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Abstract

Significance: Reflectance confocal microscopy (RCM) allows for real-time in vivo visualization
of the skin at the cellular level. The study of RCM images provides information on the structural
properties of the epidermis. These may change in each layer of the epidermis, depending on the
subject’s age and the presence of certain dermatological conditions. Studying RCM images
requires manual identification of cells to derive these properties, which is time consuming and
subject to human error, highlighting the need for an automated cell identification method.

Aim: We aim to design an automated pipeline for the analysis of the structure of the epidermis
from RCM images of the Stratum granulosum and Stratum spinosum.

Approach: We identified the region of interest containing the epidermal cells and the individual
cells in the segmented tissue area using tubeness filters to highlight membranes. We used prior
biological knowledge on cell size to process the resulting detected cells, removing cells that were
too small and reapplying the used filters locally on detected regions that were too big to be
considered a single cell. The proposed full image analysis pipeline (FIAP) was compared
with machine learning-based approaches (cell cutter, different U-Net configurations, and loss
functions).

Results: All methods were evaluated both on simulated data (four images) and on manually
annotated RCM data (seven images). Accuracy was measured using recall and precision
metrics. Both accuracy metrics were higher in the proposed FIAP for both real (precision ¼
0.720� 0.068, recall ¼ 0.850� 0.11) and synthetic images (precision ¼ 0.835 � 0.067,
recall ¼ 0.925� 0.012). The tested machine learning methods failed to identify and segment
keratinocytes on RCM images with a satisfactory accuracy.

Conclusions: We showed that automatic cell segmentation can be achieved using a pipeline
based on membrane detection, with an accuracy that matches expert manual cell identification.
To our knowledge, this is the first method based on membrane detection to study healthy skin
using RCM images evaluated against manually identified cell positions.
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1 Introduction

Reflectance confocal microscopy1,2 (RCM) is a real-time noninvasive in vivo technology that
allows for the visualization of the skin epidermis and upper layers of the dermis at the cellular
level. It is noninvasive, thus making it a technique of choice for repeated sampling on a skin site
without damage, when studying the changes in skin structure over time or when an invasive
biopsy cannot be considered, e.g., in the study of healthy baby skin physiology. Images are
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formed by scanning a laser light source in a plane parallel to the skin surface and collecting
the back-scattered light. Light scattering events occur at the interface of microstructures with
different indices of refraction. In skin, such microstructures are keratin fibers, melanosomes,
collagen fibers, and cell membranes. Therefore, it provides information on the geometrical
(e.g., projected cell area and cell perimeter) and topological (e.g., cell density and number
of nearest neighbors) properties of the skin, which play important roles in the architecture
of the skin barrier.

In most cases, analysis of RCM stacks is done manually, providing qualitative observations.
However, manual analysis is time consuming, intensive, and subject to human interpretation and
interexpert differences. Thus, we could benefit from automated methods to quantitatively ana-
lyze RCM images. An important first step in any quantitative study of skin is cell detection.
Unfortunately, it is challenging and requires a robust generic algorithm to alleviate nonuniform-
ity and noise inherent to RCM images.

The epidermis is made of four distinct layers. From the deepest to the most superficial, they
are Stratum basale, Stratum spinosum, Stratum granulosum, and Stratum corneum.

In RCM images of light-pigmented skin, the S. corneum appears as large bright islands sur-
rounded by dark areas representing the skin microrelief lines. It is made of dead anucleated but
biochemically active cells.3 As we cannot observe individual cells on RCM images of the S.
corneum, our method will not be applied to these images.

The S. granulosum and S. spinosum appear as agglomerations of viable keratinocytes
arranged in a honeycomb pattern.4 Granular cells are typically larger than spinous cells, and
as such they have a lower density.5

Finally, the S. basale is made of the smallest keratinocytes; as their differentiation starts in the
S. basale and continues as cells migrate toward the skin surface, their enface cross-section area
gets larger as the cells become flatter. The S. basale is attached to the dermis on the dermal–
epidermal junction, and thus we can sometimes observe the top of dermal papillae on RCM
images of the S. basale. In addition, melanin-producing melanocytes are scattered through the
basal layer. Organelles filled with melanin, called melanosomes, are transferred from melano-
cytes to keratinocytes. Illumination light intensity drops almost exponentially as a function of
depth in the tissue because of light losses in back-scattering events. Due to this phenomenon and
because the basal layer is the deepest epidermal layer, images in the S. basale display more noise
and appear of lower quality than images of the S. granulosum and S. spinosum. For these rea-
sons, we focus on the granular and spinous layers in our attempt at automating the detection of
keratinocytes.

