19-29, 2004.

A. Falcao and F. Bergo, “Interactive Volume Seg-
mentation With Differential Image Foresting Trans-
forms,” IEEE Transactions on Medical Imaging, vol. 23,
pp- 1100-1108, Sept. 2004.

N. Passat, B. Naegel, F. Rousseau, M. Koob, and
J.-L. Dietemann, “Interactive segmentation based on
component-trees,” Pattern Recognition, vol. 44, no. 10,
pp. 2539-2554, 2011. Semi-Supervised Learning for
Visual Content Analysis and Understanding.

E. Carlinet and T. Geraud, “Morphological object pick-
ing based on the color tree of shapes,” in 2015 IPTA,
(Orleans, France), pp. 125-130, IEEE, Nov. 2015.

M. O. V. Ngoc, E. Carlinet, J. Fabrizio, and T. Géraud,
“The dahu graph-cut for interactive segmentation on
2d/3d images,” Pattern Recognition, vol. 136, pp. 109—
207, 2023.

[13]

[14]

[15]

[16]

[17]

(18]

C. Allene, J.-Y. Audibert, M. Couprie, and R. Keriven,
“Some links between extremum spanning forests, wa-
tersheds and min-cuts,” Image and Vision Computing,
vol. 28, no. 10, pp. 1460-1471, 2010.

J. Cousty, L. Najman, and B. Perret, “Constructive
links between some morphological hierarchies on edge-
weighted graphs,” in ISMM, pp. 86-97, 2013.

H. Jegou, M. Douze, and C. Schmid, “Hamming em-
bedding and weak geometric consistency for large scale
image search,” in Computer Vision — ECCV 2008
(D. Forsyth, P. Torr, and A. Zisserman, eds.), (Berlin,
Heidelberg), pp. 304-317, Springer Berlin Heidelberg,
2008.

F. Meyer, “Color image segmentation,” in /1992 Interna-
tional Conference on Image Processing and its Applica-
tions, pp. 303-306, 1992.

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal
of Software Tools, 2000.

B. Perret, G. Chierchia, J. Cousty, S. F. Guimaraes,
Y. Kenmochi, and L. Najman, “Higra: Hierarchical
Graph Analysis,” SoftwareX, vol. 10, p. 100335, July
2019.

	 Introduction
	 Watershed cuts
	 Semi-supervised watershed cut algorithm with interactions
	 Tree-node marking
	 Pixel labeling
	 Incremental workflow

	 Experiments
	 Conclusion
	 References

