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ABSTRACT 

This article tries to clarify some aspects of  the theory of  belief functions, 
especially with regard to its relevance as a model for incomplete knowledge. It is 
pointed out that the mathematical model o f  belief functions can be useful beyond 
a theory of  evidence, for the purpose o f  handling imperfect statistical knowledge. 
Dempster's rule of  conditioning is carefully examined and compared to upper and 
lower conditional probabilities. Although both notions are extensions of  condition- 
ing, they cannot serve the same purpose. The notion of  focusing, as a change of  
reference class, is introduced and opposed to updating. Dempster's rule is good for 
updating, whereas the other form of  conditioning expresses a focusing operation. 
In particular, the concept o f focusing models the meaning of  uncertain statements 
in a more natural way than updating. Finally, it is suggested that Dempster's rules 
of  conditioning and combination can be justified by the Bayes rule itself. On the 
whole this article addresses most o f  the questions raised by Pearl in the 1990 
special issue of  the International Journal o f  Approximate Reasoning on belief 
functions and belief maintenance in artificial intelligence. 

KEYWORDS: incomplete knowledge, evidential reasoning, conditioning, 
updating, focusing, probability, Bayes'  rule, likelihood, upper 
and lower probabilities, Dempster 's  rule, belief function, possibility 
measure, three prisoners problem 

INTRODUCTI ON 

In the paper commented on in this special issue [1], Pearl gives a careful 
analysis of belief function theory from the point of view of artificial intelli- 
gence and Bayesian probability. He makes a number of claims about the 
inadequacy of belief functions for representing incomplete knowledge, updat- 
ing b e l i e f s ,  a n d  pooling evidence. In this paper we try to show that these 
inadequacies are often due to an improper use of belief functions in dealing 
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with problems they were never meant to solve. More precisely we address the 
following issues: 

• What are set functions that have the mathematical properties of belief 
functions able to model? We suggest that their use is certainly not 
restricted to the representation of subjective uncertain evidence. 

• What becomes of probabilistic conditioning when it is applied to belief 
functions? We claim that it splits into two quite different notions, which 
we call updating and focusing; updating corresponds to Dempster's 
well-known rule of conditioning [2] used in belief function theory; 
focusing corresponds to upper and lower conditional probabilities advo- 
cated by Ruspini [3], De Campos et al. [4], and Fagin and Halpern [5], a 
concept actually introduced by Dempster himself [2]. It explains why 
Dempster's rule often gives results that are more precise than the upper 
and lower probability conditioning. 

• How can we represent and handle generic knowledge with belief func- 
tions? We show that the focusing rule might address this problem. In 
particular, it solves the puzzle of the "spoiled sandwich paradox" [1]. 

• Does Bayes' rule of conditioning always give intuitive results in the belief 
updating process? We propose a new analysis of the three prisoners 
problem, and we claim that the generally accepted Bayesian solution is 
debatable, whereas the one obtained by Dempster's rule makes sense. 

• Is Dempster's rule of combination the only reasonable way of pooling 
evidence? We claim that it applies only under some very specific assump- 
tions about the reliability of the sources of evidence and that it also 
presupposes that the information supplied by each source can be revised, 
based on the contradictions existing with other sources. 

• Are likelihood functions reasonable substitutes for belief functions in 
the combination process? We claim that it comes down to assuming that 
the belief functions involved in the combination process are consonant. 
In other words, likelihood functions are similar to Zadeh's possibility 
distributions. 

REPRESENTING UNCERTAINTY W I T H  BELIEF FUNCTIONS 

Pearl [1] makes a very cogent distinction between knowledge and evidence. 
Knowledge is understood as "judgments about the general tendency of things 
to happen," whereas evidence refers to the description of a specific situation. 
In other words, knowledge summarizes the results of a lot of observations, 
things read in books, etc., often modeled in terms of if-then rules and refers to 
a set of situations actually encountered in the past or just hypothetical. 
Evidence describes one situation in its peculiarities. 

There are several types of knowledge. Statistical knowledge corresponds to 
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the case when the set fl of considered situations is well defined and when a 
probability distribution over fl is available, so that YA, B c_ f~, P(B] A) is 
precisely known. This probability distribution basically comes from frequentist 
data. Only a small part of our knowledge takes this form. A weakest form of 
knowledge is incomplete statistical data, where [2 can still be made precise but 
only bounds on P(B] A) for some subsets A,  B c_ fl are available. In 
particular we may have no access to the actual probability distribution on fi, if 
any. Kyburg [6] insists that most of our knowledge takes this form. Still a 
weaker form of knowledge is when the set of situations fl itself is not well 
defined, and neither are the concerned subsets of situations that appear in the 
knowledge. The "birds f ly" case is a good example of that kind of knowledge: 
The set of birds that support the sentence is ill defined (should we consider 
dead birds that did fly, birds that have been actually observed, bird species, 
etc.?); as a consequence, P(B] A) is not well defined either, and all that can 
be said is that "birds fly, but there are exceptions." The three above-men- 
tioned types of knowledge can be respectively handled by probability theory, 
upper and lower probabilities, and nonmonotonic logic. The last two corre- 
spond to what Pearl calls "incomplete knowledge." What about belief 
functions in that respect? We claim that the mathematics of belief func- 
tions can capture set-valued statistics and can serve as tools for approximate 
representation of incomplete statistical knowledge. 

Set-Valued Statistics 

Any random experiment whose outcomes cannot be precisely observed lends 
itself to a treatment by belief functions. Let { Ai] i = 1, n} be the set of 
observations, where A i _ fi, and let m(A i) be the frequency of making 
observation A i- Making observation A i means that some to e A i occurred but 
it has been impossible to locate it more precisely. Clearly, { (A  i, m( A i)) I i = 
1, n} is a (statistically induced) random subset of f~ that is equivalent to a 
belief function. Bel(A) = ZAig,4 m(Ai) and PI(A) = ~AnAi~® m(Ai) 
can be viewed as upper and lower probabilities, since [Bel(A), PI( A)] is the 
range of the probability P ( A )  that would have been obtained had the observa- 
tions been precise. Set-valued statistics have been advocated as a way of 
defining fuzzy set membership functions, by considering {PI({ to}), to ~ fi} as 
membership grades (Wang [7]). Set-valued statistics can be very common in 
opinion polls where people can express partial indecisiveness: i2 is the set of 
possible answers, and people are allowed to select a subset of possible answers 
among which they have not yet chosen (Dubois and Prade [8]). 

Approximations of Incomplete Statistical Knowledge 

It is well known that belief and plausibility functions, viewed as upper and 
lower probabilities, are not the most general family thereof. Hence any subset 
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of probability measures cannot be represented by belief functions. Pearl [1] 
claims that "states of knowledge representable as belief functions are rather 
rare." The example of set-valued statistics questions this claim. It can be 
further questioned by relaxing the meaning of the word "representable." The 
interesting question is then, What families of upper and lower probabilities can 
be approximate ly  represented by belief functions? 

