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Rapid faunal colonization and recovery of biodiversity
and functional diversity following eelgrass restoration

Karine Gagnon'?? ©, Enora-Hawa Bocoum'#, Chiau Yu Chen>®, Susanne Pihl Baden’,
Per-Olav Moksnes’, Eduardo Infantes>’

Seagrass meadows and their associated biodiverse assemblages have declined globally due to environmental and anthropogenic
stressors. Restoration of these critical habitats has the potential to reverse coastal biodiversity loss. Here, we tested the role of
patch size (which can affect recruitment, food availability, and/or predation) in driving faunal colonization in an eelgrass
(Zostera marina) restoration trial in Sweden. Eelgrass shoots were transplanted in plots with different configurations (contin-
uous vs. checkerboard patterns with three patch sizes), and we followed invertebrate colonization (biodiversity and functional
diversity) during the first two growing seasons. We found rapid faunal colonization following the transplantation of eelgrass
shoots in all plots with invertebrate densities reaching 50-80% of the reference meadow after only one growing season
(3 months). After two growing seasons (15 months), the faunal density, biodiversity, and functional diversity were similar to
the reference meadow, despite eelgrass density and biomass still being lower than the reference meadow. Biodiversity, func-
tional diversity, and community structure were similar among the different planted plots, that is, there was no indication that
patch size influenced faunal colonization. We therefore consider that smaller patches embedded within larger restoration plots
can be as effective for promoting biodiversity as continuous patches, with reduced costs and fewer shoots required. We also
noted high natural variability between years both in the reference meadow and planted plots, showing the dynamic nature
of seagrass ecosystems, and the importance of a well-planned monitoring scheme that considers the reference area and restored
area within the same temporal scale.
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increasing efforts in restoring them in order to facilitate the
recovery of biodiversity and associated ecosystem functions
(Halpern et al. 2007; Bayraktarov et al. 2020). Seagrass ecosys-
tems support high associated biodiversity and trophic networks,
as well as a wide range of ecosystem services to human societies
(Costanza et al. 2014; Nordlund et al. 2016). Though seagrass
populations have declined in many parts of the world (Dunic

Implications for practice

e Rapid faunal colonization after eelgrass transplantation
(within 3 months, i.e. one growing season). We can con-
sider the faunal community in the planted plots to be
“restored” after 15 months (two growing seasons), based
on faunal density, biodiversity, and functional traits.

e Smaller plots planted in a checkerboard pattern supported
as high faunal abundance and diversity as continuously
planted shoots and natural eelgrass meadows, indicating

Author contributions: KG, POM, EI conceptualized the study; KG, POM, EI carried out
fieldwork; KG, EHB, CYC, SPB carried out laboratory work; KG, EHB ran

that this method has no negative effects for the faunal
communities.

e High natural yearly variability shows the importance of
comparing restored plots to a reference meadow
over time.

Introduction

Biodiversity loss due to a wide array of anthropogenic stressors
threatens the stability and ecosystem provisioning capacity
of ecosystems worldwide (Cardinale et al. 2012; Gamfeldt
et al. 2015). In coastal marine ecosystems, habitat-forming
ecosystem engineers (seagrasses, macroalgae, reef-forming
organisms, etc.) are critical for sustaining biodiversity and eco-
system functioning (Barbier et al. 2011). The rapid loss of these
coastal habitats, and their often-slow recovery times, has led to
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et al. 2021), concerted restoration efforts can lead to the rapid
recovery of coastal biodiversity and other ecosystem services
(Lefcheck et al. 2017; Orth et al. 2020; Beheshti et al. 2022).
Northern European populations of the widespread seagrass
Zostera marina (eelgrass) declined heavily in the 1930s, due
to a major outbreak in eelgrass wasting disease (Labyrinthula
zosterae; Den Hartog 1987; Short et al. 1988; Muehlstein 1989).