On RCM images of the S. granulosum and S. spinosum of minimally pigmented skin, ker-
atinocytes are characterized by a dark center and a grainy cytoplasm due to microstructures and
are surrounded by bright grainy membranes (see Fig. 1).

Previously, few attempts at the automated identification of epidermal cells on RCM images
have been made.6,7 Unfortunately, the amount of noise and heterogeneity of RCM images
hinders the development of accurate segmentation methods. Here, we propose a method to auto-
matically detect keratinocyte positions on RCM images of the S. granulosum and S. spinosum.
We compare our results to a ground truth of cell center positions obtained manually and achieve
an accuracy on par with expert graders.

2 Data

In vivo RCM images were captured on the volar forearm of 80 participants: 60 children aged 3
months to 10 years old and 20 adults aged 25 to 40 years old. All participants have minimally
pigmented skin, with Fitzpatrick types between I and III (2.5%, 87.5%, and 10% of participants
had Fitzpatrick type I, II, and III, respectively). Inclusion criteria required that the participants
were in good health, with no history of skin disease, and had not applied any products on the
observed area the day of the study. Only 7 images (4 participants, 20 to 35 years) were used in the
algorithm development and validation.

Images were captured using a Vivascope 1500 reflectance confocal microscope with a
z-resolution of 5 μm and xy-resolution of 1 μm. Images started at the S. corneum and progressed
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down toward the S. basale. The size of each image is 1000 × 1000 pixels, corresponding
to 500 × 500 μm2.

Each image was classified in one of the four epidermal layers using a hybrid deep learning
algorithm8 trained on 1500 images to classify RCM images into six categories, i.e., outside of
skin, S. corneum, S. granulosum, S. spinosum, S. basale, and dermis with a test accuracy of 82%,
allowing us to focus only on images of the S. granulosum and S. spinosum. This model uses a
texton-based library obtained using filter banks in multiple orientations and resolutions to train a
deep learning neural network.

The segmentation ground truth was generated by Voronoi tessellation around cell centers
manually pointed out by experts in skin research with a background in biomedical engineering
and bioinformatics (Table S1 in Supplementary Material). Cell centers are used as seeds to the
Voronoi tessellation. In this method, each point of the 2D Euclidean plane is assigned to a cell,
such that the distance between the point and the cell seed is less than or equal to that of any
other seed.

3 Synthetic Images

Automating cell identification in RCM images is challenging because of poor image quality due
to high noise and low contrast (Table S1 in Supplementary Material). In addition, evaluating the
accuracy of any method requires manual labeling to obtain a ground truth, which is subject to
human error, tedious, and variable from one expert to another. To bypass these issues and guide
the parameterization of our automated pipeline, we developed a process to create synthetic RCM
images (see Fig. 2) that are fully user-controlled, with a perfectly annotated ground truth (a priori
known cell centers) and not limited by the number of labeled images. These images were created
by generating a random tissue mask using random Bezier curves, i.e., continuous smooth curves.
Within the generated shape, seeds separated by a set distance representing cell centers were
generated using a “hard core” process and used to construct Voronoi tessellations, which have
been previously used to represent both skin cells5 and other types of cells.9–11 Different levels of
additive Gaussian noise were then added to the created synthetic image to simulate the noise
levels of a real RCM image and the heterogeneous intensity within the region of interest (ROI) by
convolving the synthetic image by a heterogeneous intensity mask.

Fig. 1 RCM image of the S. spinosum of minimally pigmented skin, Fitzpatrick type II. In blue, the
border between tissue and background formed by micro-relief lines. Area marked in pink, nonin-
formative areas; in orange, bright spots; in red, epidermal cells. Image contrast was adjusted for
better visualization. Scale bar = 100 microns.
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4 Full Image Analysis Pipeline

We present a method to automatically detect keratinocytes on confocal images based on the
detection of membranes, and we compare it with two machine learning-based approaches.
The first one is based on the U-Net12 algorithm, and the second one is based on the cell-cutter13

algorithm.

