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A B S T R A C T

This article explores the influence of personality on physiological data while driving in reaction to near crashes
and risky situations using Machine Learning (ML). The objective is to improve the driving assistance systems
in considering drivers’ characteristics.
Methods: Physiological and behavioral data were recorded in sixty-three healthy volunteers during risky urban
situations and analyzed using 5 ML algorithms to discriminate the driver’s personality according to Big Five
Inventory and STAI trait. Seven step process was performed including data pre-processing, Electrodermal
Activity (EDA) time windows selection (one by one backward and forward approach comparison with a pseudo-
wrapped), personality traits assessment, input algorithms parameters optimization, algorithm comparison and
personality trait cluster prediction. ROC Area Under the Curve (AUC) was used to describe improvement.
Results/discussion: The pseudo-wrapped/all possibilities method comparison resulted in 8.3% on average
for all personality traits and all algorithms (% of ROC AUC of backward and forward approach). The ROC
AUC for the detection of the personality ranged between 0.968 to 0.974 with better detection of Openness,
Agreeability and Neuroticism. Use of association between Neuroticism, Extraversion and Conscientiousness
previously defined in the literature slightly improve personality detection (maximum ROC AUC of 0.961 to
0.993 for cluster). Results are discussed in terms of contribution to driving aids.
Conclusion: This study is one of the first to use machine learning techniques to detect personality traits
using behavioral and physiological measures in a driving context. Additionally, it questions input parameters
optimization approach, time windows selection, as well as clustering and association of personality trait for
detection improvement.
. Introduction

Driving is a complex activity and a significant factor of crash
ccurrence is how the driver behaves. Driver’s behavior is related to
he driver’s personality, physiological and behavioral metrics. In order
o decrease crashes, car manufacturers are more and more interested
o take all these components into account when developing future
river interfaces. Knowledge of the driver personality could enable an
mprovement of his/her confidence toward the system. Additionally,
he system could be adapted to the driver’s characteristics and betterly
it his/her expectations. The assessment of the driver’s personality
ould improve the adaptation between system functioning and the
river personality. Thus, it could lead to improve both confidence in
he system and its effectiveness. Detecting a driver’s ability to drive by
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estimating his or her emotional state from behavioral and physiological
data has been widely studied in recent decades (Gruyer et al., 2017;
Sikander & Anwar, 2019). Influence of personality traits on emotional
state while driving remains to be investigated.

Usually, variability between drivers is taken into account by ques-
tionnaires measuring emotional state, circadian type (Jacobé de Nau-
rois et al., 2019), or personality (Sümer et al., 2005). In the Big Five
Inventory (BFI) questionnaire (Satow, 2011a, 2011b), five main per-
sonality traits are considered. The Neuroticism measures the tendency
to anxiety and potentially respond badly to stress. The Openness indi-
cates the broad-minded characteristic of people and Conscientiousness
has to do with self-discipline and persistency. The Agreeableness and
Extraversion traits respectively highlight capacities of altruism and
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compliance (Steenhaut et al., 2018) and capacities of experiencing
positive emotions in social and work environments (Childs et al., 2014)
respectively. The use of a personality questionnaire is difficult in a
real driving context, although to discriminate personality trait based
on physiological and behavioral data may appear to be an important
step in the investigation of the driver’s state. It may also improve the
subsequent detection of near-crash situations by providing discrepan-
cies between driving demands and the driver’s state. The personality
traits are linked to the behavior in driving applications, based on
the analysis of driving style. It has been shown a relation between
high velocity, anger and Neuroticism, low Openness and Agreeableness
scores. The carefulness, Conscientiousness and Agreeableness traits
have been associated with high Neuroticism and low Agreeableness
(Wang et al., 2018). The relationship between the driving situation
in older adults and personality traits has been studied. It showed a
decrease in the likelihood of capacity to drive with higher Neuroti-
cism and Agreeableness score and a significant likelihood of capacity
to drive with the other three traits being high (Gadbois & Dugan,
2015). The driving situations generate different social pressure and
time constraints on drivers especially on situations such as left turn and
over-taking (Beggiato et al., 2019).

