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Upper and Lower Images of a Fuzzy Set Induced by a Fuzzy Relation:
Applications to Fuzzy Inference and Diagnosis*

DIDIER DUBOIS
and

HENRI PRADE

Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse Cedex, France :

ABSTRACT

In fuzzy set theory the image of a fuzzy set induced by a fuzzy relation is usually obtained
by a sup-t-norm composition. This corresponds to the upper image which gathers the
elements in relation with at least one element of the fuzzy set. However the dual point of
view, leading to the definition of the lower image as the fuzzy set of elements in relation with
all the elements of the fuzzy set whose image is computed, is not often considered. Fuzzy
sets and fuzzy relations, depending on the situations, can be interpreted either in a
conjunctive manner or as subsets of mutually exclusive possible values for variables whose
precise values are ill-known (disjunctive view). The applications of upper and lower images
are investigated in both interpretations. The generalized modus ponens, used in fozzy
rule-based systems, corresponds to the disjunctive view. The interest of upper and lower
images is also emphasized for diagnosis problems where the conjunctive interpretation is
encountered. :

1. INTRODUCTION ‘

Various schemes of fuzzy reasoning have been proposed in order to manage
the uncertainty pervading expert knowledge and data. Two different kinds of
models were introduced at the end of the 1970s and have been developed since
that time. One, designed for solving diagnosis problems, is based on the

*Preliminary fragments of this paper were presented at the 1st Congress of the Interna-
tional Fuzzy Systems Association, Palma de Mallorca, July 1-6, 1985. A first draft has been
circulated as part of the LSI Report n® 265, Université P. Sabatier (February 1987, pp.
36-64) but has never been published owing to the failure of an editorial project. The present
version has been thoroughly updated.
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association of causes (disorders, diseases,...) and effects (manifestations,
symptoms, . ..) by means of a fuzzy relation; then possible causes of a set of
observed effects are identified by solving a fuzzy relation equation. It can be
viewed as a form of abductive reasoning.

The other kind of model corresponds to the extension of classical patterns of
deductive reasoning,such as the modus ponens, to uncertain and fuzzy premises.
From a knowledge representation point of view, it must be pointed out that the
fuzzy sets,which appear in the two kinds of approaches, have a different
interpretation. In the deductive reasoning model, fuzzy sets have a disjunctive
meaning; they restrict the more or less possible values of variables and then
these possible values are regarded as mutually exclusive since each variable is
attached to a single-valued attribute of a given object (the attribute value is
unique but ill known). By contrast, in the abductive reasoning model, fuzzy
sets have usually a conjunctive interpretation; indeed there is no idea of
mutual-exclusiveness between the symptoms, which are more or less certainly
produced by a given disease, for instance.

In this paper the different compositions of a fuzzy set with a fuzzy relation,
on which fuzzy reasoning techniques are based, are considered in great detail.
More precisely the properties of the upper and lower images of a fuzzy set by a
fuzzy relation or mapping are studied; the disjunctive and conjunctive interpre-
tations of the mathematical model are presented. Weighted upper and lower
images are also introduced. Then the application of upper and lower images to
the generalized modus ponens, on the one hand, and to diagnosis problems, on
the other hand, are discussed. The concluding remarks stress the importance of
the results for the design of fuzzy expert systems.

2. UPPER AND LOWER IMAGES OF A SET BY A RELATION
2.1. CASE OF A CRISP SET AND OF A CRISP RELATION

2.1.1. Mathematical model

Let U and V be two sets, A be a crisp (i.e., ordinary) subset of U and R
be a crisp relation defined on U X V. R induces a multiple-valued mapping I'
from U to V defined by vueU, T'(u) ={veV, (4,v)eR}. Then we can
define the upper image B* of A induced by R (or T') in the following way:

h»u?m-\_m:ml.?.&mzw (1)
The lower image By is defined by

By={veV|vue A, (u,v)eR} (2)
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Note that the upper and lower images are then respectively equal to

m*u?mﬁ_m:ﬂ-_?vﬂﬂ : (3)
; B*= _K_Ea, 4)
and
By={veV | AcT ' (v)} (5)
3 By= () 1(u) (6)
where

I~ !(v) = {ueU, vel'(u)}.

Observe also that B* is the smallest B such that m.ww proj, [(A x V)N h__H
where proj, denotes the projection over V" and By is the largest set B sucl

AxX BSR. B AR :
Eﬁﬂﬁ upper image B* is the set of elements of V, which are in relation R

with at least one element of A; the lower image By is the set .&m monWhMmOm
V, which are in relation R with all the elements of A. i?.“.“s W_m an cmm_ i m_.mw
mapping (i.e., Vu, I'(#) is a singleton), Bx=, axnnmﬂ in :n mwwman o
where Vue A, T'(1) = vy (then By = ?c; Thus q..ro notion o oﬁnw_ nmm_mﬂ ‘.
interesting only with multiple-valued mappings or in Ew. more %WMM._ ;

fuzzy mappings considered in section 2.2. We shall write symbolically

B*= A@R
Bx=AMR

These notations have been recently proposed E‘. .MNEE et al. [19], who
investigated some of the properties of these compositions.
Using (4) and (6) makes obvious the monotonicity properties

Ac A= A@Rc A@DR (7)

Ac A A@DR24®R (8) -
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and the inclusion
Byc B* GV

The equality between By and B* holds if and only if 3IC SV, vue 4

M.Moavn C; it is EM case in particular if A4 is a singleton of U. When A
omes larger, B* becomes larger and may even become equal to V, whereas

By becomes smaller and may be i
y become empty. The foll i
easy to establish using (4) and (6): - A b

(4,UA,)@R= (10a)

(4,
(4,0 4,) DR<( 4,
(4,

(4,U muv@hu

)
R) (10b)
v (11a)
R). (11b)

Let R (resp. I') be the complement of R (resp. T');i.e., R
m:h. T ={veV, (4,v)eR}=T(u). Let us denote
B™(R), B+(R) the upper and lower images of A ind
respectively. Then using (4) and (6) we obtain

={(u,v),(u, v)é R}
_uux m*ﬁ.}._vuﬂmﬁﬁbﬂv'
uced by R and R,

B*(R)=Bx(R);  B(R)=B(R) (12)

2.1.2. Two kinds of Inlerpretations

Hn.n,:m paper we consider two different interpretations of the precedi
equations (which are extended to the fuzzy case in the next m:Wmmo:oEm
:m:..o@.. En.noﬁ::?.{m interpretation and the disjunctive interpretation .__v,
MM %%m::nw?m%&o%.w_ﬁmon. a mathematical set is viewed as the value .‘,.n. H