Let P ,  be a lower probability function on O. A belief function Bel will be 
called an outer approximation of P ,  if and only if 

VA c f], Bel(A) _< P , ( A )  (1) 

An inner approximation of P ,  can be defined by reversing the inequality 

VA c ~, P , ( A )  _< BeI(A) (2) 

Clearly an outer approximation of P ,  will be less specific than P , .  Indeed, let 
[ P , ( A ) ,  P*(A)]  the probability interval for A,  where P * ( A )  = 1 - P , ( A ) ,  
A being the complement of A. (1) implies [ P , ( A ) ,  P*(A)]  c 
[Bel(A), PI(A)]. A best outer approximation of P ,  is a belief function Bel, 
that is an outer approximation of P ,  such that no other outer approximation of 
P ,  is an inner approximation of Bel,. Best inner approximations of P ,  can be 
defined likewise. We have introduced these notions of approximation (Dubois 
and Prade [9]) and thoroughly applied them to the problem of approximating 
general belief functions by means of consonant belief functions (Dubois and 
Prade [10]), equivalent to Zadeh's possibility measures [1 1]. We do not intend 
to solve this problem here. However, we can imagine ways of formulating the 
problem as an optimization problem. For instance, let e A be a nonnegative 
variable such that Bel(A) = P , ( A )  - eA; then a best outer approximation of 
P , ( A )  can be found by finding {m(A),  A c_ f~} and CA; A c 0, A 4: 0}, 
positive solution of the linear programming problem 

min ~ ~A 
ACf~ 

Under the constraints 

m ( B )  = P , ( A )  - ¢A, VA  c_ ~ ,  A :/: O, 
BC_A 

m ( B ) =  1 
BC_O 

The system of constraints is feasible because m(0) = 1, m ( A )  = 0, and 
eA = P , ( A )  vA q: fl is a (very bad) solution to this system. 

For instance, consider the example recalled by Pearl [1], after Dalkey, 
where fl = { ¢.,01, 0 ) 2 , 6 0 3 }  , and {P  J0 _< P({60i}) -< 1/2}. An outer approxima- 
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tion can be found as follows. Consider the set of belief functions on ~ such 
that m({001}) = m({o~2} ) = m({6o3} ) = x, m({t.oi, 60j}) = y,  v i  ~ j ,  and 
m(fl) = z. We will restrict to this family for obvious reasons of symmetry. 
Let us write the constraints 

P.({o0i}) = 0 = x ,  Vi = 1 , 2 , 3  

P*({~0i}) = 1/2 + e  = x + 2 y  + z 

P* ( f l )  = 1 = 3 x +  3 y + z  

It is easy to get y = 1 / 2 -  e, z =  3 e -  1/2, which are positive only if 
1/2 _> e _> 1/6. Minimizing E leads to let E -- 1/6. Hence there is a best outer 
approximation of the set of upper and lower probabilities that expands the 
probability intervals of { ~0i} from [0, 1/2] to [0, 2/3]. 

Of course, by acting so, we lose precision in the representation, but insofar 
as the loss of precision is minimized, and not too large in absolute value, belief 
functions could serve as tools for representing more classes of upper/lower 
probability bounds than Pearl [1] suggests. The loss in precision is counter- 
balanced by a gain in representational simplicity, an argument advocated by 
Pearl himself when he proposes likelihood functions as a substitute for basic 
probability assignments when pooling evidence [1, Sec. 4]. 

Best outer and inner approximations can be also searched for by taking 
advantage of the notions of inclusion between random sets (Moral [12], Dubois 
and Prade [9], Yager [13]) and cardinality of a belief function, I Bell = 
E l  A I m(A) ,  and more generally information measures (Yager [14], Klir and 
Folger [15]) that are the counterparts or extensions of entropy in the belief 
function setting. In particular, minimizing E I A I m(A) ,  instead of Ze,4, may 
also lead to interesting solutions because E I  A I m ( A )  is a measure of 
nonspecificity of the belief function (in fact, the expected cardinality of the 
random set), which is maximum (=  [ f~ I) for the vacuous belief function and 
minimum (=  l) for probability measures; in other words, this criterion tries to 
assign masses to the greatest possible subsets of ~. 

REPRESENTING EVIDENCE 

Let us turn to evidence. Strangely enough, Pearl [1] does not mention 
incomplete evidence in his typology. Yet, belief functions, as envisaged by 
Shafer [16] and Smets [17] are aimed directly at modeling incomplete evi- 
dence, but certainly not incomplete knowledge. This may be why both disavow 
the interpretation of belief functions in terms of upper and lower probabilities, 
and why Shafer [18] points out the inadequacy of his theory for dealing with 
statistical knowledge. 
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All canonical examples for belief function theory, that is, the theory where 
BeI(A) indeed models a degree of belief and where Dempster's rule is taken 
for granted, are about detective stories, testimonies, etc., in which the particu- 
lars of a situation are considered more important than the similarity of this 
situation to prototypical situations about which general knowledge is available. 
A simple piece of evidence 6 ~ is of the form " x  e E , "  where x is an attribute 
of some ill-described object ~ and E is a subset of the range X of x. Both 
Shafer and Smets acknowledge subjective probability as a proper tool for 
assessing the confidence of the person receiving the piece of evidence, in the 
reliability of that piece of evidence; this subjective probability assessment takes 
place on the simple frame {reliable, not reliable}, and the probability P(relia- 
ble) is allocated to E while 1 - P(reliable) is allocated to X because when 
" x e E "  is unreliable, it tells nothing. Then VA c X,  BeI(A) is indeed, as 
Pearl points out, equal to the probability that the piece of evidence ~ proves 
A,  that is, Bel(A) = P ( ~  implies A). Viewed this way there is no point in 
searching for a subset of probability measures whose lower envelope is Bel. 

What is questionable in this construct is the fact that everything relies on the 
postulate that probability theory is relevant for expressing subjective uncer- 
tainty, independently of any frequentist interpretation. In particular, the ques- 
tion of finding measurement-theoretic foundations for belief functions has often 
been eluded on the grounds that subjective probabilities can be assigned on the 
basis of thought frequentist experiments and that belief functions are just a 
chapter of this view of probability theory. For instance, Shafer [19] insists on 
the unity of probability, where long-run frequencies, fair odds, and warranted 
beliefs cannot be told apart. The most controversial part of belief function 
theory, as a mathematical theory of evidence (not knowledge!), is not its 
account of incomplete evidence; it is the postulate that unreliable evidence can 
be described by means of subjective probability estimates. 

U PDATING AND FOCUSING 

A large part of Pearl's critique [1, 20] of belief functions deals with 
Dempster's rule of conditioning and its counterintuitive behavior in celebrated 
examples such as the three prisoners problem. Pearl [1] also considers upper 
and lower probability conditioning and points out its deficiencies as an updat- 
ing rule. Here we argue that part of the confusion that pervades the issue of 
using Dempster's rule of conditioning versus other rules has to do with the fact 
that in probability theory, Bayes' rule of conditioning serves two distinct 
purposes that no longer correspond to the same mathematical operation in the 
setting of upper and lower probabilities. 