The influence of personality traits on physiological data must also
be noted and has notably been studied in other contexts than driving.
Steenhaut et al. (2018, 2019) highlighted the link between physio-
logical responses and personality traits. The authors also raised the
question of the impact of stimuli arousal and emotional reactivity ac-
cording to the type of stimuli (films negatively or positively connoted).
Cardiac signal, as easily recordable, has been largely associated with
personality depending on situations. The cardiac signal responses to
stimuli depend on the automatic nervous system (LeBlanc et al., 2004)
through cortisol stress reactivity. Higher Neuroticism, lower Openness
and Agreeableness scores were correlated with smaller cardiac reac-
tions to stress (systolic and diastolic blood pressure, Heart Rate (HR))
(Bibbey et al., 2013). The HR and HR variability has also been associ-
ated with the cognitive workload in aircraft pilots and differentiates
between low and high once clustered by personality traits (K-mean
clustering) (Hidalgo-Muñoz et al., 2021). Electrodermal Activity (EDA)
was used to classify the personality trait of taekwondo athletes before
a competition (Binboga et al., 2012). EDA delta score has been defined
as the sum of the filtered EDA difference between consecutive signals
for the acquired period time or total arousal for the period time. The
best correlation was found between EDA and Agreeableness, Emotional
stability and Conscientiousness traits using BFI questionnaire in the
context of competition. Eye tracking features were associated with
Extraversion and Agreeableness (Hoppe et al., 2018). A past experiment
consisting in walk and purchase into a campus showed association be-
tween eye tracking in everyday situation and personality traits (Hoppe
et al., 2018). Saccade movements were influenced in both Extraversion
and Agreeableness. Based on driving situation the use of area of interest
to define monitoring frequency and monitoring ratio has also been
previously used and associated with Openness (Li et al., 2020).

Based on these findings, Machine Learning (ML) has been largely
used in diverse applications. The available techniques have been pre-
viously classified depending on labeling or not (unsupervised or su-
pervised) and the type of approaches used. The algorithms previously
used in driving applications either presented results from the imple-
mentation of only a specific method or a comparison between different
techniques. More recently, development of autonomous driving archi-
tecture has been using machine learning and deep learning techniques
(Bachute & Subhedar, 2021). Among such techniques, Support Vector
Machine (SVM) (Jacobé de Naurois et al., 2019; Lee et al., 2014; Wang
et al., 2015; Yang et al., 2018; Yeo et al., 2009) and Random Forest
(RF) (Haleem & Gan, 2013; Lu et al., 2018; McDonald et al., 2014), as
well as Neural Networks (NN) (Chong et al., 2013; Liang et al., 2012;
Tango et al., 2010) were reported as superior when compared to other
approaches. Decision tree (Cichosz & Pawelczak, 2014; Wang & Yang,
2

2008) and naïve Bayesian (Bakheet & Al-Hamadi, 2021) algorithms are
also reported to have been used in driving context especially as easy to
interpret for the first and effective for the second.

While specific techniques could be considered to apply machine
learning directly on time series mainly in forecasting applications,
the use of feature computation as pre-processing enables to question
the duration of the relevance of the signal for each of the processed
signals. An appropriate selection of the training and validation sets
and size of each dataset is crucial to avoid overfitting or bias in the
selection of those datasets and guarantee generalization of the results.
This question of the selection of features during training and validation
of the ML algorithms has been largely discussed. One-by one backward
and forward approaches (Evin et al., 2018) can be tested and compared
to the pseudo-wrapped approach in order to avoid the possible effect
of feature order. Optimization is then performed parameter type by pa-
rameters type (EDA, Cardiac, Eye-tracking data and driving behavior).
Other approaches could then be considered for further optimization.

This exploratory work aims at (1) assessing the capacity of different
ML techniques to classify personality traits under different driving
contexts, and (2) assessing the benefit of personality traits clustering
based on behavioral and physiological data while evaluating the rel-
ative contribution of the different types of bio-signals to improve the
accuracy of the algorithm.

2. Methods

2.1. Overview of the methods

The present work was divided into five consecutive steps also
reported in Fig. 1:
A — re-analysis of the influence of the situation type which enables to
determine if the knowledge of the situation type is the for the detection
of personality traits.
B — EDA time window selection which enables the better detection of
the personality traits.
C — selection of the EDA final parameters to be used from the previ-
ously selected time windows using both forward and backward and all
possible approaches.
D — selection of the other parameters (cardiac and eye-movement
parameters) using the same approaches.
E — final tests in which the personality traits to detect are clustered
including algorithms comparisons.

2.2. Population and testing protocol

69 healthy volunteers were included in the experiment in which
they were asked to drive in a simulated urban environment (see Fig. 1).
Six volunteers were excluded from the study as experiencing driving
simulator sickness. Final detection was thus performed on 63 healthy
volunteers.