-valued variable. For instance, the pr ition ‘¢
by John are English, French, and Italian’’ oqummwm”w_ﬂ_mﬂ I on__.H “M“mm: nmmmwwwm“_
af .En languages in the set {English, French, Italian}; the E:Enmw- EQMHH
.<E._mEa. mnn_mw consideration is here .Jc:m:ﬁ&-mvoro:,_um.uorn o wvoowﬁ : t
in E.n disjunctive interpretation, a mathematical set is viewed mm Bmwnmn:: EM.,
possible A&:mm of a single-valued variable. In other words, the sin _Mczm
whose union constitutes the set under consideration are 55.:&.@ mkm?m?m
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values for the variable. For example, the proposition ‘‘John is between 30 and
40 years old’’ expresses an imprecise knowledge about John’s age and clearly
only one value in the interval [30,40] corresponds to the genuine value of his
age. The reader is referred to Zadeh [33], Yager [29], or Dubois and Prade
[12] for discussions about the conjunctive and the disjunctive interpretations.

A typical conjunctive interpretation of A, I', Bx and B* is the following.
A is a set of simultaneously observed symptoms in a particular case; I'(u) is
the set of diagnoses associated with the symptom wu; then the lower image Bx
is the set that contains the diagnose(s) that are compatible with the whole set of
symptoms A, whereas the upper image B is the set of diagnoses that are
compatible with at least one of the symptoms in 4. Note that the elements in
By or B* are not mutually exclusive since it is possible to have several
different diseases in the same time.

A disjunctive interpretation of A, I', B« and B* occurs in the following
situation. U is the domain of an observed variable X, A € U corresponds to
partial information relative to X, i.e., X is equal to one of the values in A.
I'(u) is the set of mutually exclusive possible decisions 'Y = v’ that can be
contemplated when X = u. In other words, when X = u, any value vel'(u)
can be assigned to the variable Y. Knowing only that the value of X isin A4,
B is the set of decisions that apply whatever the precise value taken by X is,
provided this is in " A. If Bx=(J, there is no value that can be chosen with
certainty for ‘Y; then any value in B* may be appropriate for ¥ with respect
to the precise value of X (which remains unknown) but may be unsuitable as
well.

Note 2.1. In the two preceding interpretations both A and R are either
understood in a conjunctive or in a disjunctive way. It would be possible to
consider hybrid situations where the set A or the relation R has a conjunctive
interpretation whereas the other is interpreted in a disjunctive way.

2.2. FUZZY CASE
2.2.1. Mathematical model

Let A and R be a fuzzy set and a fuzzy relation defined on U and on
U X V, respectively, and represented by their membership functions p, and
pgr- A and R are supposed to be normalized, i.e., 3u, p4(4) =1 and 3(u, v),
pr(u,v)=1. R induces a fuzzy mapping I" from U to V' whose membership
function at point u is defined by

vueU, Pran(v) = pg(u,v) (13)
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I'(u) is a fuzzy set on V associated with #. Then the fuzzy reverse image
I''(v) is defined by Pr-10(8) = ppy (V).

The definition of the upper image is extended to the fuzzy case in the
following way (Zadeh, [31D):

VeV, pp(v)= SUp p 4 (u) *pg(u, v) (14)
uel

where * is a binary operation that defines a generalized intersection. The
operation * must be such that (i) vxe[0,1], x*1=1%x= X; (i) 0*0 = 0;
(iii) v(x, y, z, H)€[0,1]%, if x< y and Z<t, then x*z < y*¢ (monotonic-
ity). If we add the symmetry and associativity requirements, which are natural
for an intersection operation, the operation * is bound to be chosen among the
so-called triangular norms; see the appendix for details. The main triangular
norms are the min operation, the product, and the operation x * Y = max(0, x
+ ¥ —1). Note that (14) can be viewed as an extension of (1), (3), or (4) since
the maximization in (14) expresses that we are looking for at least one u whose
membership degree in A and degree of relationship R with v are as great as
possible. Moreover, when A is an ordinary set, expression (14) reduces to
#ps(v) =sup, Alray(v), which looks like (4); when R is also an ordinary
relation, we recover the equivalent definitions of B* given in 2.1.1.

The lower image By is still defined in the fuzzy case as the largest set B
such that A x BC R, the fuzzy set inclusion being defined as usual, i.e.,

ﬁ.MQﬂ.(m.tnmuthQA& :uv

and the Cartesian product being defined by means of an intersection operation
* (fulfilling the same requirements as in (14)), i.e.,

vueU, vveV, tmxmﬁt.cvntkﬁa.v*tm?v. (16)

Then the membership function of the lower image By is given by

I

YveV, .:m..?v inf sup Tw_t;?v*mm:h?.c: (17)

uel gepo, 1

Il

Jnf (1) > pp(u,v) (18)

UPPER AND LOWER IMAGES OF A FUZZY SET 209
with

v(x,»)e[0,1]?, x*— y= sup {s]| x*s< y}. (19)
5e[0,1]

The subexpression in (17) beginning with “‘sup’’ yields the mmomnnﬁ vo.mm&_m
value B(u) of pg(v) such that p (1) *puz(v) < pr(u, v) for a given u. Since *
is non-decreasing, p g (v) is finally obtained by taking the greatest lower ?.E.a
of B(u) for u ranging in U. Note that the operation *l..aomnnn by (19) is an
implication connective function in multiple-valued logic when * defines a
conjunction (see Goguen [17], but also, [26], [6], [7] , [4D. wwn the m_um.w;n_i
for the different examples of operations *— associated with a vm_.@nEE.
operation *. Thus (18) can be viewed as expressing the degree of E&:mwm: of
A into I'~'(v) [i.e., to what extent any element u of A4 belongs to I'"'(v)]
(see [3]) and appears clearly to be an extension of (2), (5), or (6) @Enn. when
A is an ordinary set, (18) reduces to pu g, (V)= mumn.m abtg(u,v) owing to
I*— y=y and 0%— y=1). When A and R are ordinary set and n&mcom.
we recover the equivalent definitions of Bx given in 2.1.1. (Inf, *w..v nca.ﬁom_-
tions have been studied by Sanchez [25], [26] for * = min and Miyakoshi and
Shimbo [21] in the general case. .

