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Abstract - In advanced motor control systems, an accurate 

knowledge of motor parameters is essential in order to achieve 

good performances. Some of these parameters, such as stator 

resistances, are sometimes given by constructors, but they vary 

according to the operating conditions. This paper presents and 

compares two parameter identification methods of an actuator 

used in haptic interfaces which, in this case, is a Permanent 

Magnet Synchronous Machine (PMSM). Using these methods, 

the electrical parameters of the PMSM can be determined during 

different operating conditions. Physical parameters estimation of 

a dynamic 4-parameter model is performed on the one hand, 

using an Output Error identification method based on a Non 

Linear Programming algorithm and on the other hand,  using an 

identification method based on Least-Squares techniques and 

inverse models. 

I. INTRODUCTION 

 A haptic interface is a computer device, which enables its 

user to interact with the image in a virtual reality application 

or model, through the sense of touch. Users can experience 

feelings of touch and movement thanks to this technology that 

optimizes human communication with machines and 

intensifies a human's immersion in a virtual world. Such 

systems are in growing demands for applications such as 

mobile robotics, force feedback remote-control systems for 

extreme environment, man-machine interaction and training in 

professional operating procedures [1][2]. They consist of an 

articulated mechanical structure with motors and position 

sensors, as well as embedded electronics. The user holds the 

end-point of the structure in his hand, and can move it around, 

both in the real and in the virtual world on the computer 

screen. Whenever his virtual hand makes contact with a digital 

object, a force value is sent to the motors, which simulates a 

real contact. 

 The proposed system (Fig. 1) is based on brushless 

Permanent Magnet Synchronous Machines (PMSM). In order 

to obtain a torque regulation with the best dynamic behavior, 

the best stiffness and transparency of the system [3] and 

without ripples, an accurate dynamic model of the system and 

the knowledge of the electrical parameters values are required.  
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Fig. 1.  Experimental single degree of freedom haptic interface. 

 

 The paper is divided as follows. Section II presents the 

dynamic model of the actuator (PMSM) used in the studied 

haptic interface. Section III describes the principle of the two 

identification methods used to estimate the electrical 

parameters of the PMSM: Least Squares techniques and 

inverse models on the one hand and Output Error method and 

Marquardt algorithm on the other hand. Section IV compares 

both methods in simulation and presents parameter estimation 

results in deterministic and stochastic cases. Section V 

presents the experimental protocol for data measurements as 

well as the experimental estimation results obtained with the 

two identification methods. 

II. ELECTRICAL MODEL OF THE ACTUATOR 

 The PMSM electrical model in the Park synchronous 

reference frame [4] is described in (1) and (2). Vd, Vq, id and iq 

are respectively the direct and quadrature axis voltage and 

current components and φf is the permanent magnet flux. 

 The synchronous (d, q) reference frame is the natural 

choice for the present analysis, because all periodic quantities 



are constant in steady state and the model is linear at constant 

speed. 

 The electrical PMSM model in (d, q) reference frame is 

given by the following equations: 
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 The electrical parameters to identify are the stator 

windings resistance Rs, the stator direct and quadrature axis 

inductances Ld and Lq and the permanent flux φf. 

III. TWO IDENTIFICATION METHODS PRINCIPLE 

A. Least-squares and inverse model method 

1. Principle 

 Generally, the ordinary Least-Squares (L.S) technique is 

used to estimate the minimum dynamic parameters solving an 

overdetermined linear system obtained from a sampling of the 

dynamic electrical model, along a given trajectory (z,z,z)� ��  [5] 

[6], where z is a rx2 vector, which represents here the current 

vector [id iq]
T
 and (z,z)� ��  its derivatives. 

 θ is the minimum parameter vector to identify, Y the 

measurements vector, W the observation matrix (or regressor) 

and ε the vector of input errors. The system is described as 

follows: 

 εθ +⋅= WY  (3) 

 The electrical model of the PMSM given in (2) can be 

written as the following linear inverse model: 

 θ⋅= WY  (4) 

where:  
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 The L.S solution θ̂  minimizes the 2-norm of the input 

errors vector ε. The unicity of θ̂  depends on the rank of the 

observation matrix W. 

 W is a rxK full rank and well conditioned matrix, obtained 

by tracking an exciting trajectory, where K is the number of 

samples. 

 Standard deviations εσ  are estimated using classical and 

simple results from statistics. The matrix W is supposed 

deterministic and ε a zero-mean additive independent noise, 

with a standard deviation such as: 

 ( ) r
T IEC 2

εεε σεε ==  (6) 

where E is the expectation operator and Ir, the rxr identity 

matrix. An unbiased estimation of εσ  is: 
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 The covariance matrix of the standard deviation is 

calculated as follows: 

 ( )( ) ( ) 12
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where 
iii

C
θθθ

σ ˆˆ
2
ˆ =  is the i

th
 diagonal coefficient of 

θθ ˆˆC . 

 
iθ̂

σ represents the standard deviation of the parameter θi. 