The testing protocol consisted of driving simulated situations (sim-
ulator as described in Hidalgo-Muñoz et al. (2019): Peugeot 308 cabin
equipped with 7-inch screen providing a 270◦ horizontal and 47◦

ertical forward field of view). The situations were: a left-turn at a
raffic light, an overtaking of trucks stopped in the driving lane and
near-crash situation. The difficulty of each situation was established

ccording to 3 levels: Level 1 without traffic; Level 2 with high traf-
ic and presence of pedestrians, so inducing social pressure and also
ime pressure by cars honking; and Level 3 with a near-crash with a
edestrian or a car suddenly crossing the street. The level (1, 2 or 3)
nd situation (left-turn, overtaking car, pedestrian crossing) coding was
ested as a pre-analysis of the ML algorithms.

In order to record the physiological signals, during the test each par-
icipant was equipped with 5 electrodes from a Biopac MP150 system
BioNomadix system). Such electrodes were located under the last left
ib, on the right clavicle and on top of the right hip of the participant
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Fig. 1. Driving simulator used in this experiment and step-by-step scheme of the performed work.
or cardiac activity measurements. EDA signals was computed from
ensors located on the left-hand index and middle finger (sampling
ate of 1 kHz, hardware band-pass filtering 35 Hz). Additionally, each
articipant wear eye-tracking glasses (Pupil Core glasses from Pupil
abs UG, Berlin, Germany) with post-processing from the pupil Labs
oftware.

.3. Personality trait, personality cluster detection and personality detec-
ion.

The Big five Inventory (BFI) questionnaire was used to classify
he drivers into two categories for each personality trait (Openness,
onscientiousness, Neuroticism, Extraversion, Agreeableness) using the
edian found in the whole population. Such binary classifications
ere then considered to be the output of the model. Additionally,

he State-Trait Anxiety Inventory (STAI) was used to measure anxiety
Spielberger et al., 1970) and classes consisted in the median separation
f the STAI.

The clusters were defined as: (1) spectator as low in Extraversion,
euroticism and Conscientiousness, insecure as low in Extraversion and
onscientiousness and high in Neuroticism and impulsive as high in
xtraversion and Neuroticism and low in Conscientiousness (Vollrath

Torgersen, 2002). 8 other clusters were also defined as Neuroti-
ism/Extraversion/Conscientiousness (NCE) clusters (all possibilities of
igh or low value for those 3 personality traits). Similarly, Neuroticism
nd Conscientiousness were associated with divided individuals into
our groups (Terracciano & Costa, 2004) called RCD (Relaxed, Control,
irected) in this study. Such groups were under-control (high Neuroti-
ism), relaxed (low Conscientiousness), over-control (high Neuroticism
nd high Conscientiousness) and directed (low in Neuroticism and high
n Conscientiousness) as defined in Boyle et al. (2008). These clustering
ptions have proven to be relevant to predict particular risky behaviors
see Vollrath and Torgersen (2002) for details).

.4. Measures

.4.1. Physiological measures
Cardiac signal-based features included: the mean of the R to R

ave interval length (RR), the standard deviation of the RR inter-
als (SDNN) and the root mean squared of the successive differences
etween adjacent RR intervals (RMSSD). Detection of R peaks was
utomatically performed using HRV Analysis (Pichot et al., 2016) and
isually assessed.

The EDA signal consisted in the acquisition of the amplitude of
kin conductance level. A decomposition of the skin conductance
nto tonic and phasic components was carried out by the Ledalab

oftware (v3.4.9) written in MATLAB and available online (www.

3

ledalab.de). Then an amplitude threshold of 0.02 μs (Benedek & Kaern-
bach, 2010) was set to discriminate relevant phasic responses. Several
features were computed from the EDA phasic responses detected:
the number of responses (EDA_nb), the mean amplitude of response
(EDA_ampMeanScrs), the standard deviation of amplitude of peaks
(EDA_SDAmpScrs), the mean latency which correspond to the mean
delay between two peaks (EDA_latMean) and the standard deviation
of latency as the standard deviation of the delay between two peaks
(EDA_SDLat) were computed.

2.4.2. Eye movement measures
The eye-tracking data (collected at 200 Hz with the Pupil Core

system from Pupil Labs) consisted in four features associated with
fixations. All visual gaze located in a 0.5◦ visual angle during 66 ms
was considered as a fixation. Such implementation of fixation detection
on Pupil Labs software is a dispersion-based method.