Cmmnmm G_NV. E_cEmo_, definition for Bx (resp. B*) can be nm_.?o.a in the w:.mmw
case from the one of B* (resp. By), given a fuzzy complementation ﬁnumccn.
when A is a fuzzy set. However when A is an ordinary set and R is a fuzzy
relation, (12) still holds with definitions (14) and (18). We shall use the usual
complementation operation defined by

ve, pp(t)=1-pg(t). (20)
We obtain from (12), (20), and (14) *

VOEV, g (4) = inf (1= pa(w) L n(,0) (21)

where 1 is an operation, expressing a disjunction, associated with the
operation * according to the relation

xLy=1-(1-x)*(1-y); (22)

L is called a friangular co-norm when * is a triangular norm; see the
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appendix for details. From (12), (20), and (18), we get

VeV, pp(v) = supp,(u)%pz(u,v) (23)
uel
where
x*¥y= inf 1 >
y um__w i {sl(1-x)Ls>y}. (24)

Using a result proved in Dubois and Prade [7], the expressions (21) and (23)
EE out to be very similar to (18) and (14), respectively. Indeed the implica-
tion connective E:nmmon defined by (1— x) L y, appearing in (21), derives
from the operation * via 33 (where * is replaced by *); see [7] or the
muuos&u for a proof when * is a continuous triangular norm. It can be checked
that * defined _uw (24) is such that (i) 0%1 =0; (ii) vxe[0,1],1%x = x; (iii)
0*0=0; (iv) * * is monotonously nondecreasing with respect to its two argu-
ments. Thus * satisfies the three basic properties required for *. except
x*1 = x, which ‘may hold only for x = 0 (however, we always have x %1 > x).
The operation * is an _Emnmmo:on o_um..m:o: which is nonsymmetrical in
mmnnam_ however in some cases * and * are identical. The possible nonsymme-
try of * does not cause any serious problem since the roles played by u, and
Wg are not E.Q.n:m:wmmc_a See the appendix for a table giving the operations
*—, 1, and * corresponding to the main triangular norms *. So, (14) and
ﬁmv. as well as (18) and (21), present no essential differences. * is called the
adjoint of *.

Since * and * are :o:annnnmm_nm with respect to their left operands, whereas
*— and ¥— (with x%=> y=(1—x) L y=1— x*(1— )) are nonincreasing
with respect to their left operands, the monotonicity properties (7) and (8) still
hold in the fuzzy case [the fuzzy set inclusion being defined by (15)], for any
definition of the upper image and of the lower image, respectively.

Owing to the identities Vx€[0,1],1*x=1%x=1%> x=1%> x=x,
H.Enr always hold, as soon as A is normalized (i.e., Juy, pa(uy) =1), we

ve

YveV, Er?v .:x??& ppe(v)

and thus the inclusion (9) [extended in the sense of (15)] is satisfied in any case
(even if By and B* are not defined from the same operation *!) when A and
R are fuzzy. Note that when A is a singleton {u,}, we have B* = By =I'(u,)
as in the nonfuzzy case.
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Owing to the distributivity properties,
EEAR,k\v*.ﬁnamxak*&.&\*iu
max( x, x') % y = max(x#*y, x'* y)
min(x, x’) * y = min(x*y, x'* y);
Eik.a‘v_ﬂwuEm:?m?x‘mef
max(x, x’) *— y=min(x*— y, X'*— y);
max(x, x') %= y=min(x*- y, x’*> y)
min(x, x’) *— y = max(x*— y, x'*— »);
min(x, x’) ¥~ y = max(x*— y, x'¥— y);

the equalities (10a) and (11a) and the inclusions (10b) and (11b) still hold in the
fuzzy case (the fuzzy set inclusion being defined by (15), the fuzzy set union
and intersection being pointwisely defined by means of max and min opera-
tions, respectively), for any definition of the upper image and of the lower
image. These properties have been noticed in a slightly different setting by
Izumi et al. [18], [19].

2.2.2. Interpretations

In the conjunctive interpretation, I'(#) is the fuzzy set of elements of V'
which are more or less associated with #; pp,,(v) = pg(u, v) is the degree of
association of v with u. When A4 remains nonfuzzy, pp (v) = inf, 4 pg(u,v)
estimates to what extent v is associated with all elements u in A, whereas
pge(v) =sup,. ak r(u, v) estimates to what extent v is associated with at least
one element u in A. In a diagnosis problem, p,(u,v) represents a degree of
association between the symptom u and the disease v. Note that when A is
nonfuzzy, all the definitions proposed for the lower (or the upper) :.:mma
reduce to a unique expression (since V*,1* x = léx=x=1%>x=1%>Xx
and 0*x=0%x=0and 0*— x=0%— x=1). When A is a fuzzy, u,(¥)
expresses, for instance, to what extent the symptom # can be considered as
present (i.e., u4(#)) can be viewed as the degree of truth of the statement “‘the
symptom u is present.”” Then By and B* represent, respectively, the fuzzy
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set of diseases that are associated with all the present symptoms and the fuzzy
set of diseases that are associated with at least one of the present symptoms.
The operations * and the related ones correspond to slightly different ways of
aggregating the degrees of presence and of association when their values are
intermediary between 0 and 1.

In the disjunctive interpretation, R restricts the possible values of a variable
Y when the value of another variable X is known; then I'(u) is a set of
(mutually exclusive) values that are more or less possible for the single-valued
variable ¥ when the other variable X is precisely equal to u; conversely
knowing that ¥ = v, the only more or less possible corresponding values for X
are restricted by pp-1,): The more or less possible values of the single-valued
variable X are a priori restricted by 4. More briefly we shall say that *“ X is
(in) A”. In other words, p ,(u) is the degree of possibility that X = u (the
normalization of A guarantees that there exists at least one value that is
completely possible for X'), whereas u,(u,v) is the degree of possibility that
Y=v when X =u. Then pug.(v) estimates the possibility (see Zadeh [32])
that *‘v belongs to the image of the value of X via I'** when it is known that
the value of X is in A. Indeed, (14) expresses a degree of intersection of A
with I'"!(v). For * = min, (14) can be viewed as the usunal definition of the
possibility measure of the fuzzy event ““X is in I'"'(v),”” based on the
possibility distribution u, representing the known fact “ X is in A.”" The
possibility measure will be denoted by II(I'"'(v); A). The quantity pp, (V)
estimates the certainty (or the necessity) that “‘v belongs to the image of the
value of X via I',”” knowing that “X is in A,” since pp,(v) can be
considered as a degree of inclusion of A4 in I'~'(v). In other words, pp (v) is
the degree of certainty that X restricted by A4 is in relation R with v. If we
use (21) with L = max for defining #p (v), we obtain the usual definition of
the necessity of the fuzzy event ““X is in I'"'(v),”” on the basis of the
possibility distribution p,. This necessity measure will be denoted by
N(I'"'(v); A) and owing to (12) is such that

N(r='(v); A)=1-1(T"(v) ; 4) (25)

(25) is in agreement with the idea of necessity of an event as the impossibility
of the opposite event.