Consider the following two situations. 
1. A die has been thrown 1 million times, and P(i) is the probability that 
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facet i comes out of a throw. P(i) is, of course, frequency-based. 
Consider the question of how often i occurs among odd facets. To do this 
we must, of course, compute P ( i  l odd) using Bayes' rule. 

2. A die has been thrown by a player, but he has not seen the result yet. He 
has ideas about the most probable outcomes in the form of a probability 
distribution P(i),  i = 1, n, that expresses his subjective belief about the 
occurrence of each facet. Now before the official result is advertised, a 
friend tells him that the result is an odd number. How does the player 
update his belief?. By computing again P ( i  ] odd), the Bayesians say. 

It should be clear to the reader that the two situations are quite different. In the 
first situation P(even) ~ 0, because in the 1 million throws, some results have 
been even. Moreover, no updating takes place. We always consider P the 
probability distribution to be used. We simply change the reference class of i 
to compute P ( i  l odd). That is what can be called focusing; we are answering 
the general knowledge question, How often does i occur when the outcome is 
odd with this die? 

In the second situation, the player is computing a new probability distribu- 
tion P '  over the whole set { 1, 2, 3, 4, 5, 6} by forcing P'(even) = 0 because 
of the piece of evidence he received from his friend. P '  has little to do with P 
except that it is the result of updating P.  Moreover, the prior P does not 
necessarily derive from reading the results of the frequentist experiment. As a 
consequence, putting P'(i) = P ( i  ]odd) using Bayes' rule can be challenged. 
Other updating rules can be thought of, namely any rule that reassigns the mass 
P(even) to odd i 's is a priori allowed. P'(i) = P ( i  [odd) can be justified in the 
framework of probability kinematics (Domotor [21]) by means of a minimal 
change principle based on cross-entropy. Bayes' rule is also the only possible 
updating rule that does not change the degrees of probability in relative value; 
that is, VA, B, P ' ( A ) / P ' ( B )  = P ( A ) / P ( B )  for A,  B such that A n C 
0 ,  B O C q: Q ,  where C is the piece of evidence that leads to assuming 
P'(C) = 1. But Lewis's rule of imaging [22] is another updating rule that 
reassigns the mass of impossible outcomes to possible ones, based on proxim- 
ity notions; namely, P ( C )  is allotted to o~ ~ C, which is as close as possible 
to C. 

When it comes to the case of upper and lower probabilities, the two 
operations, focusing and updating, may no longer coincide. Consider a belief 
function defined on a frame X that contains the possible values of attribute x 
of members of a population 0. Let us adopt a purely frequentist point of view 
for clarity; m(E) for E c_ X is the proportion of members of f~ for which all 
we know is g :  x e E .  

Let us consider the focusing problem. Let B c X be a subset of X,  and we 
ask the question, What is the proportion of the population ~ that belong to 
A c X among those that belong to B? The answer may not be precise; 
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indeed, all we know about o~ is that x(o~) ~E,  and we must decide whether or 
not x(w) eB. Let P(B I E) be the proportion of co such that x(o~) e B  given 
evidence ~ for o~. There are three situations (De Campos et al. [4]): 

E c B, then P(B  I E) = 1 

E n B = Q ,  then P(BI E) = 0 

E N B ~ Q) and E O B :~ Q), then P(B I E) is unknown 

Assume that P(B I E) is known; then the answer to the question is 

~e :  EnB=Fm(E)" P ( B I E  ) 
Y A _ c X ,  Bel n p~BI.)(A) = Z (3) 

" F~_A Y ~ E m ( E )  • P ( B I E  ) 

It is clearly a belief function that depends upon P(B I E), YE c X. Since 
these quantities are unknown when E O B ~ Q and E n B ~ Q ,  we can 
only compute 

Beln(A) = inf{Bel,, p(al . ) ( A ) I t ' ( B I  E)~ [0, 1], 

EnB.o,En~*Q} 
As proved by De Campos et al. [4], 

Beln(A)  = inf P(B)  I P ( A )  ~- Bel(A) ,  YA ~ X 

Bel(A n B) 
= BeI(A O B) + P I ( A A  B) (4) 

that is, the conditioning rule already proposed by Dempster [2], Ruspini [3] 
and that preserve belief functions as proved by Fagin and Halpern [5] (but also 
Jaffray [23]). 

Now let us assume that instead of focusing on the reference class of 
members of f~ such that x(w) ~ B, we get a piece of evidence that claims that 
a// members of 0 satisfy the condition x(w)eB.  Then we know that if 
x(o~)~E, and E O B ~  • ,  we are entitled to let P(BIE)  = 1. In other 
words, the mass ra(E) can be allotted to E O B. Then (3) becomes 

B e I ( A I O ) =  ~ EE:EnB=Fm(E) 
p~A E e :  ~ n n . O  re(E) 

PI(A-A B) 
= 1 PI(B) (Shafer [ 16]) (5) 
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which is Dempster 's rule of conditioning. Again the normalization factor that 
reallocates ZEnB=~m(E) can be challenged in the scope of updating. 
Indeed, Bel( A ] B) provides an answer to the question, What is the proportion 
of ¢0's with x(¢o)~A, among those with x(6o)~B, given that x(co)~B as 
soon as we know x(~o) e E ,  and E O B :# ~5? In other words, it is focusing 
with an optimistic assumption on P(B] E). No surprise then if the interval 
[BeI(A ] B), PI(A ] B)] is more narrow than [BelB(A), P1B(A) ]. There is no 
"mystery of the vanished interval" (Pearl [1]). 

If  the piece of evidence is indeed that x(co) e B, ¥co, then it is contradictory 
to the fact that 3~0, x(¢0) ~ E  and E n B = Q .  Hence, as an updating rule in 
the frequentist framework, (5) makes sense only if ~ e :  e n n , o r n ( E )  = 1, 
that is, the piece of evidence B does not contradict the set-valued statistics on 
ft. In that case, updating is restricted to a set-theoretic operation (changing E 
into E O B, YE) and does not touch the masses. 

But this is not, of course, the regular setting for belief functions. In belief 
function theory ~i la Shafer, t'l is a set of answers to a question (e.g., is the 
evidence reliable or not?), X is a set of  answers to another question, and there 
is a compatibility relation that maps co ~ fl to some subset E = x(co) of X of 
answers compatible with 60. There is a subjective probability distribution/9 on 
fl, and m(E) = ~x(,o)=e P(co)- Given a piece of evidence B c_ X that rules 
out answers x i ~ B, the problem is to update p on fl; that is, define p '  such 
that 

• p'(co) = 0 if x ( o ~ ) N B =  Q5 (when only B is a possible answer, co 
becomes impossible). 

• All masses given to E are given to E N B if E n B ,: QS. 

Adopting the Bayesian updating rule on 0,  we have 

p'( co) = p( co) / P( B*) 

where B* = { u ]  x ( c o ) n  B ~ Q~} is the set of possible answers in f] after 
hearing that B is impossible in X.  Translated back to X ,  Bayes' rule justifies 
Dempster 's rule of conditioning. So if we reject Dempster 's rule of condition- 
ing on X,  we must reject Bayes' rule on fl. 