The number of fixations, the total duration of the fixations (NB_Fix),
the mean duration of the fixations and the standard deviation of the du-
ration of the fixation were computed. Occurrence of the total duration
of the fixations and mean duration of the fixation in the final results
had then be computed as a preliminary step before final optimization.

For biosignal, outliers were withdrawn using a threshold of mean
value ±3 standard deviations.

2.4.3. Behavioral measures
Behavioral data consist of three parameters averaged on 0–120

s time windows: Standard Deviation of the Lateral Position of the
vehicule (SDLP), Standard Deviation of the Wheel Angle (SDWA) and
Steering Reversal Rate (SRR). This SRR is defined as the number of
times per minute that the direction of steering wheel is changed by an
angle from 0.5 to 10◦.

Finally, the time windows adapted to average the physiological and
behavioral data vary according to the types of data considered. Mostly,
two minutes after each situation could be acceptable for cardiac, be-
havioral and eyes tracking situations even though 0–30 s time windows
was previously suggested for cardiac (De Rivecourt et al., 2008; Smith
et al., 2013).

Thus, every signal was averaged on a 0–120 s time windows for the
basic set of features, but electrodermal activity time windows averaging
was questioned. Further analyses of several averaging of the EDA signal
on different time windows were performed in order to determine the
best windows to be used in terms of algorithm performance and the

0–60 s time windows were preferred as the first approach.

http://www.ledalab.de
http://www.ledalab.de
http://www.ledalab.de
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2.5. Statistical analysis and machine learning algorithms

Machine learning techniques used here were described and imple-
mented in Weka (University of Waikato, Hall et al. (2009) and Witten
et al. (2011)) and the one by one backward and forward approach was
previously described (Evin et al., 2018).

Decision tree (C45) enables simple representation which make in-
terpretation easier. C is the confidence threshold for pruning and M is
the minimum number per leaf (C = 0.25, M = 2 in this work).

Naïve Bayes (NB) algorithm is implemented according with John
and Langley (2013). No parameters are required for such run.

Random Forest (RF) implementation is the Breiman’s random forest
algorithm (Breiman, 2001). P is the percentage of the training set
size taken for each bag, K is the number of attributes to randomly
investigate, M is the minimum number of instances per leaf, V is the
minimum numeric class variance proportion and S is the seed for
random number generator. Such parameters were taken as follow: P
= 100, K = 0, M = 1, V = 0.001, S = 1.

Support Vector Machine (SVM) in Weka is an implementation of
sequential minimal optimization which have two different implemen-
tations in Weka depending if it is used through Weka or Rweka, the
first one is the E1071 SVM implementation (Keerthi et al., 2001) while
the second is John C. Platt’s sequential minimal optimization (Platt,
1998). The second will be used in this work. C is the complexity
constant, L, the tolerance parameter, P, the epsilon for round-off error,
N, the normalization Boolean (if normalized or not), V, the number of
folds for the internal validation and W the random number seed. Such
parameters were taken as follow: C = 1, L = 0.001, P = 1E−12/ C =
1.0, L = 0.001, P = 1.0E−12, N = 0, V = 10, W = 1234.

The Neural Networks (NN) classifier is based on a multilayer percep-
ron in Weka using backpropagation to learn a multi-layer perceptron
o a class instance with sigmoid nodes. L is the learning rate for the
ackpropagation algorithm, M is the momentum rate, 𝑁 is the number
f epochs to train through and E is the number of consecutive increases
f error allowed for validation. The number of layers is fixed to the sum
f attribute and class, divided by two. One node is considered by layer.
hese were taken as follows: L = 0.3, M = 0.2, N = 500, E = 20.

The backward and forward one-by-one approach, which will be
sed later on, is a comparison of algorithms results when adding one
y one parameter as input and removing one by one parameter. All
ossibility or a pseudo-wrapped approach is an approach in which all
ossibilities of input parameters are tested. The two approaches will be
ompared to measure the difference in terms of algorithms results. Both
mplementations are performed with R statistics language.

. Results

Population was described using the BFI and STAI. The following
haracteristics of the population was found: 4 ± 1.55 for Openness,
.47 ± 1.29 for Agreeability, 3.24 ± 1.35 for Extraversion, 1.25 ± 0.25
or Neuroticism; 4.1 ± 1.36 for Conscientiousness and 2 ± 0.28 for STAI
raits.