4.1 Identification of the Region of Interest

RCM images tend to be noisy and nonuniform, which hinders the development of automated
segmentation methods. To guide our cell detection, we started by identifying the ROI, i.e., the
region containing epidermal cells. To do so, the black background was first identified
(see Fig. 3). Islands of cells surrounded by dark empty areas are observed on RCM images,
which are due to the skin microrelief lines14 (see Fig. 1). To identify these furrows and begin
building a binary mask of the ROI, a morphological geodesic active contour15 algorithm (known
as a snake algorithm) was applied to each image. This method employs morphological operators
to detect visible contours based on their intrinsic geometric measures, even if they are noisy or
partially unclear, by minimizing16 the energy function [Eq. (1)] assigned to a surface S, which is
given as

Fig. 3 Steps of the identification of the region of interest. A morphological snake algorithm was
used to identify the borders with the background, followed by a support vector machine algorithm
trained to detect the noninformative areas and a succession of morphological operations to
remove bright spots to an RCM image at the S. granulosum level. Area marked in blue, ROI mask;
in pink, the area that should have been removed. Image contrast was adjusted for easier
visualization.

Fig. 2 Synthetic RCM image of the S. spinosum created using a hard-core process, such that
points are set apart with a minimum set distance from each other.

Lboukili, Stamatas, and Descombes: Automatic granular and spinous epidermal cell identification. . .

Journal of Biomedical Optics 046003-4 April 2023 • Vol. 28(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 14 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e001;116;735EðSÞ ¼
ZZ

gðIÞðSðaÞÞda; (1)

where da is the Euclidean element of the area, the ROI on the image is defined by
gðIÞ∶ Rd → Rþ; x → gðIÞðxÞ, and SðaÞ is the surface area.

After identifying the microrelief lines on each RCM image, other noninformative areas were
detected. These areas are part of the tissue on RCM images and are due to low contrast and a drop
in signal-to-noise ratio (see Fig. 1). A texture classification was applied to the images by training
a support vector machine (see Fig. 3) on four features of the gray level co-occurrence matrix17

(GLCM), which successfully discriminates between the informative and noninformative areas.
In the formulas below, P is the GLCM histogram used to compute each feature, for a gray level j
distant from a gray level i. These features are

1. homogeneity18

EQ-TARGET;temp:intralink-;e002;116;573homogeneity ¼
Xlevels−1
i;j¼0

Pi;j

1þ ði − jÞ2 ; (2)

which measures the closeness of the GLCM distribution to its diagonal (reflecting correlation);
2. contrast18

EQ-TARGET;temp:intralink-;e003;116;495contrast ¼
Xlevels−1
i;j¼0

Pi;jði − jÞ2; (3)

which measures the local variations in the GLCM;
3. dissimilarity18

EQ-TARGET;temp:intralink-;e004;116;418dissimilarity ¼
Xlevels−1
i;j¼0

Pi;jji − jj; (4)

which measures the similarity between pixels; and
4. energy18

EQ-TARGET;temp:intralink-;e005;116;340energy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXlevels−1
i;j¼0

P2
i;j

vuut ; (5)

which measures the signal uniformity within the area.

The third step in ROI identification was to remove the bright spots sometimes observable in
RCM images (see Fig. 3). Indeed, RCM images of the S. granulosum and S. spinosum may
contain bright areas due to the presence of keratin in hair shafts or from cornified cells at the
periphery of the cell clusters (see Fig. 1). This was accomplished by applying a succession of
dilations and erosions on the RCM image where the background and the noninformative areas
were removed and which had been blurred with a Gaussian filter and binarized with a binary
threshold.

4.2 Identification of Individual Cells

After identifying the ROI on the RCM image, a median filter was used to remove noise, followed
by a local normalization, which renders the variance and mean of the denoised image unchanged
(see Fig. 4). Then, the resulting image was filtered with the Sato tubeness filter19 to detect white
continuous ridges, here, the bright cell membranes (see Fig. 4). The filter parameters were
chosen to approximate the width and length of a cell membrane in the S. granulosum and
S. spinosum. To the filter output, a median filter and local normalization were applied, while
making sure that the ROI binary mask was respected (see Fig. 4). A Gabor filter was then applied
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to the previous image to refine membrane detection by convolving the image by a windowed
signal of varying frequencies and orientations. The output of the Gabor filter was equalized with
a histogram equalization to adjust the image contrast, followed by Gaussian adaptive threshold-
ing, which dynamically and locally changes the binarization threshold over the entire image to
account for changes in contrast and brightness. The local threshold value is defined as the
Gaussian-weighted sum of neighboring values. This assumes that smaller regions of an
RCM image are more likely to be similar. A connected-components analysis was used on the
obtained binary image to remove any small blobs in the detected membranes, followed by a
second connected-components analysis on the inverse of the image to close any holes in the
membranes due to the graininess of the image and of the cell membranes. Finally, the clean
binary image was skeletonized, and any spurious branches were removed from the skeleton.
The pipeline is shown in Fig. 4.