It allows the definition of a confidence interval of the 

parameter estimation, equal for instance to ±3.
iθ̂

σ . 

 However, in practice, W is not deterministic. This 

problem can be solved by filtering the measurement matrix Y 

and the columns of the observation matrix W as described in 

[7] [8].  

2. Data filtering  

 Vectors Y and z are samples measured during an 

experimental test. The derivatives z�  and z��  are obtained 

without phase shift using a centered finite difference of the 

vector z. The choice of the cut-off frequency ωf of the lowpass 

filter is very sensitive because the filtered data ( ), ,f f fz z z� ��  

must be equal to the vector ( ), ,z z z� ��  in the range [0, ]
f

ω , in 

order to avoid distortion in the dynamic regressor. The filter 

must have a flat amplitude characteristic without phase shift in 

the range [0, ]
f

ω , with the rule of thumb 10*
f dyn

ω ω> , 

where ωdyn represents the dynamic frequency of the system. 

 Considering an off-line identification, it is easily achieved 

with a non-causal zero-phase digital filter by processing the 

input data through an IIR lowpass butterworth filter in both 

the forward and reverse direction. The measurement vector Y 

is also filtered, thus, a new filtered linear system is obtained: 

 fff WY εθ +⋅=  (9) 

 As there is no more signal in the range [ , / 2]
f s

ω ω , where 

ωs is the sampling frequency, vector Yf and matrix Wf are 

resampled at a lower rate after lowpass filtering, keeping one 

sample over nd samples, in order to obtain the final system to  

identify: 

 fdfdfd WY εθ +⋅=  (10) 



with  0.8
2.

s

d

f

n
ω

ω
=  (11) 

 To sum up, the L.S and inverse model method presents 

some advantages: the method is simple and is not time 

consuming since the convergence is obtained after only one 

iteration. However, the model to identify must be linear in 

respect to parameters θ. 

 As generally, physical systems can be described by 

differential equations, a solution to make the model linear in 

respect to parameters is to use inverse model and to calculate 

the derivatives of the measured signals. Thus, the integration 

of the differential equations is of no use and the problem of 

the initial conditions of states and parameters does not exist. 

 However, the derivatives must be obtained without phase 

shift by using for instance a central algorithm differentiation 

of the vector z. Knowing that z may be disturbed by high 

frequency noises, which will be amplified during the 

derivation, a lowpass filter with an order greater than 2, is 

used in order to eliminate these noises, as described in the 

previous section. 

 Thus, using inverse model and LS technique seems to be 

sensitive to measurement noises and the estimation results 

may be biased. The bias may be amplified if the filtering 

procedure is not suitable. Moreover the L.S method is known 

to be sensitive to modelling error. 

B. Output Error method 

1. Model of the system 

Let’s consider a general state-space representation: 

 ( ), ,x g x uθ=�  (12) 

 ( )uxfy ,,θ=  (13) 

 A SISO (Single Input Single Output) system is 

considered afterwards to simplify the writing of equations. 

u(t) is the input and a predicted output ( )tŷ  is obtained after 

numerical simulation of the state-space model: 

 ( ) ( )( )θ̂,ˆ tufty =  (14) 

where θ̂  is an estimation of θ . 

 The PMSM state-space model is given by the following 

equations: 

 [ ] [ ][ ] [ ][ ]UBXAX
dt

d
.. +=  (15) 
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and where ( ) t
fqd pVVU ],[][ φ⋅Ω⋅−= and 

t
qd iiX ],[][ = . 

2. Minimisation of the quadratic criterion 

 Let’s assume the we have measured K values of the 

output ( )ty* , such as, *, kk yu  are respectively the k
th

 sample 

of the system input and output, with eTkt =  and where Te is 

the sampling period. 

 The output prediction error is defined as: 

 ( ) ( ) ( )( )θε ˆ,ˆ* tuytyt −=  (16) 

The optimal value of θ̂  is obtained by minimisation of 

the following quadratic criterion : 

 ( )( )
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 Because ( )tŷ  is non linear in respect to θ̂ , a Non Linear 

Programming (NLP) technique is used to estimate iteratively 

θ̂ : 
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 This algorithm, known as Levenberg-Marquardt 

algorithm [9], insures robust convergence, even with a bad 

initialisation of θ̂ . 

 Fundamentally, this technique is based on the calculation 

of gradient and hessian, which depend on the numerical 

integration of the sensitivity functions 
i,k θσ , which are 

equivalent to the regressor in the linear case [10]. 

 So the Output Error method [11] is interesting because: 

- no hypothesis is done about the linearity of the model. 