Algorithms run separately on a i5 -8265U CPU @1.60 GHz ran in
ess than 3 s

.1. Pre analysis of the influence of situation type

Table 1 shows the Openness detection as an example. It highlights
hat the knowledge of the situation (type and levels) does not benefit
o the results of any algorithm. The ROC AUC results improved when
emoving the situation feature (percentage defined as ROC AUC differ-
nce between with and without situation feature divided by ROC AUC
ithout situation feature). Such results were similar for all personality

raits (Neuroticism: up to 15%, Agreeability: up to 20%, Extraversion:
p to 8%, Consciousness: up to 19% and STAI trait: up to 12%). Thus,
he rest of the study was carried out without the situation features.
4

Fig. 2. EDA time windows investigation (A) average for all algorithms (RF, J48, SVM,
NN, NB) (B) maximum value by personality trait.

3.2. EDA time windows optimization

Based on the literature, no consensus on EDA time windows analysis
have been reached and EDA measurement protocols differed (Chen &
Chen, 2017). The four time-windows (0–15, 0–30, 0–60 and 0–120 s)
have been tested here in terms of contribution to better personality
detection. When averaging on all algorithms by time windows and
using all the EDA features without optimization, ROC AUC averaged
on all algorithms was found higher for the 0120 s than for other time
windows for all personality trait except Neuroticism (Fig. 2A).

When focusing on maximum value, the 0–120 s EDA time window
remained the most selected while the 0–30 s EDA time window pre-
sented higher ROC AUC for Extraversion, Neuroticism and Openness
(Fig. 2B). Finally, in the rest of the work, the time windows considered
for EDA feature computation are presented in Table 2.

While 0–30 s time window is the EDA time window the best results
(43% for 0–30 s vs. 13.3% for 0–15 s, 20.3% for 0–60 s, 23.3% for
0–120 s), it should be noticed that most of the results are mixed and
depend on the used algorithm.

In the one by one forward and backward approach, the most used
EDA feature alone is the EDA_ampMeanSrcs while EDA_nbScrs is mostly
discarded. J48 and RF appeared to follow a pattern with similar EDA
features for every personality trait.

3.3. Comparison of EDA feature selection type

Results of the one by one backward and forward approach and an all
possibility approach (pseudo wrapped method) is presented in Table 3.
Depending on the detected personality trait, the ROC AUC changes
on average on all personality traits and all ML techniques by 8.3%
(ROC AUC difference between backward and forward approach and
all possibility approach divided by ROC AUC backward and forward

approach results).
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Table 1
Tests of the algorithms with situation features and level for Openness;%: corresponding of improvement or worsening of the ROC AUC between All: all features with situation and
level; Witho.: without situation and level, TP r: True positive rate, FP r: False positive rate, Prec: precision, ROC AUC: Receiver operating characteristic area.

Openness TP r FP r Prec Recall F-measure MCC ROC AUC PRC area (%)

RF All 0.69 0.308 0.692 0.69 0.69 0.382 0.761 0.769 −1.8
without 0.687 0.309 0.691 0.687 0.686 0.378 0.775 0.785

J48 All 0.599 0.401 0.6 0.599 0.6 0.198 0.604 0.568 −13
without 0.62 0.377 0.623 0.62 0.62 0.243 0.682 0.665

NB All 0.608 0.382 0.621 0.608 0.604 0.232 0.635 0.617 −1.6
without. 0.614 0.375 0.629 0.614 0.609 0.246 0.645 0.628

SVM All 0.566 0.433 0.568 0.566 0.566 0.133 0.567 0.539 1.7
without. 0.557 0.444 0.557 0.557 0.557 0.113 0.557 0.532

NN All 0.545 0.458 0.544 0.545 0.545 0.087 0.577 0.576 −23
without 0.66 0.343 0.659 0.66 0.659 0.317 0.713 0.698
Table 2
EDA time windows selection according to algorithm and personality traits.

Personality Traits/Algo. RF J48 NN NB SVM Main

STAITrait 0–120 0–15 0–30 0–30 0–60 0–30
Openness 0–30 0–30 0–120 0–120 0–60 0–30/120
Neuroticisl 0–30 0–30 0–15 0–30 0–30 0–30
Extraversion 0–60 0–30 0–60 0–120 0–15 0–60
Conscientiousness 0–30 0–30 0–60 0–30 0–120 0–30
Agreeableness 0–120 0–60 0–15 0–120 0–30 0–120
Main 0–30 0–30 0–15/60 0–30/120 0–30/60
Table 3
Comparison of EDA feature selection approaches by personality trait and depending of
algorithm (Algo): one by one backward and forward approach and wrapped method
approach for the best three algorithms. Imp: improvement.