To sum up, in the conjunctive interpretation, B* is the fuzzy set of the
elements that are more or less in relation R with at least one of the elements
of the fuzzy set A; Bx is the fuzzy set of the elements that are more or less in
relation R with all the elements of the fuzzy set A4. In the disjunctive
interpretation B™ restricts the more or less possible values of a single-valued
variable Y whose value is more or less in relation R with the value of a

UPPER AND LOWER IMAGES OF A FUZZY SET 213

single-valued variable X, whose more or less possible values are ﬁ._..nEmn?om
restricted by A; then By restricts the possible values of ¥ ﬂn which we are
more or less certain that they are more or less in relation R with the value of

X, whatever it is in 4.
2.2.3. Remark: upper and lower images and inverse images

The upper and lower images of a crisp or fuzzy set by a crisp or fuzzy
relation, which are defined in section 2.1.1 and 2.2.1, must not be nc_._?mnn_
with the notions of upper and lower inverse images that have been considered
in the fuzzy set literature. . . .

Using nwm same notations as in the previous section, the upper inverse image
A~ of a subset B of V via a relation R (or its equivalent generalized
mapping T') is defined
—in the crisp case by

A~"™={uyeU, BNT(u) #D} (26)

—in the fuzzy case by

VueU, py-1(u) = suppgp(u,v)*pg(v), (27)
velV

whereas the lower inverse image Ax ' is defined
—in the crisp case by

Ai' = {ueU, T'(u) 20, T'(u) < B} (28)
—in the fuzzy case by

<=mQ..F__.._A£n ﬁwna?.cv*ltw?v- . Auwv

The upper inverse image A~ '* is the (crisp or fuzzy) set of elements of _ﬁw.
which are in relation R with elements in B; the Hcio._. inverse image Ax is
the (crisp or fuzzy) set of elements of U, which are in relation R only i_&
elements in B. Note the difference between (5) and (28) (or ﬁmu. and (29));
I'~! is changed into T', but the inclusion is reversed also. When we Ean_u_.mg&h
in a disjunctive way, I'(u) acts as a restriction ma___..En vowm_cwo_ emEnm of the
image of u (which is an element of V'); then A (resp. Ax ") is the (crisp



214 DIDIER DUBOIS AND HENRI PRADE

or fuzzy) set of elements of U, which are possibly (resp. necessarily or
certainly) associated with elements in B. Upper and lower inverse images are
naturally encountered when dealing with incomplete or fuzzy information data
bases; then, U is a set of objects, I'() represents the available (possibly
incomplete or fuzzy) knowledge concerning the value of a single-valued
attribute applicable to the object u; A4~ !* (resp. Ax") is the set of objects
whose attribute value is possibly (resp. necessarily) in B; see Prade, Testemale
[23]. More generally, upper and lower inverse images appear in the study of
twofold fuzzy sets [13] and fuzzy rough sets [16].

Many interesting results can be obtained by combining upper or lower
““direct’” and inverse images together. For instance, it is easy to check that

(R @wu @ R2 B, i.e., the image of the converse image of B contains B,

2.3. WEIGHTED UPPER AND LOWER IMAGES

As shown by their definitions (1) and (2) in the crisp case, the notions of
upper and lower images are closely related to the ideas of existential and
universal quantifications, respectively. Moreover, all the elements in U have a
priori the same ‘‘importance’’ in these definitions. In this subsection we
propose softened versions of the notions of upper and lower images. For
instance we define the fuzzy set of elements of V that are in relation R with
all the important elements in A or the fuzzy set of elements of V that are in
relation R with at least some elements in A. First we present a general
framework where we deal with the introduction of degrees of importance in
fuzzy set union and intersection (to accommodate the definitions (4) and (6)).

2.3.1. Importance weighting

In Dubois and Prade [9], [10] the following weighting of the operations max
and min, used for defining fuzzy set union and intersection, is proposed. This
weighting is here extended to sup and inf operations. Let Fi (u) be a family
of fuzzy sets defined on ¥ and indexed by ueU and let w(u),vuel be
the a priori grade of importance of the element u in U, where it is assumed
that w(u)>0,vueU and that sup,_,w(u)=1. Then the weighted union
and intersection of the F(u)’s, denoted by Uiy F(4) and by Ny F(1),
respectively, are defined by

vveV, tcisﬁ?u?vum:vamsﬁi:v.tms?d (30)
uel

VoeVs My F(0)” = inf max(1-w(u), mrn()  (31)
ue
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Note that when U is finite and YueU, w(u) = 1, the expressions (30) and (31)
reduce to the usual union and intersection operations, i.€., to max , p Fan(v) and
to min,, p g, (v), respectively. When w(u) =0, the ?N.mw set F(u) is not at all
taken into account in the weighted union and intersection defined by (30) and
(31). The formula (30) expresses that the extent to i:.mnr v belongs to the
union of important F(u)’s [i.e., belongs to at least one _Etonﬁun m.ﬁc_u and
corresponds to a degree of intersection of the fuzzy set of F(u)'s to ﬁiﬁ.y v
belongs with the fuzzy set of important F(u)’s Enm_woa by the w(u)’s].
Similarly, formula (31) expresses that the extent to ir_n_.y v belongs to w?w
intersection of important F(u)’s [i.e., belongs to all the E..ﬁc:ma F(u) mm.
and corresponds to a degree of inclusion of the fuzzy set of important F(u)’s
in the fuzzy set of F(u)'s to which v belongs. See EE m.c_. a complete
.?msmnmsg and discussion of this weighting procedure, which is already :%&
for modeling degrees of importance in compound patterns for matching

i ; see [15]. . :
ﬁoﬂﬂwh n,”ﬁ nmsﬁn_mw._un the fuzzy set of elements of ¥ that are in relation R
with at least one important element in A, when A is an ordinary set by

VeV, .tmu?v = sup min(w(u), pe(u,v)) (32)

ue A

and when A is fuzzy by

vveV, pg(v)= mcwﬁi_t?v,f?u.tx?.cvv (33)

choosing * = min in (14). The fuzzy set of elements of V' that are in relation R
with all the important elements in A is defined, when A is an ordinary set, by

vveV, pp (v)=.inf max(1—w(u),pug(u, v)) (34)

ue A

and when A is a fuzzy by

VeV, g (v) = inf max(1— w(u), 1~ ma(u), na(u,v))  (35)

uel

choosing L = max in (21). Note that we have the fuzzy set inclusions
BxS B,. and Blc B* (36)

where By and B* are, respectively, defined by (21) (with L = max) and (14)
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(with * = min). Moreover, we have
B,.< B* (37)