However, it is clear that in that setting the updating problem and the 
focusing problem no longer coincide; that is, if one has no idea of the 
probability that B contains the answer in X ,  given that E contains the answer, 
it is not possible to compute the relative probability of co among the co' such 
that x(co') ~B ,  because we no longer know the subset {co] x(co) EB}. All we 
can say on this relative probability is that it lies in the interval [p(co)/P(B*), 
p(co)/P(B,)] as long as ~o e B , ,  where B ,  = {co [ x(co) __q B}. Again, focus- 

ing and updating behave quite differently. The focusing rule (4) in X corre- 
sponds to conditioning a probability by means of an imprecisely bounded set in 
0 (i.e., B ,  c_ B c_ B*). 
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R E P R E S E N T I N G  I N C O M P L E T E  K N O W L E D G E  IN T H E  SETTING 
OF BELIEF F U N C T I O N S  

In his paper Pearl [1] displays all kinds of  paradoxes of  belief functions used 
to express rules with exceptions. He rightly points out the cause of the 
misbehavior, namely, the use of material implication for expressing uncer- 
tain if-then statements. An uncertain rule " i f  A then B(cz)" is viewed as 
Bel(A U B) = a ,  which suggests as a basic assignment representing the rule 

m ( A  U B) = c~ 

m ( ~ )  = 1 - c~, i f A , B g  f~ 

It is the least specific belief function compatible with the constraint Bel( /T U 
B) = a.  We have suggested this mode of representation in the past (Chatalic et 
al. [24]) and criticized it with examples similar to Pearl's in Dubois and Prade 
[25]. 

Smets' view [17] of this problem relies on Dempster 's rule of conditioning, 
and he interprets the uncertain rule as BeI(B ] A) = a ,  that is, PI(A f3 B) = 
(1 - a)  PI(A).  The principle of minimal specificity makes us notice that since 
nothing impinges upon A,  whether A holds or not must remain free so we 
must let PI (A)  = 1; PI(A f'l B) = 1 - et follows, which is clearly equivalent 
to B e l ( A U  B) = c~. That is, as Smets [17] puts it, material implication and 
conditioning are reconciled in the framework of belief functions. However, 
this reconcilation exacts a high price: unnatural chaining of rules, unnatural 
contraposition, counterintuitive results when reasoning by case, as shown by 
Pearl [1]. We have pointed out other counterintuitive results (Dubois and Prade 
[25]) with "birds f ly" types of examples. 

What is questionable with the above model of uncertain rules is not related 
to the setting of belief functions itself as Pearl would have us believe. The 
problem lies in the use of an updating operation in the representation of 
uncertain rules. "Birds almost certainly fly" does not mean " i f  all animals 
were birds they would almost certainly fly." It rather means " i f  we focus our 
attention on the class of  animals called birds, then most animals in this class 
fly." This suggests that a belief function model for the uncertain rule " i f  A 
then B ( c 0 "  would rather be BelA(B ) = c¢ using a focusing operation rather 
than an updating operation. Note that if one is reluctant to use this rule because 
of its upper-lower probability flavor, De Campos et al. [4] have shown that 
Bel n is a lower belief function as much as a lower probability, so there is no 
heresy in using the focusing rule as long as it is not presented as an updating 
machinery. Anyway, Pearl [1] himself indicates how poorly the focusing rule 
behaves in terms of updating. It is not because it is a bad conditioning rule. It 
is just because it is n o t  an updating rule (for instance, there is no point in 
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iterating the use of the rule for evidence accumulation; focusing is not a 
sequential process, in contrast to updating, and does not deal with integration 
of evidence). 

In the following, let the rule " i f  A then B ( c 0 "  be represented, when 
o~ > 0, as 

Bel (A O B) 

BelA(B) = Bel (A O B) + PI (A O B) = c~ 

This is equivalent to letting a PI(A N B) = (1 - ct) Bel(A n B) and PI(A 
O B ) +  Bel(A n B ) ~ :  0. It is interesting to exhibit an example of least 
specific belief function induced by this constraint. Note that some mass needs 
to be allotted to A O B  as soon as PI(A O B )  > 0 ,  that is, a ~ 1. The 
remaining mass can be allotted to the greatest possible subset of f~ that 
intersects A G B, and this is fl itself. It is easy to see that if we let 
x = m ( A  n B), y = m(fl) ,  and we put no other mass anywhere, x and y 
are solutions of 

( 1  - a ) x =  u y ;  x + y  = 1 

which gives m ( A  N B) = ix, m(fl)  = 1 - ct, if ct ~: 1. When a = 1, PI(A 
O B) = 0, which forces m ( A - U  B) = 1; that is, we recover the material 
implication. Note that here the uncertain if-then rule is modeled by material 
implication only if ot = 1. That is, it is a sure rule. And there is a discontinuity 
in meaning when ct = 1 with respect to (x < 1. This is very much what 
happens when the uncertain rule is modeled by means of a conditional 
probability, P ( B  I A )  >- a ,  as indicated by Pearl [20]. 

With this model of belief function based if-then rules, all paradoxes pointed 
out by Pearl [1] vanish: 

(i) CHAINING. Assume two rules " i f  A then B(o0"  and " i f  B then 
C(/~)", ix, f~ < 1, and let us prove that BelA(C) = 0. This boils down 
to solving the optimization problem 

Minimize 
Bel(C n A)  

D 

Bel(C n A)  + PI(C n A)  

Under the constraints 

(1 - ct) BeI(A n B) = (~ P I (A  n B) > 0 

( 1  - ~) BeI(B n C) =/3  PI (B n c )  > o 

We have to prove that the minimum is attained for a belief function 
such that Bel(C n A)  = 0. To see that it is true, just consider the belief 
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function 

m(A e) = k(1 - or); 

m( A n B n = kc~; 

B 

m(A A B A C )  = (1 - k ) ( 1 - / 3 )  

m(A n B n c )  = (1 - 

with 0 < k < 1. It is easy to check that 

Bel(A n B) = ko~, 

Bel(B N C )  = (1 - k ) / 3 ,  

BeI(A n c )  = 0  

PI(A n B) = k(l - ol) 

PI(B n c) = (I - k)(l - /3) 

Hence from "students are adults" and "adults are employees" viewed 
as uncertain rules, there is no belief induced about "students are 
employees." 

(ii) CONTRAPOSITIVE LAW. It is obvious to check that generally " i f  
A then B(o0"  is not equivalent to " i f  not B then not A ( a ) . "  Indeed, 

BeI(A-O B) 
BelA(B) ~: 

ael(  A- O J~) + PI( A O B) 

Again, we may have BelA(B) > 0 and BelB(A) -- 0 simultaneously. 
(iii) REASONING BY CASES. The following result can be proved. 

PROPOSITION I f  BelA(B ) _> ct and BelA-(B) _> /3, then Bel(B) >_ 
min(ct,/3). 