Algo Approaches Imp. (%)

EDA param ROC AUC
1by1

ROC AUC
All

Openness J48 0_30 0.945 0.971 −2.8
NN 0_120 0.828 0.936 −13.0
NB 0_120 0.698 0.828 −18.6

Neuroticism J48 0_15 0.861 0.963 −11.8
NN 0_30 0.883 0.882 0.1
NB 0_30 0.764 0.836 −9.4

Extraversion J48 0_60 0.965 0.977 −1.2
NN 0_60 0.862 0.954 −10.7
NB 0_120 0.745 0.862 −15.7

Conscientiousness J48 0_30 0.952 0.966 −1.5
NN 0_60 0.847 0.948 −11.9
NB 0_30 0.715 0.847 −18.5

Agreeableness J48 0_60 0.866 0.972 −12.2
NN 0_15 0.864 0.882 −2.1
NB 0_30 0.59 0.84 −42.4

3.4. Optimization of feature by personality traits

Based on previous results, the optimization of feature selection by
the one by one backward and forward approach has been furtherly
used. First, a feature selection for behavioral and eye tracking data
was performed and then for eye tracking data. The results presented in
Table 4 summarize the best prediction based on ROC AUC for each per-
sonality trait with the optimized selection of features. Only first three
best algorithms were reported. Best results were found for the Openness
personality trait followed by the Agreeableness and Neuroticism. All
best ROC AUC results when comparing algorithms were found for RF,
followed by J48 and NN. J48 presented ROC AUC reduced by 3.1%
when compared to RF and NN implemented as MP were found to be
14.5% lower than RF result in average. STAI trait resulted in better
results than personality traits based on ROC AUC with RF.

Eye-tracking features presented the highest percentage of total fea-
tures after optimization (29.2% in average vs. EDA: 27.9, ECG: 24.9
and behavioral: 18% - Fig. 3). However, the most used feature for RF
5

Fig. 3. Percentage of features used on the total number of features by feature
types. Agree: Agreeableness, Consc.: Conscientiousness, Extra: Extraversion, Neuro.:
Neuroticism, Open.: Openness.

is ECG features, although a lower number constituted the initial set
EDA for J48 and Eye tracking features for MP. Number of features for
each type (ECG, EDA, eye-tracking, behavioral) is depicted in Fig. 4.
MP implementation required the use of more features than both RF
and J48 (Fig. 4). Depending on the algorithms the number of used
features changes. The trends between the average number of features
per personality trait should be considered carefully: Extraversion used
10.7 features in average while Conscientiousness and Neuroticism used
8 and others traits 7 features.

EDA — 10 algorithms used only one feature, EDA_ampMeanSrc is
the most used along of the EDA features. Of note, Conscientiousness,
Extraversion and Neuroticism are the personality traits for which more
EDA features are used.

ECG — 14 algorithms over 18 used two ECG features rather than
one. RR is the most used feature from ECG parameter while RMSSD is
largely removed and SDNN is preferably used alone.

In behavioral data, 11 over 18 algorithms used only one feature,
mostly SDWA feature.

Finally, eye tracking features were used either one by one either as
a group, total duration of fixation was the mainly used feature while
mean duration of fixation was the most removed when using a group

of features.
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Table 4
Algorithms results for each personality trait — three best algorithms based on ROC AUC and with EDA, ECG/Behavioral and Eye Tracking features after optimization.

Algo TP rate FP rate Accuracy Recall F-measure MCC ROC area PRC area

Agreeableness
RF 0.919 0.09 0.923 0.919 0.918 0.84 0.973 0.974
J48 0.931 0.071 0.931 0.931 0.931 0.86 0.963 0.957
MP 0.795 0.209 0.795 0.795 0.795 0.59 0.853 0.831

Conscientiousness
RF 0.895 0.147 0.9 0.895 0.892 0.78 0.968 0.97
J48 0.934 0.065 0.935 0.934 0.934 0.86 0.965 0.962
MP 0.753 0.28 0.751 0.753 0.752 0.48 0.797 0.787

Extraversion
RF 0.898 0.102 0.9 0.898 0.898 0.8 0.959 0.957
J48 0.828 0.172 0.828 0.828 0.828 0.66 0.884 0.872
MP 0.768 0.233 0.769 0.768 0.768 0.54 0.833 0.825