Though many populations recovered to some extent, anthropo-
genic pressures in the second half of the 20th century have led
to continued losses in some areas (Dunic et al. 2021; Turschwell
et al. 2021). Along the Swedish West Coast (Skagerrak), over
60% of eelgrass area has been lost since the 1980s (Baden
et al. 2003; Nyqvist et al. 2009) due to the combined effects of
nutrient enrichment and overfishing favoring fast-growing

Figure 1. (A) Overview of the study site (Gaso, 58.233 N, 11.400 E) with reference eelgrass meadow (the area where samples were taken is indicated by a circle)
and planted plots (located in the box in upper right corner). (B) Detail of planted plots in July 2019 (~1 month after transplantation): 1 = continuous, 2 = medium
patches, 3 = small patches, 4 = large patches. The two dark plots on either both sides of the transplanted plots are eelgrass plots which were transplanted in 2015
as a pilot experiment to test the feasibility of the site and transplantation method. There is a slight depth gradient: the meadow extends from 2 to 5 m depth, while
plots 1-3 are at ~2 m depth, and plot 4 is slightly shallower (1.5-2 m). (C) Eelgrass shoots in a planted plot shortly after transplantation (July 2019). (D) Eelgrass
in a planted plot after two growing seasons (September 2021) showing expansion and spread. Photographs by Eduardo Infantes.
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ephemeral macroalgae over eelgrass (Moksnes et al. 2008;
Baden et al. 2010, 2012). Though overall water quality in the
area has improved following reductions in nutrient input, eel-
grass populations have not recovered due to feedbacks prevent-
ing natural recovery (Nyqvist et al. 2009; Moksnes et al. 2018).
Initial attempts at small-scale restoration using seeds or shoots in
Nordic eelgrass meadows have shown only limited success
(Eriander 2016; Infantes et al. 2016a; Infantes & Moksnes 2018;
Gagnon et al. 2021a, 20215b). Globally, large-scale restoration of
seagrass meadows is associated with positive outcomes (Tanner
et al. 2008; van Katwijk et al. 2016; Paulo et al. 2019; Lange
et al. 2022), as it allows for the development of facilitative
mechanisms between shoots that increase sediment stability,
limit resuspension, and promote growth and survival of shoots
(van der Heide et al. 2011; Maxwell et al. 2017). Large-scale
restoration can be achieved through either seed or shoot trans-
plantation. However, previous studies in the area have shown
lower success using seeds than shoots due to the low number
of seeds produced in the meadows (Infantes & Moksnes 2018),
and the high presence of eelgrass seed predators such as Carci-
nus maenas (Infantes et al. 2016b) such, large-scale restoration
using shoot transplantation has been recommended in the
national guidelines for eelgrass restoration in Sweden
(Moksnes et al. 2016). Due to the high number of shoots
required for large-scale restoration using the shoot transplanta-
tion method, developing strategies to reduce the operational
costs of planting and minimize effects on donor meadows is
critical. As eelgrass can spread laterally, planting in an alternat-
ing checkerboard pattern of vegetated and non-vegetated
patches could reduce the number of transplanted shoots needed
while still maintaining facilitation between shoots that allows
for high growth, spread, and the recovery of associated fauna.
The faunal colonization of restored seagrass ecosystems is an
essential step toward the recovery of the ecosystem as whole, as
the functional traits of associated fauna drive ecosystem and tro-
phic functioning (Carlucci et al. 2020). Indeed, along with bio-
diversity, functional diversity should be considered a critical

Table 1. Functional traits and modalities used in the functional analyses.

Trait Modalities

Maximum size <1, 1-5, and 5-10 mm, 1-5 and >5 cm

Environmental Infaunal, epibenthic
position

Longevity <1, 1-2,2-5, and >5 yr

Reproduction type  Sexual, asexual

Reproductive Semelparous, iteroparous
strategy

Reproductive Broadcast spawner, egg layer, egg brooder
mode

Pelagic stage No, yes

Mobility Sessile, semi-mobile, mobile

Movement/ Swimmer, crawler, attached (e.g. byssus),

tube builder, burrower

Suspension feeder, surface feeder, sub-
surface feeder, grazer, predator (including
one parasite species)

Diet Detritivore, herbivore, carnivore

attachment type
Feeding mode

measure of ecosystem recovery (Cadotte et al. 2011). However,
despite a growing number of eelgrass restoration projects
around the world, only a few large-scale trials have focused on
the recovery of associated biodiversity (generally noting rapid
faunal colonization; Orth et al. 2020; Steinfurth et al. 2022),
and none have considered functional diversity. Structural com-
plexity (shoot density, patch size, patch shape) is a major driver
of faunal composition and associated functional traits in sea-
grass meadows (Moore & Hovel 2010 and references therein;
Yeager et al. 2019) and is thus likely to shape the trajectory of
faunal communities following restoration. In particular, patch
size can affect invertebrate faunal colonization through multiple
mechanisms, especially through edge effects. Particle trapping
by eelgrass blades at patch edges may reduce food availability
at the center of larger patches (Irlandi et al. 1999; Reusch &
Williams 1999), while promoting higher settlement of plank-
tonic larvae at edges (Orth 1992; Carroll et al. 2012), leading
to overall higher densities in smaller patches with larger edge
proportions. On the other hand, predation may also be higher
in smaller patches, due to predators often preferring edges
(Irlandi 1997; Bell et al. 2001). Due to the interacting nature of
these mechanisms, reviews have shown that the effects of patch
size and shape on different faunal groups are overall highly var-
iable, species- and context-dependent, and difficult to predict
(Bostrom et al. 2006; Yarnall et al. 2022 and references therein).
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Figure 2. Eelgrass biomass and shoot density (mean 3= SE) in the meadow
and planted plots in 2019 (orange = after 1 month, purple = after one
growing season) and 2020 (green = after two growing seasons).
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Thus, it is difficult to predict how planting configuration and
patch size could affect the faunal colonization following
seagrass restoration.