_:oin_n.m that 3ueU, p, (u)=1="w(u), i.e., the fuzzy set defined by w is
:oﬁnaﬁnn on the subset of elements of U that fully belong to A4. Note that
letting W be the fuzzy set of important elements in U(p,, (1) = w(u)) B =

(ANW)DR and B,.=(ANW)W)R.
2.3.2. Numerical and fuzzy quantifiers

In the following we assume that U is finite; namely U= {u,,...,u,}. To
define the fuzzy set B(k) of elements of ¥, which are in _.o_mn_mﬂu: Ma ..H_E at
least k elements in A, we have to calculate the extent to which there exists a
subset of U with k elements such that each of them are in A4 (with a degree of
membership as high as possible) and are in relation R~' with an element v of
V' (also with a degree of relationship px (v, #) = g(u, v) as high as possible)
Let o denote any permutation of the elements in U. Then we have :

YvelV,
ko (v) = b H%MQENM? B r:.:A__.VuEF?m?qSY e (U0, ev:
(38)

using an expression similar to (21) with L =max and U finite. Indeed
B,k the characteristic function of the set of integers {1,..., k}, plays Em
EH.O».. :..n membership function of a subset of U with k.o_am:ona. the
maximization on the set of permutations expresses that we are looking _.o._. the
best subset of U whose elements are both in A and in relation R~ with v
As shown in E.m_ for a similar expression, the maximum in (38) is reached mom
Ew permutation & such that min(p 4(45)), pr(Uzay, V) 2 ==+ 2
.55?;?&3?:&:&3,..8. This is true more generally, changing [1, k)
into a fuzzy integer / with a nonincreasing membership function Q.m

1~ACH_ and p (i) 2 p,(i+1)). The fuzzy set I can be viewed mm.v,.m
importance weighting that can be allocated to the elements of U in any order
Then we have .

VeV, pgu(v)= _MmMaBmaT T EQV..E:AF%:%L. tr(Us) c:v

(39)
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Using another result shown in [10], [15], we have the following equivalent
representation of (39):

vveV, _FEJ?VH_Mﬂ..mMsnmh_?mQu.:m?msu,tx?ﬂc.cvv Ahov

with po(i)=1- p(i+1), i=1,m—1; po(m) =1 Q is an (absolute) fuzzy
quantifier [35] with a nondecreasing membership function that models a fuzzy
count of elements. B(I) is the fuzzy set of elements of ¥ that are in relation
R with a number, whose possible values are fuzzily restricted by Q, of
elements in 4. The expression (40) when A =U has been independently
suggested by Yager [30]. Thus for instance v can be considered as in relation
R with at least k elements in A to the degree min(p 4(Usxy)s Hr(¥acky> V)
applying (40) with I= [1, k] and then Q = [k, m]. Obviously, this degree is
equal to 0 when there are less than k elements in A with a positive degree of
membership. For k =1, i.e., I={1}, (40) reduces

tms?v = ﬁw%nm_:ﬁt;?v s er(u, .._vv

where we recognize (14) with * = min and U finite, which is satisfying. When
A is an ordinary set whose cardinality is k and I={1,..., k}, (40) reduces
to

ran(v) = ﬁﬁ pr(,v),

which is nothing but (18) or (21) when A is non fuzzy; i.e., we recover the
fuzzy set of elements in V' that are in relation R with all the elements in A,
which is natural.

3. APPLICATIONS TO APPROXIMATE REASONING

In the following two applications the notions of upper and lower images are
considered. First a dual view of the generalized modus ponens ([34], [6]) is
presented in the framework of a disjunctive interpretation. Then an application
to diagnostic systems is proposed, using a conjunctive interpretation.

3.1. A NEW VIEW OF THE GENERALIZED MODUS PONENS

Let us consider the rule ““if X is A then Y is B’’, where X and Y are
single-valued and take their value on the domains U and V, respectively; A
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and B are supposed to be normalized fuzzy sets defined on U and J
respectively. This rule may be interpreted in two different ways according to
whether B is viewed as the upper or lower image of A induced by a fuzzy

relation R. Thinking of B as an upper image leads us to look for the largest
relation R in the sense of (15) such that

A@RcB,

ie.,

VveV, supu,(u)opg(u,v)<pg(v) (41)

uel/

where © stands for a continuous triangular * norm or an operation * derived
from a continuous triangular co-norm in the sense of (24). Viewing B as a
lower image leads us to look for the smallest R [in the sense of (15)] such that

AXR2B,

ie.,

vveV, mbmt\_A:vOlthAtvathmAcv (42)

uel

where @— is defined, using (19), from the operation © considered in (41).
Inequalities, rather than equalities, appear in (41) and in (42) to guarantee the
existence of solutions, and since the fuzzy set B specified in the rule may not
be the smallest (resp. largest) set of possible values for Y that are possibly
(resp. necessarily) in relation R with the value of X.

The greatest solution of (41) is given by

vueU, vveV, pp(u,v)=p,(u)o—puy(v) & pyo.p(u,v) (43)

where ©— is defined by (19), whether © is a triangular norm * or its adjoint
*,

Proof. When © is a triangular norm, this result is well known from the
literature in fuzzy relations (e.g., [5], [6]). When © = ¥ the result is proved by
the same technique as when © is a triangular norm, namely (Sanchez [26]):

e if R is a solution of (41), RS Ao— B because generally RS Ao—

(A @ R)< Ao— B since R is a solution. The first inclusion is obtained
using the inequality @*— (a%*r)>r proved in the appendix, where
a=py(1), r=pp(u,v).
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e Ao— B is a solution of (41) due to the inequality a*(a*— b)<b
proved in the appendix. Q.E.D.

When A is an ordinary subset of U, (43) reduces to

_ ) ug(v) ifueAd (44)
e ik T if u¢ A
or if we prefer using (13), I'(u) = B if ue A and I'(u) = V otherwise.

The smallest solution of (42) is given by

vueU, VveV, pp(u,v) = p,(u) opg(v) (45)

whether @ is a triangular norm * or its adjoint *.