Proof Assume ct ___/3 without loss of generality. Let us solve the 
optimization problem Minimize 

Minimize Bel (B)  

Under the constraints 

ot PI(A n B) = (1 - o~) BeI(A N B) 

13 P I ( t T O  B) = (1 - /3) BeI ( /TA B) 

Let x = m ( A  AB) ,  y = m ( A  AB) ,  u = m ( B ) ,  v = m ( A ) + m ( A  A B )  
+ m(AAB)  + m(A U B), where A denotes the symmetric difference w = 
re(A) + m( A n B) + m( AAB)  + rn( A U B). Then we have to solve a 
linear programming problem: 

Minimize x + y + u 
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Under the constraints 

a ( 1 - y - x -  u -  v) = ( 1 - a ) x  

13(1 - x - y -  u -  w) = (1 - / 3 ) y  

x + y + u + v + w < _  1; x , y , u , v , w > _ O  

Substituting 

v = l - u -  y -  x / a ;  w =  1 - u - x - y / 1 3  

leads to the constraints 

u + y + x / a  < 1 (6) 

u + x + y / 1 3 _ <  1 (7) 

u + x / a  + y/13 -> 1 (8) 

It is obvious that the solution to the minimization problem saturates (8), and in 
that case (6) and (7) are satisfied, so we are led to 

Minimize x + y + u 

under the constraint 

u + x / a  + y / [3  = 1 

and the optimal solution is attained for y = /3, u = x = 0 since B-< a.  
Hence, BeI(B) > B = min(a ,  B). • 

Note that the converse property Bel(B) _< max(a ,  /3) does not hold. For 
instance if a = 0.8, /3 = 0.5, a solution that satisfies the constraints is 
x = 4 /7 ,  y = u = 1/7, v = w = 0. Then Bel(B) = 6 /7  > 0.8. Q.E.D. 

To use Pearl 's image [1], the focusing rule applied to the representation of  
generic knowledge "unspoils  the sandwich" because we obtain 

min[BeIA (B), BeIA- ( B)] __ BeI(B)_<PI(B) 

_< max[P1A(B) ,  P1A- ( B ) ] .  

When using Dempster 's  rule it is not surprising that the above bracketing 
property does not hold, because BeI(B) is the degree of  provability of  B from 
the available evidence. As pointed out by Pearl himself, upon getting evidence 
A we might get a proof  for B with some probability [BeI(B I A)  > 0], and 
upon getting evidence A ,  we might get another proof  for B, whereas none of  
these proofs may be available if no extra evidence comes in [BeI(B) = 0]. But 
again an uncertain rule " i f  A then B ( a ) "  does not mean that if A is true for 
all objects then I can prove B with some probability but rather specifies the 
probability that B is true in the reference class A.  
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A LOGICAL ANALYSIS OF THE THREE PRISONERS PARADOX 
AND ITS CONSEQUENCES 

In his paper [1] as in his book [20], Pearl tries to convince his readers that 
Dempster's rule of conditioning is not a good updating rule compared to 
Bayes' rule even when some of the involved probabilities are not available. He 
uses the famous three prisoners example. Let us try to refute this claim. More 
specifically we shall argue the following. 

• A purely logical solution to the problem is possible and gives the expected 
result. 

• The solution usually put forward by Bayesian probability advocates is 
debatable. In particular, we are in a situation when reasonable prior 
probabilities cannot go along with updating via Bayes' rule. 

• The solution given by Dempster's rule is alright and includes the logical 
solution as a special case. 

Let us first recall the statement of the problem: The prisoners are A i, A 2, A 3; 
one of them will be executed, but prisoner A,  does not know who. He asks the 
guard to tell him one of A 2 and A 3 who will be saved, arguing that if he, A ~, 
is to be executed then this information is of no value anyway, since one of A 2 
and A 3 will be saved. For some reason, the guard, who knows the result of 
the trial, tells him that A 2 is not going to be executed. Should A~'s opinion 
about his fate be modified? 

Before going further we have to make it clear that the frame in which the 
problem is expressed contains six possibilities, which can be represented by 

EA1 

E A z  

E A  3 

SA  2 SA 3 

Al2 A13 

A 22 A 23 

A32 A33 

where E A  i = " A / w i l l  be executed", SA i = "guard says A i  will be saved," 
and A i j  = E A  i 1"3 S A j ,  i = 1,2, 3; j = 1, 2. Since the guard knows who will 
be executed and does not lie, A2z and A33 are impossible situations. 

Logical Analysis 

The problem can be modeled by the following logical reasoning steps. Since 
SA 2 is true, E A  2 is false, and EA~ v E A  3 is true. Does A 1 know more than 
before? Yes, he knows that A 2 will be saved, so the uncertainty is between 
E A  ~ and E A  3 only. Does A ~ have a greater chance of being executed than the 
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other prisoner? At the beginning, Z 1 completely ignores this; all he knows is 
that one of A, ,  A 2, A 3 will be executed, which can be modeled by EA~ V 
E A  2 v E A  3, and v i V: j ,  -1 ( E A  i ^ E A  j) in logical terms. After the guard's 
reply, A~ remains in the same state of ignorance only with respect to A 3 
versus himself. In other words, the updating can be modeled as going from a 
lack of information on { E A  l , E A  2, E A  3} to a lack of information on { E A  l , 
E A  3}. Obviously, the situation has improved despite the residual ignorance. It 

is also obvious that this framework gives a reasonable solution to the problem 
that nobody can question. 

Let us examine other solutions to this problem, as given by a Bayesian or 
belief function practitioner. A solution will be considered correct insofar as it 
is consistent with the above logical solution. 

Bayesian Analysis 

Let us consider the Bayesian analysis that Pearl [20] considers the good one. 
We shall adopt the Bayesian representation of ignorance by means of equiprob- 
ability. The situation before the guard's answer is described as follows by 
Pearl: 

P ( E A , )  = P ( E A 2 )  = P ( E A 3 )  = 1/3 
(lack of information a priori, 

expressed in Bayesian terms) 

P ( A 2 2  ) = P(A33 ) = 0 (the guard does not lie) 

P (  S A z  I E A , ) = P ( S A 3 1 E A , )  = 1/2 
(the guard flips a fair coin 

when he knows A, will be 

executed) 

These constraints completely determine the four remaining probabilities for 
Aij: 

P ( A , 2  ) = P ( A , 3  ) = 1/6; P(A23 ) = P(A32 ) = 1/3 

then 

P ( S A  2 lEA1) • P ( E A , )  1/2" 1/3 
P ( E A 1  I SA2) = P ( S A 2 )  - 1/6 + 1/3 = 1/3 

This is considered the correct answer by Pearl because the probability that A 
will be executed has not changed. However, this result is not consistent 
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with the logical solution. Indeed, P(EA3)  has drastically changed, because 
P(EA31SA2)  = 2/3 = 2P(EA3)  since P(EA~I  SA2) + P(EA31SA2)  = 
1. This is perfectly unnatural. Why would A~ conclude that A 3 has twice as 
many chances as himself to be executed given that the guard said A 2 was to be 
saved? The expected solution, ignorance on { EA 1, EA 3}, cannot be expressed 
except by P ( E A  1 I SA2) = P(EA31SA2) ,  hence P ( E A  I I SA2) = 1/2. In- 
deed, it is not relevant to interpret an increase in probability as an increase of 
relative belief in some outcome when the set of outcomes itself has changed. 
So we agree with Pearl that in some sense A l's uncertainty should remain the 
same through the updating. But this stability is better expressed by a transition 
from { 1/3, 1/3, 1/3} to { 1/2, 1/2} (the incorrect solution following Pearl 
[20]) than by the transition from { 1/3, 1/3, 1/3} to { 1/3, 2/3}. 