In this study, we investigated the role of planting configuration,
scale, and temporal variability in determining invertebrate biodi-
versity, functional diversity, and community structure in restored
eelgrass. We followed invertebrate (infauna and epifauna) coloni-
zation, and their associated functional traits, during the first two
growing seasons of an eelgrass restoration trial in the Skagerrak,
Swedish west coast. We focused on small meio- and macro-faunal
assemblages (0.2-20 mm), which are likely to reflect potential
differences in edge effects (e.g. recruitment, food availability, pre-
dation pressure) between patch sizes.

Methods

Study Area

The field experiment was set up in June 2019 in a semi-sheltered
bay near the island of Gaso (58.233 N, 11.400 E; Fig. 1) on the
Swedish west coast (Skagerrak). Until the 1980s, the bay was
almost entirely covered by eelgrass, but the shallow areas have
since retracted (Baden et al. 2003). Currently, the site has a dense
eelgrass meadow at 2-5 m depth, which was used as the reference

meadow (hereafter referred to simply as “the meadow”; Fig. 1).
The eelgrass growing season in the area is from May—October,
with maximum biomass in August (Baden & Pihl 1984). Two eel-
grass transplantation plots (10 x 10 m) were set up in 2015 and
have survived and since expanded (Fig. 1), showing the suitabil-
ity of the area for further restoration. In 2019, four 20 x 20 m
plots were set up on unvegetated soft sediment (1.5-2.5 m depth)
between the two previous successful 2015 trials. These consisted
of four different treatments (Fig. 1): one treatment was planted at
the same density throughout (“‘continuous”) and the other three in
a checkerboard pattern of alternating planted and non-planted
patches of different sizes (“large”: 4 x 4 m patches, “medium’:
2 x 2 m patches, “small”: 1 x 1 m patches; Fig. 1). Eelgrass
shoots were collected from the reference meadow and planted
by hand the same day (using scuba diving) at a density of
16 shoots m 2 (25 cm apart from each other), for a total of
~6,400 shoots in the continuous plot and ~3,200 in the large,
medium, and small plots. Each single shoot planted had a
~10-cm rhizome fragment with at least two to five internodes
and was gently pushed into the sediment (Orth et al. 1999).This
planting method using shoot transplantation is the recommended
practice for eelgrass restoration in Sweden, to minimize shoot loss
with relatively low time and costs (as described in Eriander
et al. 2016; Moksnes et al. 2016).
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results.

Sampling and Processing

Eelgrass. We measured shoot densities in July 2019 (1 month
after transplantation), October 2019 (after one growing season),
and September 2020 (after two growing seasons). In 2019, only
the planted plots were measured, while in 2020, the reference
meadow was also sampled (within the meadow at least 10 m
from the edge; Fig. 1). Shoot densities were measured by count-
ing the number of shoots in 8—10 random 50 x 50 cm quadrats
in each planted plot, and six random quadrats in the meadow.
We also measured eelgrass aboveground biomass during the
epifaunal sampling: after separating the shoots from the fauna,
we dried them at 60°C for 72 hours, then calculated eelgrass
dry weight m 2 for each sample.