Neuroticism
RF 0.895 0.106 0.895 0.895 0.895 0.79 0.972 0.973
J48 0.88 0.12 0.88 0.88 0.88 0.76 0.932 0.923
MP 0.795 0.205 0.795 0.795 0.795 0.59 0.862 0.855

Openness
RF 0.898 0.102 0.898 0.898 0.898 0.79 0.974 0.974
J48 0.889 0.113 0.889 0.889 0.889 0.78 0.953 0.951
MP 0.732 0.267 0.734 0.732 0.732 0.46 0.799 0.78

STAIT Trait
RF 0.928 0.079 0.928 0.928 0.928 0.85 0.982 0.982
J48 0.877 0.145 0.876 0.877 0.876 0.74 0.94 0.935
MP 0.774 0.239 0.777 0.774 0.775 0.53 0.825 0.803

a. Italic three highest results.
Fig. 4. Barplot for number of features for each algorithm and each personality trait.

3.5. Personality cluster detection

Similar steps with EDA time windows selection and feature selection
by signal type (ECG. behavioral and Eye-tracking) were performed.
Neuroticism/Extraversion/Conscientiousness approach consists in 8
clusters according to the three personality traits: Neuroticism, Con-
scientiousness and Extraversion by disregarding the rest and RCD
in 4 clusters (by combining Neuroticism and Conscientiousness). In
addition, binary classifications to detect particular personality profiles
were performed: Spectator, Insecure and Impulsive.

When compared to average performance for the prediction of per-
sonality traits (0.969) one by one, improvement of the prediction
performance when using cluster even when using binary cluster is little
2%.

The 0–15 EDA time window was the mostly used when considering
best results of all algorithms followed by 0–30, 0–60 and 0–120 s time
windows. Except for RCD in which only 0–15 and 0–30 s time windows
were used, no trend appeared for other clusters.

Table 5 present the best three algorithms per type of clusters. RF
presented higher ROC AUC results in all case followed by J48. SVM
implemented as SMO ranked twice higher than MP for NCE and RCD.
Specific profiles detection (binary clusters based on spectator, impul-
sive and insecure trait) presented slightly higher prediction (0.989)
when compared to NCE (0.978) and RCD (0.961).

For EDA feature, EDA_nb and EDA_ampMeanScrs are the two mainly
removed features but also the most used alone. In behavioral data,
SDWA is the mostly used features, and in ECG data, RR is the mostly
used. For eye tracking feature the SD duration of fixation is the most

used feature.
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4. Discussion

This article tested the possibility of using physiological and behav-
ioral data to classify personality traits. The highest accuracy was found
for Agreeableness, Neuroticism and Openness. It also showed the neces-
sity of testing time windows for EDA post-processing which depends
on the personality traits and raised the question of the optimization
process. The best results were found for RF and J48, as expected from
the literature. However, the low performance of SVM was surprising
since used only for the cluster detection with relatively good results
similar to NN. Of note, the improvement of detection when providing
type of situations and levels of the implemented situations could be
explained by the redundancy of similar driving behavior demands and
consequent physiological associated responses.

The cases for which the lowest numbers of features were found for
the classification of Agreeability, Neuroticism and Openness.

Although Neuroticism was previously associated to physiological
data, Openness and Agreeableness were also shown here to be able to
be detected from behavioral and physiological data.

The results from the different measures show that:
EDA-, RF and J48 algorithms used only one EDA feature. S-Trait

Anxiety Inventory (STAI) detection used only one EDA feature which
could be explained by previous findings in which no association be-
tween STAI and EDA were found in Binboga et al. (2012).

ECG-Different relationships between cardiac signals and Neuroti-
cism, Openness and Agreeableness were previously reported (Bibbey
et al., 2013) and, similar results were found here. In our findings, the
use of ECG features was constant along all algorithm and personality
trait.

BEHAVIOR – SDWA has been found as the most discriminant feature
selected by the algorithms. SDWA has been previously found signif-
icantly different between mean attentive and mean distracted time
period in driving context based on a gaze based real time distraction
detection algorithm (Kircher & Ahlstrom, 2010).

EYE- n our results, the use of eye tracking features in Openness
detection is limited to one feature (total fixation duration) with RF.