In this example, if we admit that the initial state of uncertainty is given by 
P(EAi )  = 1/3, ¥ i  what goes wrong is Bayes' rule. Indeed, P ( E A  1 I SA2) = 
1/3 does not represent the result of an updating step when SA 2 is known to be 
true. P ( E A I I S A  2) = 1/3 evaluates, in frequentist terms, the proportion of 
times A~ would be executed among the cases when the guard replies SA 2, 
given that the guard flips a fair coin to do it. To make some sense out of this 
proportion, assume that A~ = a black person, A 2 = a white person, and 
A 3 = an Asiatic person. And P ( E A  1 I SA2) reports on the statistics of  blacks 
executed in a multiracial jail when the guard told the black guy that the white 
guy will be free. I f  A 1 is indeed a black guy who has access to this general 
knowledge, then maybe he is right to increase his confidence in his salvation 
when the guard says the white guy will be saved [since P ( E A 3 I S A  2) = 
2 P ( E A I I S A 2 )  ]. But then, it is difficult to explain to him that the guard's 
answer is irrelevant to his beliefs because P ( E A I I S A 2 )  = P(EA1)! 

Let us consider the problem as an updating problem, and not as a focusing 
problem as above. Let us denote by P '  the probability distribution after the 
updating step; learning SA 2 leads to 

P' (SA2)  = 1 ~ P ' ( A , 3  ) = P ' (A23  ) = 0 = P' (EA2)  
P ' ( A , 2  ) = P ' (A32  ) = 1/2 (symmetry of ignorance) 

Let us examine what the underlying updating rule is in that case. We have to 
reallocate P(A23 ) = 1/3 and P (AI3 )  = 1/6 to EA 1 and EA 3. P ( E A  2) = 
1/3 can be symmetrically reassigned to EA 1 A SA 2 and EA 3 A SA 2. How- 
ever, it would be strange to equally share P (Al3  ) between EA I and EA 3 
because A13 is incompatible with EA 3 but perfectly compatible with EA 1. 
Hence we are inclined to reallocate P(A13 ) to EA~. This is very similar to 
Lewis's imaging: A12 is "c lose r"  to Zl3 than A32 and receives its weight. 
Hence, we get 

P ' ( E A , )  = P ( A , 2  ) + P (  A,3 ) + (1 /2 )P(  A23) 
= P ( E A2)  + ( 1 / 2 ) P ( E A 2 )  = 1/2 

P'(EA3) = P ( A 3 2 )  + (1/2)P(A23) = P(EA3) + ( 1 / 2 ) P ( E A 2 )  = 1/2 
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Interestingly enough, the symmetric repartition of the mass of  the impossible 
event is not compatible with Bayes' rule, and we have found a case where 
Bayes' rule does not apply. It can be checked that P ' ( E A i )  = 
P ( E A i {  ~ EA2) ,  v i .  But, as rightly claimed by Pearl [20], it is not reasonable 
to use Bayes' conditioning upon --, E A  2 here because the piece of  evidence is 
SA  2 ::/: -7 E A  2 (indeed, SA  2 = A12VA32, --1 E A  2 = A12 V AI3 V A32) • 
P ( E A i [ ~  E A 2 )  gives the correct answer by chance. The good result 
[ P ' ( E A ~ )  = 1/2] obtains by an updating rule different from Bayes' rule, 
because here, equally sharing P ( E A 2 )  + P ( A I 3  ) among A12 and E A  3 is not 
suitable. If  we want to get the good result by a proper use of Bayes' rule, we 
need to change the assignment of  the prior. Namely, if we know, because of 
the guard's agreeing to reply, that the world contains four states 
(AI2,  Z13, A23, A32), then our ignorance state should be expressed by 
P " ( A I 2  ) = P " ( A I 3  ) = P"(A23 ) = P"(A32 ) = 1/4, according to the 
Bayesian principle that says we must first enumerate the set of possible states 
of the world and afterwards assign prior probabilities. Then, of course, 
P ( E A I [  SA2)  = 1/2 = P ( E A 3 I  SA2)  using Bayes' rule. But one is led to 
accept as prior probabilities P " ( E A  1) = 1/2,  P " ( E A  2) = 1/4,  P " ( E A  3) = 
1/4, a strange prior on a three-element set, in the absence of information. One 
might argue that on the set { E A  1, E O } ,  where E O  = E A 2 V E A  3 means 
"another one will be executed," that this is a genuine noninformative prior. 
But as can be seen, in order to get the correct answer P ' ( E A  1) = P ' ( E A 2 )  = 
1/2, we are bound to use probability theory in either a dubious way or an 
unusual way: 

• I f  we adopt a natural prior on { E A  1, E A  2, EA3} ,  then we cannot use 
Bayes' rule for updating upon SA 2. 

• If  we adopt a natural prior on { E A  t, E A  2, EA3}  and we insist on using 
Bayes' rule, then conditioning must be applied to -~ E A  2, that is, not the 
piece of evidence we have, which is not satisfactory. 

• If  we want to apply Bayes' rule correctly by conditioning upon the 
available evidence, and get the good result, we are forced to use a strange 
prior probability on { E A  i, E A  2, E A  3}. 

The Cautious Bayesian Solution 

Here we no longer know P ( S A 2 [  E A I )  = or. Carrying on the uninforma- 
tive prior P ( E A 1 )  = P ( E A 2 )  = P ( E A  3) = 1/3, we get 

(i) P ( E A  1 [SA2)= or/(1 + or) E[0, 1/2] (Bayes on the right evi- 
dence) 

(ii) P ( E A I I - '  E A  2) = 1/2  (Bayes on the wrong evidence) 

Solution (i) described by Diaconis and Zabell [26] has been considered the 
good one by Pearl [20]. But again, it implies a dissymmetry between 
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P(  EA 1 [ SA2) and P(  EA 3 [ SA2) (E [1/2, 1]) that is not in accordance with 
the logical solution. If we use, instead of Bayes' rule, the alternative updating 
rule that, upon knowing SA 2 is true, reallocates P(AI3  ) = (1 - tx)/3 to 
EA l, we get Va, P ' ( E A  l) = 1/2, that is, a result equal to solution (ii) that 
agrees with the logical solution. Note that this solution also obtains if, by 
virtue of symmetry, the constraint P(EA3[  SA2) = P ( E A I [  SA2) is added to 
refine solution (i). Hence the vanishing of the interval [0, 1/2] (reduced to 1/2) 
can be defended even in the context of an upper and lower probability analysis 
of the case. 