Proof. Equation (42) can be written A (¥) RS B. Bt AW R= AR,
where (@) is a sup— ® composition, when (¥) is an inf— ©— composition,
© being the adjoint of © . From the previous proof we know that the greatest
solution of equation A @ RS B is pgp(u,v)= pa(u) o= (1- .enw.?b. This
corresponds to taking the opposite of the representation of Em H.Ea: if Xis A
then Y is not B”’ to model the rule ““if X is A then Y is B.”” Hence the
least solution of (42) is .:x_ﬁ:h v)=1—(p4(u) 01— pg(v))) = py(u) oug(v)

where @ is the adjoint of ©. But because the adjoint property is involutive
(see appendix), o=o0. Q.E.D.

When A is an ordinary subset, (45) reduces to

vvelV, txﬁx,cvu*nw?v ”MHMM (46)

or in terms of I',T'(#) = B if ue A and I'(u) = otherwise. ..ﬂ_m %.:.m_.o:nm
between the two interpretations of the rule, in terms of wsv:nmccn.o_. in terms
of conjunction, is particularly clear when A is nonfuzzy, i.e., mcﬁﬁnﬁnw (44)
vs. (46). A generalized deductive inference can be performed in both cases.

The so-called generalized modus ponens, introduced by Zadeh [34], corre-
sponds to the following pattern of inference:

if Xis A, then Y is B
Xis A

Yis B
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where B’ is to be computed from A’, A, and B. Using the upper image

interpretation we obtain (see Dubois and Prade [6] and Trillas and Valverde
[11]).

vveV, pg(v)= Mumtm_?v *(ma(u)r— #s(v)) (47)

using (14) and (43). Clearly, we can also use % and *— instead of * and *
respectively. For the sake of brevity we shall write (47) as

Bi=A @« (A*> B).
With the lower image interpretation, we obtain, using (18) and (45)

VeV, pg = inf p(u)*— (ny(u)*pg(v)) (48)

uel

which will be written symbolically as

5= A (W4 (A*B)

We can also use #— and # instead of *— and * in (48). It can be easily
checked that Bj and Bj bracket B. Namely, we have

vA', vA, A@+(A*B)SBc A @+(A*— B) (49)

Proof. Since 1%b=1%b=b,1*> b=1%> b= b, we have

#py(v) < inf () ¥ (1%pp(v)) = pg(v)

provided that A’ is normalized. The other inclusion in (49) is also easy to
prove when A’ is normalized and is well known [61.” B

Inference model (48) was first proposed by DiNola et al. [4] when *=
minimum. Noticeable properties of (47) are the following ([6], [8]):

AcA=B =B (50)

A=A=B=V (51)

VeV, ug(v) > sup py(u)*(u,(u)*— 0) (52)
uel
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(50) is easy to see since A'S A= x_‘@.ll*l, B)c A@«(A*—> B)
and a*(a*— b) < b if * is continuous as well as a*[(1— a) L b] < b. Then
A’ @) «(A*— B) < B, which yields the result, taking into account (49). (51)
holds provided that 3ug, p4(4y) = 0; indeed

m:wfltm?vv*?m?w*l th.c:

2 (1= pa(uo)) * (na(up) *—= up(v)) =1

owing to 0*— b=0%— b=1. (52) is obvious. Note that a*— 0 .”mom.n.nm a
negation operation in the multiple-valued logic based on *. Thus (52) E&mwﬂnm
that any value in V' becomes somewhat possible for Y as soon as there exists a
possible value for X (in A’) that does not belong at m: to A or .i_..omn degree
of membership to A is small. For instance for * = min, (52) gives ug.(v) =
I(s( A); A" where s(.A) denotes the support of A defined by s(A) = ue U,
p4(u) >0} and where II is a possibility measure (see 2.2.2 for the notation).
See [6] and [8] for details.
Analogous properties can be proved for (48). Namely

AcA=>B,=B (53)

A= A=B)= (54)

vveV, pg(v) < inf py(u)*— pa(u) - (59)
uely

To prove (53), note that A’'S A= A'®) «(A*B)2 A @..._E...S and
ax— (a*b)=b as well as (1—a) L (a*xb)z=b if * is continucus. Then

A’ (W) x(A*B)2 B, which yields the result owing to (49). (54) is easy to
prove as soon as 3ug, p,(uy) =0, since

inf (1— () *~ (pa(#) *p5(v))

< T = .ﬁfﬁ:ovv vy Tfﬁtcv *tw?vv =0

owing to 1*— 0 =1%— 0=0. (55) is a straightforward consequence of (48).
The upper bound of ug(v) is a degree of inclusion of A" into A4.
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What is remarkable is that the lower bound of #tg;(v) in (52) and the upper
bound of p p;(v) in (55) convey information of the same nature. Indeed, the
complement to 1 of the lower bound of p 5; 1n (52) is also a degree of inclusion
of A’ into A, since 1—[a’*(a*— 0)] can be viewed as a multiple-valued
logic implication (¢*— 0 being a negation). According to the choice made * or
%, these lower and upper bounds may be more or less drastic. For instance, for
*=min, the lower bound of B is sup, pa(u)=1— N(s(A); A),
whereas the upper bound of B} is given by

pAlu}=0

A_ 1 H5f-Ac A
0 otherwise

(provided that inf,_;u,(#) = 0. Contrastedly, with a*b = max(0,a+ b—-1)
=a*b, then a*— b=min(l,1— a+ b) = a*— b is Lukasiewicz’ implica-
tion and the lower bound of B is sup,,ymax(0, p . (4) — p (1)), whereas the
upper bound of B; is equal to 1—sup,, ., max(0, #4-(4) — p 4(1)); in this case
the information conveyed by the lower and the upper bound is identical.

In conclusion, B} = A’ @ 4 (A*— B), is the set of values in V that are in
relation R with at least one value in A’, where R represents the rule ‘if X is
A, then Y is B’. Bj is larger or equal to B on the support of B; pp(v) is
constant and equal to the lower bound in (52) outside this support. This
corresponds to the possibility that ¥ remains indeterminate if there exists a
possibility of finding a value in U that belongs more to A’ than to A.

5 =4 @ *( A* B) restricts the values in V that are certainly in relation (in
the sense of the rule ““if X is A then Y is B’’) with the value X, i.e., with
all values in U more or less compatible with A.”” When A’ is not perfectly
included in A, the possibility of finding a set of values in V certainly in
relation with the value of X decreases and then B; is no longer normalized
and may become empty. In case of * = min, B, =( as soon as A’ dA. For
other operations * the decreasing of B; from B to @ is gradual.