- no data filtering procedure is necessary since the 

derivatives of the vector z are not calculated. 
- the parameter estimation is not biased in open loop. 
- the estimation is slightly disturbed by modeling error. 

 On the other hand, it presents some drawbacks: 

- the computation volume is important because of the 

sensitivity functions calculations. 

- the algorithm needs an initialization set point of the 

parameter vector θ̂ . 

- since the method is iterative, the convergence time is 

longer than for the LS method, except when the initial 

parameter vector is very close to the optimum. 

- and there may be secondary optima. 



IV. COMPARISON OF THE TWO IDENTIFICATION METHODS 

IN SIMULATION 

 In practice, the self-controlled PMSM is fed by a three-

phase Voltage Source Inverter (VSI). The voltages applied to 

the motor are created using the Space Vector Modulation 

technique, which controls the on and off cycles of the power 

inverter switches to vary the magnitude of motor voltages. 

 Concerning the identification protocol, as the 

experimental bench has no voltages sensors, voltages 

references will substitute for voltages measures.  So as to 

evaluate in simulation the impact of replacing measured 

voltages Vd, Vq by their references on the parameter estimation 

results given by the two identification methods, the voltage 

inverter will be first neglected and modelled by a simple gain, 

G. Then the parameter estimation results will be compared 

with those obtained by introducing the Space Vector 

Modulation strategy in the simulation. 

 In a second time, so as to study the parameter estimation 

accuracy in stochastic case, a zero-mean independent noise 

will be added to the outputs of the system, which are 

respectively the d and q currents. 

 Square voltages waveforms have been chosen and applied 

as voltages references because it allows a good excitation of 

all the electrical parameters of the PMSM. Thus vector di
�  and 

qi
�  are derived from the measured current vector id and iq and 

are filtered as described in section III. A. 2. 

A. Study in deterministic case 

 First of all, the voltage source inverter is neglected and 

modelled by a simple gain G. The identification results 

obtained with the Output Error method then with LS and 

inverse model method are given respectively in Table I. 

 In the deterministic case, the parameter estimation results 

obtained with the Marquardt algorithm or LS and inverse 

model method are very close to each other and converge to the 

exact values. 

TABLE I 

PARAMETERS ESTIMATION RESULTS IN THE DETERMINISTIC CASE 

Parameters Exact values Marquardt 
Least-Squares/ 

inverse model 

Rs (Ω) 0.65 0.651 0.649 

Ld (H) 2.55e-4 2.49e-4 2.55e-4 

Lq (H) 2.55e-4 2.49e-4 2.55e-4 

φf (Wb) 0.027 0.027 0.027 

 Fig. 2 compares the estimated currents îd and îq obtained 

with the Marquardt algorithm with the real ones and gives the 

estimation error for each current component. 

 Fig. 3 shows the square waveform of the voltages Vd and 

Vq references chosen as the identification trajectory and 

compares the estimated voltages Vd and Vq obtained with the 

L.S method and inverse model with their references. 

  The voltage source inverter is not neglected anymore and 

the control of the inverter by the Space Vector Modulation 

technique is introduced in the simulation of the system. 

 
Fig. 2.  Measured and estimated currents id and iq with Marquardt algorithm 

and current estimation errors. 
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Fig. 3.  Reference and estimated voltages Vd, Vq with LS method 

and voltage estimation errors. 

 Table II sums up the estimation results. It can be seen that 

a bias is introduced on the parameter estimations for the 

Marquardt algorithm as well as for the L.S method, since a 

modelling error appears because of the use for the 

identification, of the reference voltages instead of the real 

voltages applied to the stator windings of the PMSM. 

However the estimation bias is higher for the inductances Ld 

and Lq than for the other parameters and the bias is slightly 

more important for the L.S method than for the Marquardt 

algorithm. 

 Fig. 4 and Fig. 5 present the same characteristics as Fig. 2 

and 3. They show that the modelling error appears in the 

currents and voltages estimation errors. 

TABLE II 

PARAMETERS ESTIMATION RESULTS AFTER VSI INTRODUCTION 

Parameters Exact values Marquardt 
Least-Squares/ 

inverse model 

Rs (Ω) 0.65 0.6436 0.6394 

Ld (H) 2.55e-4 2.33e-4 2.14e-4 

Lq (H) 2.55e-4 2.38e-4 2.30e-4 

φf (Wb) 0.027 0.0269 0.0271 



Fig. 4.  Measured and estimated currents id and iq with Marquardt algorithm 

and current estimation errors. 
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Fig. 5.  Reference and estimated voltages Vd, Vq with LS method 

and voltage estimation errors. 

B. Study in stochastic case 

 The voltage source inverter controlled by the Space Vector 

Modulation technique is not neglected anymore and a zero-

mean independent measurement noise is added to the currents 

measures. All the parameter estimation results are then given 

with a confidence interval equal to ±3
iθ

σ ˆ . 