Besides, it may be strange to simultaneously express ignorance by the 
principle of insufficient reason using a uniform probability distribution on 
{E A  1, EA  2, EA3} and an unknown probability on {SA 2, SA3}. One should 
use an unknown probability on both. And then all we would get is that 
P ( E A i [  SA2) ~ [0, 1], i = 1, 3, P ( E A  2 ] SA 2) = 0, a solution that is exactly 
the logical solution. 

The Belief Function Based Solution 

The belief function based solution is well known (Diaconis and Zabell [26]). 
Namely, from the Bayesian prior on {EA  I, EA  2, EA3} one builds 
the mass assignment m({A12, AI3}) = m({A23 }) = m({ A32}) = 1/3; then 
Dempster's rule of conditioning leads to changing the focal elements A into 
A f') SA 2 upon learning the piece of evidence from the guard. Since { Ai2, 
A13 } f') SA 2 = {Al2}, A23 O SA 2 = Q ,  A32 f') SA 2 = {A32}, we get 
m(A12) = 1/3/ (1/3  + 1 / 3 ) =  1/2 = m(A32), the solution that coincides 
with intuition, that is, a form of total uncertainty on { EA  1, EA3} just like the 
logical solution. 

To conclude, the claim that the three prisoners problem furnishes a coun- 
terexample for Dempster's rule can be challenged. Indeed, it is Bayes's rule 
that yields results that are counterintuitive to the logical solution when a 
uniform prior is assumed on {EA  1, EA  2, EA3} in the presence of the 
constraints A22 = A33 = Q .  In contrast, Dempster's rule yields a proper 
update. Actually, in order to reconcile Bayes's uniform priors on { EA~, EA 2 , 
EA3} and the logical solution, one may proceed as follows: 

• Assume P ( E A  i) = 1/3 and P(SA2)  = P(SA3)  = 1/2 without requir- 
ing any further knowledge of the guard's behavior. In particular, he may 
be allowed to lie so that P ( E A  i tq S A j ) =  1/6, v i ,  Vj. This is the 
assumed prior probability. 

• Consider the two pieces of evidence " the guard does not lie" modeled by 
A22vA33 and "the guard_says. A 2 is saved" modeled by SA2, and 
calculate P ( E A i [ S A 2 A A 2 2 A A a 3 ) .  Again we find 1/2 as posterior 
probabilities attached to EA 1 and EA 3. 
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This way of solving the problem brings us close to Dempster 's rule of 
combination. 

DEMPSTER'S  RULE OF C O M B I N A T I O N  

If  we examine how Shafer [18] and Shafer and Tversky [27] present 
Dempster 's rule of combination, we find the following elements: 

• Two sets fi, fi ' are given independently, with a priori probability mea- 
sures P and P '  on them. In the random codes example (Shafer and 
Tversky [27]), fi and fi' are sets of codes used by two different persons 
that encode a given message, P(¢o) and P ' (&)  being the probabilities that 
one person uses code w and that the other uses 6o', respectively. 

• Two multivalued mappings F: fl ~ X and F': fl' --, X are given. F(¢o) is 
the set of elements of X that are compatible with co, and the same with 
F' .  Hence (P ,  F) and ( P ' ,  F') induce belief functions on X. 

• Independence between P and P '  forces the joint a priori probability on 
fl x fl' to be P"(w, w') = P(w)  • P'(w'). 

• An updating step takes place by which P and F '  refine each other, that is, 
P(w) • P(w') is allotted to P(w) n P'(w3 when not empty, then redis- 
tributing the mass E { P ( w ) "  P ( w 3 1 P ( w ) f l  P'(w')= Q} over to the 
other pairs (w, w'). 

This leads to the now celebrated formula on X ,  

1 
VA c X ,  m " ( A )  = (m • m ' ) ( A )  = ~ ~_, m ( B ) . r n ' ( C )  (9) 

B O C = A  

with 

m(B) = { p ( ~ ) l r ( ~ )  = B} 

m'(C) = E = c }  

k =  0 }  

In the code example, r and F '  are decoding functions such that r(o ) 
contains the actual message that was coded on fl, and F'(w3 likewise on fi'. 
The updating step corresponds to the integration of the following piece of 
evidence: The same message was encoded by the two persons. Hence m" is the 
belief function whose underlying probability measure on f i x  fi' is P"(.  [ E),  
where E = {(w, ~31 r(~) n r ( ~ 3 .  •}. 

The statement of the three prisoners problem given at the end of the previous 
section was exactly based on this model: fl = { EA  l, EA  2, EA3},  f l ' =  
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{SA 2, SA3}, F ( E A  i) = { A i 2 ,  A;3 }, i = 1, 2, 3; F(SAj)  = 
{Alj ,  Z2j, A3j}, j = 2,3.  The piece of evidence is "The  guard is not a 
liar;" so it excludes {(EA2, SAz); (EA 3, SA3) } . Dempster's rule then 
coincides with Bayes' rule and leads to P(Aij) = 1/4, Vi, j ,  except P(A22) 
= 0, P(A33) = 0, before a new piece of evidence (SA2) is entered. 

Again we find the coherence between Bayes's rule of conditioning on 
f l x  fl' and Dempster's rule of combination on X. What is very important 
here is that if we project back m" over to 12 and fl' we do not recover P and 
P', owing to the updating step. It means that P and P '  are elicited prior to 
knowing anything about the coherence between F(o~) and 1"(60,). Maybe this is 
the meaning of independence between belief functions to be combined by 
Dempster's rule. The requested coherence between I' and 1" must be taken as 
a piece of evidence. 

If it were not the case, P and P '  would already account for the fact that 
P"(w, co') = 0 for some pairs (co, o~,) due to 1'(~) N 1"(~,) = 0 .  And then 
the two basic assignments m and m' would no longer be stochastically 
independent; there should exist a joint mass function over X x X,  say ~ ,  
such that 

m(A) = ~ ~(A ×B) (10) 
B ~ _ X  

m'(B) = ~_, ~ ( A  × B) (11) 
A c _ X  

and the combination of rn and m' that results from constructing 1'"(o~, c03 = 
F(o~) t') P'(o~,) leads to a formula different from Dempster's rule: 

m " ( A )  = Y~ ~ ( B x  C).  
B N C = A  

We suggested this type of combination earlier (Dubois and Prade [28]). In 
particular, if the constraints linking fl and fl' through the compatibility relation 
r and F '  have been taken into account when specifying P and P ' ,  the 
infeasibility of Eqs. (10), (11) linking the joint basic assignment and its 
marginals indicates a strong conflict between the sources of evidence. For 
instance, in the three prisoners example, if the uniform prior on {EA 1, 
EA2, EA3} is obtained while prisoner A,  knows that the guard is not a liar, 
then the joint assignment of probabilities on {EA l, EA 2, EA3} x {SA 2, 
SA3} must respect the constraints P(EA 0 = P ( A  u)  + P(A~3) = 1/3 and 
P(A23 ) = P(A32 ) = 1/3, and we obtain Pearl's solution [20] to the puzzle. 