Obviously, the upper image approach to the generalized modus ponens,
which leads to (47), is easy to understand and to use. The rule “‘if X is A
then Y is B’ defines a set of possible values (which are not a priori
forbidden) for Y given a possible value of X. Then, knowing that the possible
values of X are in A’, the corresponding fuzzy set of possible values for Y
can be calculated. In the lower image approach, which leads to (48), the
interpretation of the rule is slightly different. B is then a set of values
associated with all the values in A, and there is no value associated with any
value outside A. Knowing that the value of X is restricted by A’, the fuzzy
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set of possible values for Y that are associated with all the possible <.E=nm for
X is then obtained. The existence of two dual extensions leading to a
generalized modus ponens is worth noticing, as well as the two mnﬁn_u_.oﬁzc:.w
of the if-then rule. Besides, the representation of a rule *‘if X is A4 then Y is
B’’ in terms of a Cartesian product A * B defined by (45) has been nxﬁum?&.w
used, in place of the implication-based representation (43), in fuzzy logic

controllers [20] to compute B’ as h.@am__m A=*B). This m_.uvwomnr remains
heuristic, since A*B which is included in A*— B (owing to V(a, b)e
[0,1]%, a*b < a*— b) is not the largest solution of (41).

Remark. In case of several rules *“if X is A’ then Y is B”’, i=1,m, B,
and B; would be computed respectively as

Bj = \_‘@*A N A'*- m..v

i=1,m

and
B= 4@« | A'xB)

i=1,m

where the intersection (| and the union |J are _.nm_uoon‘a_o@ defined by means
of min and max operations, since Aix— Bfand A'* B’ are the largest and the
smallest solutions of (41) and (42) respectively.

2.2. ABDUCTIVE REASONING USING (WEIGHTED) UPPER
AND LOWER IMAGES

A diagnosis problem can be formalized in the following way. See [26] for
instance. Let V' ={v,,...,v,} be a finite set of disorders and U=
{u,...,u,} be a finite set of manifestations. Let R be a relation n_nm_._ﬂ.u on
U X V that captures the intuitive notion of causal association between disor-
ders and manifestations. Let I' be the multiple-valued mapping induced by R.
I' '(v) ={ueU, (u,v)eR} is the set of manifestations associated with the
disorder v. More generally, R will be a fuzzy relation and I' " !(v) a fuzzy .mor
Then I'!(v) will be the fuzzy set of manifestations that more or less certainly
occur when disorder v is present, and I'(u), defined by E.E?v = pgp(u,v),
will be the fuzzy set of disorders that are more or less possible when
manifestation # occurs. Let A be a subset of U, corresponding to a set of
observed manifestations. .4 may also be a fuzzy set. Then p,(u) can be
interpreted as the certainty of the presence of manifestation « or as a relative -
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estimate of the intensity of manifestation u if  is a matter of degree (e.g.,
fever). Diagnosis problems have been considered for a long time in the fuzzy
set literature (e.g., Sanchez [26], Tsukamoto and Terano [28]). The approach
that is usually proposed is the following one. The (fuzzy) set of manifestations
A is produced by an unknown set of disorders B through R™!, which
associates the set of more or less certain manifestations with a disorder v (with
#p-1(v, 4) = pp(u,v)). This can be written as

B@s«R '= 4. (56)

The composition () « is used since A4 is the set of manifestations that are in
relation R~" with at least one disorder in B. Equation (56) may have no
solution; see [26]. In that case we may look for the best partial explanation of
the manifestations, i.e., for the largest subset B such that

B@«R 'c A. (57)
Then, the largest solution of (57), in the sense of inclusion, is given by

<:m_\» tb?vnhwﬁtal?.:v*l palu) (58)

in the general case; see [26], [5]. In (58), we recognize a lower inverse image
in the sense of subsection 2.2.3. Note that B is also the largest solution of (56)
when this equation has (a) solution(s). When A4 and R are an ordinary subset
and an ordinary relation, respectively, (58) can be written as

WH?mFﬂl_?vmi. (59)

Thus, B gathers all the disorders whose manifestations are included in A.
Besides when (56) has (a) solution(s) it is interesting to lock for the smallest
solution in the sense of inclusion. The smallest solution of (57) is obviously the
empty set and is of no interest. The set of solutions of (56), when it is not
empty, may have no unique smallest solution. The reader is referred to [26]
(see also [5]) for an algorithm that yields these smallest solutions. The smallest
solution B,, when it is unique, is particularly interesting since it is the smallest
set of disorders that explains all the manifestations in A. However, it is easy
to understand that there may exist several minimal sets of disorders that cause
all the manifestations in 4 and that are not comparable with respect to set
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inclusion. In the general case, it is interesting to look for these &.mnnonﬁ
minimum sets. They can be viewed as several distinct possible nwn_u_nuwm_on..,,. of
the symptom set A. Fuzzy diagnosis methods [26], [28] and their applications
[1,2] basically compute greatest and least solutions to (57). .

By contrast, B« defined by (18) reduces, when A and R are an ordinary
subset and an ordinary relation, to

Byx={veV, AcT '(v)}

Thus, a disorder that belongs to By produces all the manifestations in A and
perhaps some others. In the same case, B* defined by (14) reduces to

B*={veV, ANT'(v) #0}.

B* gathers the disorders that explain at least a part of A. Ummo.naonm in B* or
in By may produce manifestations outside of A. moég.o_.. \_ is a set of
observed manifestations and depending on the case, a manifestation n.um. does
not belong to A may either be absent or present _u.E not m_umn.don (for instance
because special tests are needed to determine it). B .m:n By are worth
considering, especially when (56) has no solution Cw is not m.._mmo_oa. for
explaining all the manifestations in A). Bx is useful if we .Hcow mo_..m unique
cause of a set of manifestations provided that such a cause nEmz.... A disorder in
By, when this set is not empty, offers a ‘‘parsimonious’’ covering (see .Womm_m
et al. [24]) of all manifestations in A, since a unique cause is the m_-Eu._omﬁ
possible explanation. In any case, B™ includes all the manifestations that, in a
group or separately, are able to cause A. It is easy to prove that . °