4.3 Postprocessing

The skeleton was cleaned to remove any remaining spurs. This was accomplished by applying a
morphological closing to the skeleton. Individual contours, i.e., detected keratinocytes, were
detected on the skeleton. To improve the detection, very small contours were removed
(area < 100 for S. granulosum and area < 50 for S. spinosum) as well as long contours at the
border with the background, i.e., eccentricity > 0.85 [see Fig. 5(a)]. These thresholds were
determined empirically. The remaining contours were divided into two groups: (1) large contours
with an area > 1000 for S. granulosum and area > 120 for S. spinosum and (2) small contours
with an area ≤ 1000 for S. granulosum and area ≤ 120 for S. spinosum. On each area of
the original image determined by a large contour, a Sato filter19 was applied with different
parameters than previously used, i.e., smaller filter scales for more local detection of membranes.
The output was then binarized with Otsu thresholding20 for S. granulosum images and with
Gaussian adaptive thresholding for S. spinosum images. Small blobs were removed with a

Fig. 4 Image processing pipeline for the identification of individual cells. A median filter and a local
normalization were applied to the image with the ROI mask, followed by a Sato filter. Its output was
filtered with a median filter and locally normalized, and a Gabor filter was applied to it. A threshold
was applied on the output after histogram equalization, and small blobs were removed with a con-
nected components analysis. The result was then skeletonized, and spurious branches were
removed. Image contrast was adjusted for easier visualization.
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connected-components analysis. The subsequent binary image was skeletonized, and its con-
tours were detected. On images of the S. granulosum, obtained contours with an area smaller
than 110 were merged with their neighbors [see Fig. 5(b)]. On images of the S. spinosum, in
which cells and therefore detected contours are much smaller, if the second filter iteration still
failed to detect more than one contour, as many ellipses as possible were fitted within the

Fig. 5 Postprocessing pipeline. (a) The skeleton obtained after the previous step was cleaned,
and contours were detected. Small contours, as well as long contours close to the border with the
background, were removed. The remaining contours were divided into two groups: small and big
contours. Big contours were filtered again to improve the detection locally. The new resulting con-
tours were then combined with the small contours and their centers were detected. Areas marked
in pink, some contours where two cells were merged are highlighted. (b) Example of large contours
improvement for a Stratum granulosum image. (c) Example of large contours improvement for a
Stratum spinosum image. Image contrast was adjusted for easier visualization.
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detected contour [see Fig. 5(c)]. These new contours were then combined with the previously
found small ones, and their cell centers were detected.

4.4 Accuracy evaluation

The obtained cell centers were used to initiate a marker-controlled watershed21 on the ROI.
This method considers the input image to be a topographic surface, which is flooded starting
from set seeds or markers, i.e., the detected cell centers, and returns a labeled gray-scale
image, in which each label is a catching basin, i.e., a detected cell. This labeled image was
then compared against manually detected cell centers using the software d-accuracy,22 which
evaluates several indexes of the detection quality (see Fig. 6). Two accuracy metrics were
evaluated: (a) precision (the fraction of correctly detected cells among all detected cells) and
(b) recall (the fraction of accurately detected keratinocytes among all cells defined in the
ground truth).

5 Results

5.1 On Synthetic RCM Images

To determine the minimum desired accuracy, multiple synthetic images were generated using the
“hard-core” process previously described within the correct ROI mask. We placed random points
using a hard-core process to mimic cell size within a correct ROI mask and generated a Voronoi
tessellation around them. We then calculated the accuracies of these random detections against
the absolute ground truth and obtained 60% precision and recall, which we used as the lowest
accuracies threshold to better interpret our algorithm performance.

When applying the pipeline to 4 synthetic images, the median precision was 83.5%
(�6.74%), and the median recall was 92.5% (�1.22%).