Note that another assumption in the setting of Dempster's rule of combina- 
tion can be challenged: the one that allows the refinement operation r"(w, oa') 
= 1'(oJ) N F'(6o±) to be performed. It comes down to questioning whether the 
two persons in the random code experiment did encode the same message. 
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Failure of this assumption may be due to the fact that, for instance, one forgot 
to make sure that they dealt with the same message. Or maybe they did, but 
one of them distorted the message for some reason. Hence we may question 
the reliability of the sources of evidence as sensors (not only as transmitters). 

If we take a weak assumption, namely, that one at least of the two persons 
encoded the good message, then from decoding 60 and 60' we can conclude only 
that the good message x belongs to r(60) o I'(60"). 

This gives the following disjunctive counterpart to Dempster's rule: 

m u ( A  ) = ~ re(A), m'(C) (12) 
A = B U C  

We proposed this rule [9] in 1986, and it appears in Smets's Ph.D. thesis 
(Smets [29]) when he defines a counterpart to Bayes' rule of pooling evidence 
[i.e., computing P ( .  I 601V 6°2) from P(" ] 601) and P(" ] $z)] under the as- 
sumption of conditional independence. Namely, if X and Y are two sets, 
Bel(. ] x) are belief functions on Y given x, x~X, then Bel(. [{x, x'}) is 
computed by applying the disjunctive rule on Bel(. I x) and Bel(. ] x'). 

A noticeable property of the disjunctive rule is that it corresponds to the 
product of the belief functions based on m and m'. This property, proved by 
Dubois and Prade [9], also appears in Berres [30]. Strangely enough, Shafer 
[18], in his overview article, criticizes the alternative rules we proposed [9] 
(namely the disjunctive rule) as generalizations of Dempster's rule lacking a 
rationale but finds Berres's proposal [30] of computing the product of belief 
functions interesting " in  the context of discounting belief functions" and never 
mentions Smets's [29] pioneering contribution on this rule. However, from the 
above explanation and other discussions (Dubois and Prade [25, 31]), we do 
agree that the disjunctive rule makes sense for a mutual discounting of sources 
of evidence when only one of them is assumed to be a good sensor. 

LIKELIHOOD FUNCTIONS AS SUBSTITUTES FOR BELIEF 
FUNCTIONS 

Pearl [1] points out that the plausibility function restricted to singletons can 
be viewed as a likelihood function. Given a body of evidence ~ described by a 
belief function on fl, we can postulate the identity 

¥60~fl ,  P(60160) =P1({60}) = ~ m(A) (13) 
A: o~64 

Shafer calls P1({60}) the contour function of m. Let us denote it by #. Pearl 
motivates his remark by noticing that when combining m with a probability 
function P that assigns mass p(60) to 60, only this function is necessary to 
compute the result, that is, 

(m ® p)(60) = kp(60) •  (60) (14) 
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And (14) is nothing but Bayes' formula again. This remark suggests several 
comments. First it is well known that the contour function of m * m', for any 
belief functions with basic assignments m and m', is proportional to the 
product of contour functions of m and m', that is (e.g., Shafer [32]), 

= (15) 

Interestingly enough, while Pearl [1] uses these properties as a reason for 
advocating probability theory as a sufficient tool for pooling evidence, the 
definition of a contour function has been used by others (e.g., Kamp~ de Feriet 
[33], Goodman and Nguyen [34], Dubois and Prade [35]) to bridge the gap 
between fuzzy set and probability theory, and (15) as a departure point to 
justify fuzzy set-theoretic operations from a random set-theoretic point of view 
(Goodman and Nguyen [34], Dubois and Prade [8]). Indeed /z is formally 
a fuzzy set membership function (Zadeh [36]), and it can be viewed 
as a possibility distribution (Zadeh [11]) because Pl({o~})= 0 means that 
60 is impossible and P '({~}) = 1 means that ~ is completely possible. The 
analogy between a fuzzy set membership function and a likelihood function, 
noted by Cheeseman [37], is not new and has been used for the definition of 
psychometric experiments with fuzzy sets (Hisdal [38]). 

Instead of using these mathematical similarities as a reason for remaining 
within a regular Bayesian framework, one may use them as well to find new 
motivations for developing alternative uncertainty calculi in better agreement 
with probability theory (Dubois and Prade [39]). For instance, the discovery of 
the mathematical equivalence between likelihoods, plausibility of singletons, 
and possibility distributions leads to bridging the gap between Bayes' theorem 
and fuzzy set-theoretic operations (Dubois and Prade [40]). It suggests possibil- 
ity theory as a good framework for handling likelihood functions. It is also 
consistent with the attempt to work with consonant approximations of belief 
functions (Dubois and Prade [10]). Indeed, the contents of a belief function are 
equivalent to the contents of its contour function if and only if it is consonant. 
Hence belief functions can be equivalently represented by likelihood functions 
only in the framework of possibility theory. 

CONCLUSION 

In this paper it has been pointed out that the mathematical theory of evidence 
currently developed by Shafer and Smets has perhaps been misleading by 
interpreted as a theory of uncertain or incomplete generic knowledge by people 
who have tried to solve approximate reasoning problems in artificial intelli- 
gence (including ourselves). We have tried to suggest that the set functions 
commonly referred to as belief functions may serve for purposes other than 
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representing and pooling evidence, especially regarding set-valued statistics, 
and as approximations of sets of probability measures. 

Two conditioning rules have been discussed, one that can serve for focusing 
on a reference class, the other for updating upon the arrival of a piece of 
evidence. The conditioning rule derived from sensitivity analysis on imprecise 
conditional probabilities never appears in evidence theory because it is not 
suitable for the integration of evidence. However, it has been suggested as a 
good candidate for the representation of uncertain if-then rules. On the other 
hand, it has been stressed that Dempster 's rule of conditioning and combina- 
tion are nothing but projections of  Bayes' rule of conditioning through multi- 
valued mappings. Hence, as updating rules they should be accepted by 
probability theory proponents. It has also been suggested that the normalization 
step is acceptable insofar as the constraints that lead to such a normalization 
(i.e., the empty intersection of focal elements stemming from combined belief 
functions) can count as evidence as well. The existence of a disjunctive 
counterpart to Dempster 's rule has been recalled and motivated. 

We hope that this paper has contributed to a better understanding of the 
areas where belief functions can be applied, and that we have addressed some 
of the questions that Pearl [1] very legitimately asked in his position paper. 
Other issues would require more investigation--for instance the position, with 
respect to Dempster 's rule, of Jeffrey's rule of updating in the presence of 
uncertain evidence discussed by Shafer [41] in the scope of belief functions and 
by Pearl [20] in the scope of Bayesian probability. This is a topic for further 
research. 
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