B*2 B (60)

in the general case, provided that I'"'(v) is normalized (i.e., Vv, 3u,
u,v)=1). .
txroawofdw. the weighted upper and lower images introduced in 2.3 can be
useful in discussing a diagnosis problem. Indeed, we can, for mm_mﬁbom. ._oow for
a disorder that would explain all the important manifestations, using B,.
(defined by (35)); or, if the manifestations in A are of equal importance, look
for a disorder that would explain af least most of them (when Bx .H@Y
Besides, the notion of lower image can play an important role if we m._mo
discuss the prescriptions for curing the disorders. Let § g m.Q:NnE relation
defined on V' X W where W is the set of all possible prescriptions. Let BS V
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then a*c< b*d, and (iv) 1*a= a. The greatest triangular norm is min and

be a set of disorders that are possibly present. Then the subset of W, defined
: o the least one is defined by

as the lower image of B via S, i.e., Cx= B(¥) S, gathers a set of possible
prescriptions that separately are good for any disorder in B. Thus choosing a _ y
prescription in Cx, provided it is not empty, minimizes the consequences of m a ifb=1
the uncertainty concerning the actual disorder. _._ a*b=T,(a,b)=1b ifa= 1

_ 0, otherwise

4. CONCLUSION . .
thus we always have T, (a, b) < a* b < min(a, b). Other noticeable triangular

=g * b = max(0, @ + b — 1); moreover, we have
In this paper, we have provided a detailed account of the compositional rule norms are a*b=a-b and a*b (

of inference with fuzzy relations, based on recent results in the algebra of
triangular norms and the solution of fuzzy relational equations. However we T,(a,b) <max(0,a+b-1)<a b< min(a, b).
have tried to take a step inside the semantics of the various ways of projecting
a fuzzy set from one space into another through a fuzzy relation. Two main

lines of applications of these techniques have been emphasized: deductive By duality, each triangular norm * is associated with a triangular conorm
inference with imprecise or vague knowledge on the one hand; and abductive _ defined by
inference with graded causal knowledge on the other hand. They correspond to {
two different views (resp.: disjunctive and conjunctive) of a fuzzy set. : - aLb=1-(1-a)*(1- D).
Strangely enough, although there has been much activity around fuzzy
deductive inference in the last 10 years, research on abductive reasoning via b 3 P .
fuzzy relation is almost extinct. Significantly, no chapter on this B_Mo is . Triangular norms are conjunction operators 4_&8“@ Ba=ters Sin el uncion
proposed in the recent monograph, albeit excellent, by Di Nola et al. [5] on operators; the main co-norms are, in increasing order,
fuzzy relations, despite the fact that originally, first results in fuzzy relational |
equations by Sanchez [25] [26] were motivated by applications to diagnosis. By | a ifb=0
contrast, the usefulness of fuzzy relational equations for deductive reasoning . max(a,b)<a+b-a'b< min(l,a+ b)< {b ifa=0

under fuzziness has been pointed out more recently by Di Nola et al. [4],
Trillas and Valverde [11], and the authors [22, 6].

This paper has studied the properties and the meaning of the dual form of ! .
the generalized modus ponens. It has also indicated how to interpret the results Let © be a two-place function from [0, 1] x [0, 1] to mo.».: :omﬁ_nh.“mﬂ_mh”w
of fuzzy-relation-based diagnosis methods that have been obtained in the past, with respect to its second argument. Let 2 denote the transformation
as well as new ways of approaching this problem. There is a need to revive | by
these diagnosis methods, considering the current activity with respect to m
abductive reasoning in artificial intelligence, as exemplified by the relational
models of Reggia et al. [24]. In the future, we plan to investigate the links
between fuzzy relational abductive reasoning and current symbolic or proba- _
bilistic models of diagnosis in artificial intelligence.

1 otherwise.

v(a,b)e[0,1]?, a®(o)b=sup{se[0,1],a os< b}

and &% be the transformation defined by

APPENDIX v(a,b)e[0,1]?, a¥(0)b=1-(ao(1-b)).

A triangular norm * [27] is a two-place function from [0, 1] [0, 1] to [0, 1]
such that (i) a*b= b*a, (i) a*(b*c) =(a*b)*c, (iii) if a< b and c<d,

- .

Then the operations *,*—, % 1 introduced in the paper are related together
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according to the following diagram: S
—~ +
conjunction i implication (19) o .M_ .M, S aw
a*b —> a*— b 1% I e T
By &2 o =
i/ g . |8
% s iz =
o
& 8
41§ _ i
(1—a)Lb < 2 a%b 1 : =
implication (pseudo)-conjunction m S E
(adjoint)
where * is a continuous triangular norm. Indeed, the adjoint * can be obtained Q_. M L_u i =
I
as: o 0
e |
A < g
a%b=1-(a*— (1- b)) Tlesls s S|
. - b et T.U_. -
qum_ﬁ?m?‘:,a*aﬂHfﬁ m .m.u\
= inf{(1~- 5)€[0,1], a*s<1- b} i ¥
— o mz
=inf{te[0,1],(1-a) L1 > b} gl o|%
Let us calculate Z (%). _ 1 Mm F s ._nw |
* Py e ......“1\ =] 1..“_
a%??ﬁ%ﬁ?m—o,:.am.«m.i _ 2 m ﬂm\
— e | .
umniwm?.:L:E«m?,:.il&FNWLM.& b .
Observe that vr, {t€[0, 1], (1~ @) L ¢ > r} #@; indeed =1 belongs to this (|
set owing to V¢, ¢ L 1= 1. Since, obviously, 3¢ < b such that (l—a)Let>=(1 .._.._u.
—a) L b, the supremum in the preceding expression is reached for an r at _. * = o
least equal to (1~ @) L b. Assume that the supremum is reached for F > (1- o S
a) L b; then it means that 37,< & such that (l-a)yLty2F>(1~-a)Lb: =1 < m
since owing to the continuity of * and consequently of L, the greatest lower = =

bound of the set {€[0,1], (1—a) L t>r} belongs to this set. This contradicts
the nondecreasingness of L. Hence an A®b=(-a)Lb. Obviously, &%
is involutive.

The diagram does not apply for a discontinuous triangular norm such as T,,,.
Note that only a part of the characteristic properties of triangular norms are
used in the preceding proof.

The following table gives the corresponding operations for the main contin-
uous triangular norms.
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Note that the adjoint property is involutive, i.e., mu.m\n%ﬂméﬂ

LR o.m\o #(0)=0, whether @ =* or *,
A continuous triangular norm * satisfies the following inequalities [5]:

a*(a*— b)< b (A1)
ax— (a*b) = b (A2)

ProrosiTioN. (ATl) and (A2) remain valid when * is changed into its

adjoint *, and *— into ¥— .

Proof.

(A1) & a*(a*— (1-b))<1-b
®(1—a)L(a*b)>b (definition of % and L)
& a*— (a*b) > b which is (A2) for * and ¥—

(A2) & ax— (a*(1- b)) 21-b
¢ a*((1-a)Lb)<b (definition of * and L)
# a*(a*— b) < b which is (A1) for % and *—
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