Fauna. We sampled epifauna and infauna in September 2019
(after one growing season) and September 2020 (after two grow-
ing seasons). Five epifauna and infauna samples were randomly
taken from the meadow and from each transplanted plot. All
samples were at least 2 m away from each other, and at least
0.5 m from the patch edge to limit edge effects. We took an addi-
tional five infauna samples from the unvegetated sediment to
represent the ambient infauna community which would have
been already present in the area prior to establishing the trans-
planted plots. Epifauna samples were collected by placing a
35 x 35 cm mesh bag (mesh size 0.2 mm) over the eelgrass

shoots, closing the bag, and cutting the shoots at the sediment
surface. Infauna samples were collected using a 10.5 cm diame-
ter core to a sediment depth of 10 cm. All samples were trans-
ported to the laboratory in seawater. For logistical reasons
(space and time limitations, and COVID-19 restrictions), sam-
ples were processed in slightly different ways. In both 2019
and 2020, infauna samples were immediately sieved at
0.5 mm, then preserved in ethanol with Rose Bengal staining.
Epifauna samples in 2019 were stored in mesh bags in flow-
through aquaria for 1-2 days so they could be processed and
counted while fresh, while in 2020 they were immediately fro-
zen in bags with seawater then processed several months later.
In both cases, eelgrass shoots were first separated from the epi-
fauna, counted, and dried (60°C for 48 hours) to obtain eelgrass
biomass (see above) in each sample. The epifauna were then
sieved at 0.2 and 1.0 mm to obtain two size fractions (“meio-
fauna” and “macrofauna,” respectively), and preserved in etha-
nol with Rose Bengal staining.

In the laboratory, we counted and identified all organisms to
the lowest practical taxonomic level. For the infauna and epi-
fauna “macrofauna” fraction, we counted all organisms in the
sample, while for the epifauna “meiofauna” fraction, we counted
organisms in three subsamples (~0.5 g wet weight each) and
then calculated the total abundance based on the total weight
of the sample. We then combined the “meiofauna” and “macro-
fauna” to obtain the total abundance of epifauna in each sample.
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Figure 5. Density (mean + SE) of selected taxonomic groups in different treatments in 2019 (purple) and 2020 (green). See Figure S3 for additional groups and Table S1 for full statistical results.

All infauna and epifauna values were then converted to density
(individuals m2).

Functional Traits

For each taxon, we created a functional trait matrix, which
included 11 traits linked to life history, dispersal, mobility, and
feeding (adapted from Tornroos & Bonsdorff 2012; Table 1).
For each sample, we calculated three taxonomic diversity metrics
(species richness, Shannon diversity, evenness) and four func-
tional diversity metrics (functional diversity, functional evenness,
functional dispersion, functional divergence). We also calculated
the community weighted mean (CWM) of each trait for each sam-
ple. Diversity and functional metrics were calculated using the
FD (Laliberté & Legendre 2010; Laliberté et al. 2014) and vegan
(Oksanen 2013) packages, respectively, in R version 3.6.2.

Statistical Analysis

We used generalized linear mixed models (GLMMs) with Pois-
son distribution to determine differences between treatments
and time for eelgrass biomass and shoot density. For the fauna
analyses, we first used multivariate approaches (non-metric mul-
tidimensional scaling [NMDS] and permutaional multivariate
analysis of variance [PERMANOVA]) to determine differences
in communities based on both taxonomy and functional traits
(based on the CWM), then similarity percetange analysis (SIM-
PER) to run pairwise comparisons and determine which species
and traits contributed to differences between years, planted plots
and the meadow within each year, and planted plots and the
unvegetated sediment within each year. As SIMPER will
usually return the most abundant species rather than the species
that differ the most, we also calculated pairwise ratios of the
density of species or traits in 2019 versus 2020, planted
plots vs. meadow within each year, and planted plots
vs. unvegetated within each year, and determined the species
which varied the most. All multivariate analyses were run using
the vegan package in R version 3.6.2. We then used GLMMs
(with normal distribution for diversity and functional metrics,
negative binomial distribution for most invertebrate densities;
see Tables S3 and S4 for all distributions) to determine if there
were differences between treatments and years for total epifauna
and infauna density, selected taxonomic groups (Bivalvia, Gas-
tropoda, Amphipoda, Copepoda, Decapoda [epifauna only],
Ostracoda [epifauna only], Chironomidae, Halacaridae [epi-
fauna only], Polychaeta, Oligochaeta [infauna only], Nematoda,
diversity and functional metrics).

Results

There was a significant interaction of Year x Treatment on eel-
grass metrics (Table S1): overall, eelgrass biomass and shoot den-
sities were lower in the planted plots than in the reference
meadow in both years, but were higher in all treatments in 2020
than 2019 (Fig. 2). Transplanted eelgrass shoots grew laterally
in all directions, resulting in higher densities within the planted
plots, as well as extension outside the plots with time (Fig. 1).
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The epifauna and infauna taxonomic and functional traits varied
significantly by year and treatment (PERMANOVA p < 0.001
for all; Table S2). Epifauna communities were taxonomically
and functionally different in 2019 and 2020, though in both years
there was high overlap between planted plots, but less overlap
with the meadow (Fig. 3A & 3B). Infaunal communities differed
taxonomically between years, but there was some overlap in func-
tional traits (Fig. 3C & 3D). Epifauna species and functional rich-
ness were higher in 2019 than 2020, but other biodiversity and
functional diversity indices were similar across treatments and
years (Figs. S1 & S2).