5.2 On Real RCM Images

We evaluate the performance of our approach with respect to two experts on seven real RCM
images. When compared with the first expert, our cell detection approach on one image has a
precision of 71.6% (�7.4%) and a recall of 84.8% (�11.9%). When compared with the second
expert, our cell detection approach has a precision of 71.6% (�7.0%) and a recall of 65.9%
(�15.9%) (see Table 1).

When looking into the differences between the experts, we notice that Expert 2 is less sen-
sitive in his detection, i.e., has smaller recall and, therefore, more false negatives. The obtained
results are more consistent with Expert 1 and prove to be accurate compared with interexpert
variability.

Fig. 6 Detection accuracy evaluation pipeline. A marker-controlled watershed was applied to the
detected cell centers, and the resulting labels were compared to the manually detected ground
truth, which is marked in pink. The returned metrics were precision and accuracy. Image contrast
was adjusted for easier visualization.
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5.3 Comparison with Machine Learning-based Approaches

Although our approach gives reasonable results on RCM images of the granular and spinous
layers, its performance can be hindered by the presence of cells from different epidermal layers
in the same image, which makes parameterization of the different steps complicated. Our method
is a multistep approach, with multiple parameters each, that each influence cell detection and its
accuracy. In addition, the noise and nonuniformity of the images have a great impact on the
method performance. Steps like median filtering, local normalization, and ROI determination
decrease the impact of noise on the results but do not remove it completely.

The computational time (8 cores and 16 GiB of RAM) is about 10 min depending on the size
of the ROI and noisiness of the image, which impacts the amount of postprocessing required,
compared with 20 to 40 min for a manual annotation by an expert. Although this is a major
advantage when compared with the time required to identify keratinocytes manually on
RCM images, other challenges remain.

To overcome these challenges, we considered machine learning-based approaches. This
shifts our paradigm from a description (meaning building knowledge or using prior knowledge
of the studied structures morphological features to identify them) to a prediction (meaning train-
ing a model to discover underlying patterns in the image by minimizing differences between
ground truth and prediction). By doing so, the goal was to reduce manual tuning of the approach
and reduce computational time. Unfortunately, this requires a significant number of labeled
images, which in our case was limited. To solve this issue, we augmented the training set with
synthetic images.

We tested two machine learning-based approaches: the U-Net algorithm12 and the cell cutter
algorithm.13 Images were split between training and testing with an 80:20 ratio and were the
same for all U-Net models.

U-Net12 is a fully convolutional neural network23 made of two symmetrical paths forming a
U-shape (see Fig. 7). The first path is a contracting one that captures the context information and
is an encoder network. It is made of a succession of 3 × 3 convolutions followed by a rectified
linear unit and 2 × 2 max pooling for down sampling. Each down-sampling operation doubles
the number of feature channels. The contraction reduces the spatial information while aug-
menting the feature information. The second path is an expanding one, i.e., a decoder network,
and captures localization information. It consists of a series of up-sampling followed by a 2 × 2

up-convolution, which halves the number of feature channels, concatenation with the cropped
feature map from the symmetrical contracting path and two 3 × 3 convolutions, each followed by
a rectified linear unit. The large number of features in the expanding path allows the network to
propagate context information through the network to higher resolution layers.

To find the optimal U-Net configuration, we tested six models based on the same architecture
and evaluated their precision, recall, and F1-score (see Table 2, Fig. 8). The first one of these
models is a U-Net trained solely on 39 real RCM images (4 participants, 20 to 35 years). The
limited training data are due to a lack of manually labeled data because of the time and skills
required to identify keratinocytes on RCM images. This attempt proved to have a null accuracy,
which was explainable by the limited training set. We therefore augmented the dataset with
synthetic images. This augmentation improved both accuracy metrics on both real and synthetic
images (see Table 2). However, the obtained metrics were very much unsatisfactory for real
images (see Fig. 8), especially the trade-off between precision and recall. Indeed, the obtained

Table 1 Cell detection accuracy on Stratum granulosum and Stratum spinosum RCM images for
two different experts. Data shown as median (�1 standard deviation).