Our work, however, proved that the association between personality
traits through clustering is limited in terms of results, but could provide
a new perspective in drivers’ personality. The NCE 8 clusters were
indeed already used to study the association with health risks and
association between Neuroticism, Conscientiousness and Extraversion
and risky health behaviors are contradictory (Vollrath & Torgersen,
2002). Such study reported that individuals defined as impulsive and
insecure are more particularly inclined to engage in risky health behav-

iors and better results in prediction with NCE cluster when compared to
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Table 5
Cluster detection results for the 3 first algorithms. RCD — Relaxed, control, directed cluster, Spect: Spectator; Imp: Impulsive; Ins: Insecure.

Algo TP rate FP rate Accuracy Recall F-measure MCC ROC area PRC area

Neuroticism, Extraversion, Conscientiousness
RF 0.816 0.037 0.854 0.816 0.818 0.798 0.978 0.925
J48 0.801 0.03 0.802 0.801 0.8 0.769 0.924 0.794
SMO 0.611 0.076 0.661 0.611 0.604 0.557 0.866 0.521

Relaxed, Control, Directed
RF 0.813 0.08 0.839 0.813 0.812 0.754 0.961 0.916
J48 0.801 0.074 0.802 0.801 0.801 0.729 0.939 0.867
SMO 0.69 0.126 0.705 0.69 0.687 0.579 0.802 0.587

Spectator
RF 0.943 0.486 0.946 0.943 0.933 0.655 0.993 0.994
J48 0.967 0.231 0.966 0.967 0.965 0.813 0.923 0.966
MP 0.937 0.436 0.932 0.937 0.93 0.618 0.805 0.921

Impulsive
RF 0.931 0.752 0.936 0.931 0.908 0.407 0.987 0.992
J48 0.982 0.164 0.982 0.982 0.981 0.878 0.969 0.987
MP 0.937 0.492 0.929 0.937 0.931 0.532 0.74 0.911

Insecure
RF 0.904 0.648 0.913 0.904 0.878 0.48 0.987 0.991
J48 0.955 0.165 0.954 0.955 0.955 0.798 0.889 0.941
MP 0.88 0.552 0.864 0.88 0.869 0.389 0.784 0.877
H
B
l
C
s
W

D

i
i

A

T
t

R

B

B

B

B

B

B

B

B

B

Extraversion, Neuroticism and Conscientiousness alone are promising.
In any case, they need to be further investigated in the context of
driving and maybe on focusing on approach on risky situation. As
expected, binary cluster on spectator, impulsive and insecure cluster
from the NCE cluster presented better predictions than the prediction
of the 8 clusters.

EDA time windows investigation could be furtherly interpreted
when considering both personality trait and cluster detection. Indeed,
by the definition of the cluster as an association of personality trait,
clusters have been reported to detail reaction rather than personality
itself. Thus, spectator, impulsive and insecure could have been using
respectively longer EDA time windows and it was not the case in the
results. However, the results did not show that the EDA signal was
the best to differentiate between reactivity. The association between
reactivity and biometrics is complex and does not only reflect per-
sonality, since, for example, studies on emotional reactivity, alcohol
or sleepiness has also largely shown their effects on these biometrics
(Béquet et al., 2020).

5. Conclusion

This work presented the potential of physiological and behavioral
measurement analysis to classify driver’s individual differences. The
first findings were presented in term of capacity to detect personality
trait, the possibility for personality trait clustering as well as the
optimization process to consider. It suggests a potential to estimate
a driver psychological profile based on machine learning (ML) mod-
els. To the best of our knowledge, this is the first study to present
a complete ML analysis of personality trait using physiological and
behavioral data from a driving simulator experiment. Additionally,
literature reported applications in which physiological and behavioral
measurements could improve the car occupant wellbeing (Koohestani
et al., 2019).

This study presents some limitations as performed in an artificial
environment. One drawback of artificial environment experiment is
also the specificity of the tasks and situations to be tested. Additionally,
the tested population is relatively limited and could introduce bias in
the reported results despite the gender and age consideration inclusion.
Such limitations could be addressed by performing ecological measure-
ments, however such measurements still present technical challenges
such as sensor communication and the quantity of data to transfer.
Of note the work on omnipresent sensing system on unsupervised
techniques should be noticed (Saeed et al., 2021).

Further studies, in real environment are in fact needed desirable to
characterize more precisely the relationship between personality traits
and driver state based on physiological and behavioral data in the
context of driving. In term of machine learning methodology, search
method for model parameter optimization could have been considered
and should be investigated in further work.
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