 The Signal/Noise ratio has been chosen equal to 100. The 

identification results obtained with the Marquardt algorithm 

and with the LS and inverse model method are given in Table 

III. 
 

TABLE III 

PARAMETERS ESTIMATION RESULTS AFTER THE INTRODUCTION OF THE VSI 

AND IN THE STOCHASTIC CASE 

Parameter 
Exact 

values 
Marquardt ±3

iθ̂
σ  Least-

Squares 
±3

iθ
σ ˆ  

Rs (Ω) 0.65 0.644 ±1.76e-3 0.636 3.69e-3 

Ld (H) 2.55e-4 2.43e-4 ±1.80e-5 1.14e-4 1.81e-5 

Lq (H) 2.55e-4 2.43e-3 ±0.93e-5 1.937e-4 1.15e-5 

φφφφf (Wb) 0.027 0.0268 ±1.45e-4 0.0277 2.45e-4 

 

 
Fig. 6.  Measured and estimated currents id and iq with Marquardt algorithm 

and current estimation errors for S/N = 100. 
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Fig. 7.  Reference and estimated voltages Vd, Vq with LS method 

and voltage estimation errors for S/N=100. 

 Table III shows that the estimation results obtained with 

the Marquardt algorithm are less biased by the measurement 

noise than those obtained with the L.S and inverse model 

method, especially for the estimation of Ld and Lq. 

 Fig.6 compares the estimated currents îd and îq obtained 

with the Marquardt algorithm with the real ones, whereas 

Fig.7 compares the estimated voltages Vd and Vq obtained with 

the L.S and inverse model method with their references. The 

current and voltage estimation errors contain not only error 

modelling but also the zero-mean independent measurement 

noise. 

V. COMPARISON OF THE TWO IDENTIFICATION METHODS 

IN EXPERIMENTAL CASE 

 The PMSM is connected to an incremental encoder to 

sense rotor position. A TMS320LF2407 Digital Signal 

Processor (DSP) allows the self-control of the motor. Two 

shunt resistances sense stator currents. The real direct and 

quadrature currents are obtained by measuring two phase 

currents (the 3-phase currents are considered balanced), the 

rotor position, and applying Park transformation. 



 The voltage applied to the motor is created using the 

Space Vector Modulation technique but only (d, q) reference 

voltages references are used for the identification procedure. 

 The identification of the electrical parameters of the 

PMSM is obtained experimentaly after the acquisition of the 

currents on d and q axis and of the filtered rotor speed with a 

sampling period of 60 µs. The derivatives of the currents are 

caculated by centered finite difference of the measured 

currents. The measures are filtered by a lowpass filter with a 

cut-off frequency ten times higher than the dynamics of the 

system. 

 Table IV presents the optimum of the parameter vector 

obtained with the Marquardt algorithm and LS method. The 

estimated values are compared with the values given by the 

constructor of the PMSM. 

TABLE IV 

PARAMETER ESTIMATION RESULTS IN THE EXPERIMENTAL CASE 

Parameter 
Constructor 

values 
Marquardt ±3

iθ
σ

ˆ
 Least-

Squares 
±3

iθ̂
σ  

Rs (Ω) 0.65 0.835 2.70e-3 0.8258 5.51e-3 

Ld (H) 2.55e-4 3.73e-4 1.71e-5 2.84e-4 1.94e-5 

Lq (H) 2.55e-4 3.14e-4 1.62e-5 2.71e-4 2.11e-5 

φφφφf (Wb) 0.027 0.0213 4.49e-4 0.0211 5.77e-4 

 Marquardt algorithm and LS method lead to the Rs and φf 

estimations which are very close to their nominal values, but 

to rather different estimations of the inductances Ld and Lq. LS 

and inverse model method gives Ld and Lq estimations closer 

to the values given by the constructor of the PMSM. 

 Fig. 8 and Fig. 9, through the estimated currents and the 

estimated voltages, show that they fit very well to respectively 

the measured currents and the reference voltages. Thus these 

results prove the effectiveness of the two methods. 

VI. CONCLUSION 

 This study allows the comparison of two identification 

methods applied to the estimation of the electrical parameters 

of the PMSM used as actuator for a haptic interface. These 

identification methods rely on the minimisation of the input 

error for the LS method and of the output error for the 

Marquardt algorithm. 

 The simulation study shows that the output error method 

(Marquardt algorithm) is less biased by modelling error or by 

a zero-mean independent measurement noise than the input 

error method based on L.S technique. 

 However LS and inverse model method is much simpler 

to program than the Marquardt algorithm and the convergence 

of LS is obtained only after one iteration, whereas the 

Marquardt algorithm convergence needs more computational 

time, except if the parameter initialisation is very close to the 

optimum values. 
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