Precision (%) Recall (%)

Detections versus Expert 1 71.6 (± 7.4) 84.8 (±11.9)

Detections versus Expert 2 71.6 (±7.0) 65.9 (±15.9)

Expert 1 versus Expert 2 59.4 (±8.0) 36.2 (±11.3)
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perfect median precision and very low recall mean that very few cells are detected, but the
detected ones are correct. Although this could be useful when studying individual cells, it falls
short when looking at the entire tissue structure. This led us to use a pretrained U-Net model with
the assumption that it would be closer to convergence and therefore would require a smaller
training set, first without any additional training as an accuracy baseline and then by refining
its detection with real and synthetic images and with different loss functions (see Table 1). The
pretrained U-Net was trained on the 2012 ImageNet Large Scale Visual Recognition Challenge
dataset24 with an efficientnetb3 backbone25 and tested with loss functions taking into account the
class imbalance in RCM images, both real and synthetic, i.e., there is more background than
there are cell membranes. We tested the dice loss function,26 which is given as

EQ-TARGET;temp:intralink-;e006;116;348ceLoss ðy; p̂Þ ¼ 1 −
2yp̂þ 1

yþ p̂þ 1
; (6)

where ðy; p̂Þ ¼ ðreal value; predicted valueÞ,
and the focal loss function27

EQ-TARGET;temp:intralink-;e007;116;280Focal Loss ðptÞ ¼ −αtð1 − ptÞγ logðptÞ; (7)

where the estimated probability of class pt is defined as

EQ-TARGET;temp:intralink-;e008;116;237pt ¼
�
p; if y ¼ 1

1 − p; otherwise
; (8)

where ðy; pÞ ¼ ðreal; predictionÞ and αt and γ are weight parameters.
We finally tested a combination of the two loss functions. We obtained very close accuracy

metrics with the three configurations on the synthetic images, and the best cell identification
accuracies on real images using a pretrained U-Net model, augmented with real and synthetic
RCM images, with the combined dice and focal loss functions (see Table 2). However, the accu-
racy of any of the tested U-Net approaches is lower than that of the full image analysis pipeline
(FIAP) previously presented in this work, especially for real RCM images.

The second tested machine learning approach was the cell cutter13 algorithm, an unsuper-
vised marker-controlled segmentation algorithm that does not require manually annotated data
for training. Marker locations are generated using a real or synthetic nuclei image, and U-Net
algorithms are then locally applied to each patch surrounding a marker to model cell features and

Fig. 7 U-Net architecture. The teal box represents the feature map. The number of channels is
indicated on top of the feature map box. The image size in pixels is indicated on the lower left side
of the box. Boxes with dark blue contours represent copied feature maps. The arrows indicate the
different operations.
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produce a more accurate membrane segmentation. This localized patch approach turns a multi-
cell segmentation problem into a multi-single-cell segmentation problem, i.e., if the marker is
well defined, each patch will contain one cell and we will be looking for a single cell per patch
instead of multiple cells at once; it is based on the assumption that nuclei are morphologically
simpler and thus easier to accurately detect, and it aims to reduce the undersegmentation bias
common to images with crowded adjacent cell populations,28 as long as nuclei are correctly
detected. Because we do not have nuclei images matching our RCM images, we built synthetic
marker images by applying the first two steps of our FIAP, i.e., ROI and individual cells iden-
tification, thus using cell cutter as a replacement for our postprocessing step. Combining these
two methods into a hybrid approach aimed to be a trade-off between prediction and recall.
Unfortunately, applying the cell cutter algorithm to our real RCM images failed to give satis-
factory results, with the best obtained (precision, recall) = (71%, 56%), making the recall lower
than the minimum accepted thresholds, i.e., the algorithm merges markers and results in lower
accuracy metrics than using the FIAP previously described.

6 Discussion

RCM provides information on the geometrical and topological properties of the skin and how
they change due to age or responding to certain stimuli, with near histological resolution.

Fig. 8 (a) Synthetic RCM images and its segmentation ground truth. (b) Tested U-Net architec-
tures segmentations on a synthetic RCM image. (c) Real RCM images and its segmentation
ground truth. (d) Tested U-Net architectures segmentations on a real RCM image.
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However, the study of RCM images is currently mainly done manually and therefore is tedious,
time consuming, and subject to human interpretation and interexpert variability. An automated
approach to extract quantitative descriptors from confocal images would enable an easier, more
reproducible, precise, and rigorous study of these images and may provide metrics of interest in
disease diagnosis.7,29

We have shown that the automated detection of keratinocytes on RCM images of the S.
granulosum and S. spinosum is achievable using a method based on the morphological features
of the cells, which is an important step toward the quantitative study of these images and of skin.
This could help streamline RCM images analysis, thus helping to unlock actionable insights
faster, both for commercial and research purposes. Our method’s results, accuracy, and computa-
tional time can be influenced by its manual parameterization, as well as the image noise and
nonuniformity. To bypass these issues, we used machine learning-based approaches; however,
these showed lower accuracy (see Table 3). This could be explained by the small training set of
real images (39 to 43 depending on the tested model, see Table 2) and the differences with the
synthetic images used to augment it. These low accuracies could also be due to using the ground
truth as defined on real RCM images. This ground truth was created using Voronoi tessellation
using the manually detected cell centers as seeds and thus may not perfectly match the actual
membrane positions. The reasoning behind using artificially created membrane ground truth
from real manually annotated cell centers was to reduce the class imbalance problem in our
images, i.e., more background than cell centers and cell membranes, and thus shifting our prob-
lem from a cell center detection problem to a membrane segmentation one. Subjectivity in the
manual segmentation used as ground truth may also impact accuracy metrics values, as observed
in the differences between the two experts who have a similar level of training and experience
with RCM images of about a decade (see Table 1). These reasons may also explain the
differences in accuracies between real and synthetic RCM images (see Table 2).

A prospective solution to the limited labeled data and thus the low accuracy of machine
learning-based approaches could be using semisupervised learning, multitask learning, or a com-
bination of the two. Semisupervised learning uses both labeled and unlabeled data,30 introducing
the information from the latter into the model to improve its accuracy. Multitask learning, on the
other hand, performs multiple related tasks in parallel with limited labeled data. Because the

Table 3 Comparison between the proposed methods.

Advantages Limitations

Manual cell
identification

• Fully explainable • Time consuming

• Subjective

Full image
analysis
pipeline

• Explainable: based on knowledge of the
morphological properties of the studied
structures.

• Presence of multiple layers.

• Good accuracy against manual
segmentation by expert graders.

• Manual parameterization

• Satisfactory trade-off between recall
and precision.

• Image noise and heterogeneity.

U-Net • Based on prediction and discovering
patterns in the image.

• Image noise and heterogeneity.

• Shorter computational time (excluding
training time).

• Large training set size required for good
results, leading to poor accuracy on real
RCM images.• Poor trade-off between precision and

recall.

Cell cutter • Based on prediction and discovering
patterns in the image.

• Image noise and heterogeneity.

• Shorter computational time (excluding
training time).

• Large training set size required for good
results, leading to poor accuracy on real
RCM images.

•Multi-single cell segmentation instead of
multicell segmentation.

• Prior knowledge required: marker
locations.
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tasks are related to each other, e.g., task 1 is cell centers and task 2 is cell membranes detection,
they can improve each other’s performance by constraining each other’s solution space and thus
improving overall accuracy. These methods aim to improve accuracy without the use of synthetic
images and, with benefiting from the information in unlabeled data in a cost-effective manner,
not requiring additional manual labeling.

The proposed FIAP is now limited to the analysis of confocal images of the S. granulosum
and S. spinosum. It would be biologically interesting to study images of the basal layer where cell
replication occurs and several skin diseases emerge. Unfortunately, this would be challenging
using RCM, whether done manually or automatically. Indeed, it would be complicated for an
expert to establish a ground truth on images of the S. basale because of poor image quality and
severe drop in the signal-to-noise ratio. Furthermore, the S. basale is an undulated monolayer
that is not visible in a single transversal optical slice but is a ring of cells around the dermal
papilla structure.

To our knowledge, only one paper has been published on the automated detection of ker-
atinocytes in in vivo RCM images on the site of a melanocytic nevus, and it was based on a
rotationally symmetric error function reflectance profile modeling keratinocyte shape, with fixed
parameters for both S. granulosum and S. spinosum cells.31 The method was statistically vali-
dated, basing its accuracy on obtained cell density, whereas the proposed FIAP was validated
against a manually obtained ground truth. This, we believe, makes the proposed method more
accurate.

This approach based on keratinocytes morphological features will be useful in uncovering
new insights in the study of skin physiology, infant skin maturation, and adult skin aging,5,32–35

as well as skin diseases observable with RCM, e.g., melanomas.31,36–41 Despite its limitations, the
approach gave satisfactory results in the detection of keratinocytes on RCM images of the S.
granulosum and S. spinosum, and the normalization steps helped achieve a robust parameter-
ization of the approach for each epidermal layer. Classical machine learning approaches failed to
give satisfactory results, but more advanced deep learning methods could give more accurate
results in keratinocytes detection on RCM images of the S. granulosum and S. spinosum.
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