Total epifauna abundance in 2019 was higher in the
meadow, followed by the continuous and medium plots,
then the small plot and large plot, while in 2020 abundance
was highest in the continuous plot while the others were
similar (Fig. 4A & 4B). Total infauna abundance was high-
est in the meadow, followed by the unvegetated sediment,
medium, and small plots, and this pattern was similar in
both years (Fig. 4C & 4D). Taxa which were most abundant

also had the highest contribution to dissimilarity
(i.e. Nematodes, Copepods, Capitellids, Hydrobids, Chiron-
omids; Tables S3 & S4), but these were not necessarily the
species which differed the most between treatments and
years (Table S5). Among the most notable differences were
the almost complete disappearance of gastropod and bivalve
species in 2020 in all treatments except unvegetated sedi-
ment where Retusa trunculata was very abundant (Table
S5; Fig. 5).

The GLMM analyses showed that for most taxonomic
groups, the Year x Treatment interaction was significant, with
no consistent patterns across groups. In most cases, the magni-
tude of difference was larger between years than between treat-
ments (Table S1; Figs. 5 & S3). As noted above, we found an
almost complete absence of gastropods and bivalves in all treat-
ments in 2020 (Figs. 4 & 5). Decapods (mostly Palaemon spp.)
were also more abundant in 2019 than 2020 in most
treatments (Fig. S3). On the other hand, chironomids, epifaunal
polychaetes, and platyhelminthes were much more abundant in
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Rapid faunal colonization in restored eelgrass

2020 than 2019 (Figs. 5 & S3), but this pattern was reversed in
2020, particularly in the medium and small plots (Fig. 5).
Amphipods were more abundant in the meadow than the planted
plots in 2019, but more abundant in the smaller planted plots
than the meadow in 2020 (Fig. 5). Finally, infaunal polychaetes
were more common in the unvegetated sediment and in the
medium and small planted plots than the meadow and larger
plots in both years (Fig. 5).

The relative proportion of most epifauna and infauna
functional traits were similar across treatments and years
(Figs. 6 & 7). Among the notable differences between years
for both epifauna and infauna were shifts in life span
(a decrease of long-lived (>5 years) and increase in short-lived
(<1 year) organisms), mobility (a decrease in mobile organ-
isms), feeding mode (a decrease of sub-surface feeders and
increase in predators), and diet (a decrease of detritivores and
increase in carnivores) (Figs. 6 & 7).

Discussion

Eelgrass and Faunal Recovery

Both the shoot density and biomass of eelgrass in the planted
plots increased from 2019 to 2020, though they had not yet
reached the values observed in the reference meadow. We also
noted a twofold difference in eelgrass biomass within the
meadow between 2019 and 2020. This may be due to differing
environmental conditions such as light or temperature, which
could have affected growth over the season or slight differences
in the timing of the natural leaf loss in late summer (Baden &
Pihl 1984). Despite lower eelgrass density and biomass than in
the reference meadow, colonization of the planted eelgrass plots
by epifaunal invertebrates was rapid: within one growing season
(3 months), epifaunal density was 50-75% that of the meadow,
and within the range of previously published data on eelgrass
epifauna density in the Skagerrak (Baden 1990; Riera et al.
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2020). Riera et al. (2020) also found no correlation between epi-
fauna abundance and eelgrass biomass within a wide range (21—
286 ¢ DW m~? of eelgrass biomass, and here we show that a
relatively low threshold of eelgrass biomass (10-20 g DW
m~?) was needed to support a large and diverse invertebrate
community. After 15 months (two growing seasons), epifauna
(including meiofauna) density as well as taxonomic and func-
tional diversity metrics were similar between the meadow and
planted plots, indicating a recovered epifaunal invertebrate com-
munity. Colonization of infaunal invertebrates was slightly
slower: after two growing seasons, density was still lower in
the planted plots than the meadow, while diversity metrics were
similar to the meadow in only two of the four plots. This may
reflect a higher proportion of sessile species in the infauna com-
munity, a longer time for colonization due to the presence of an
existing infauna communities in the bare sand, or longer recov-
ery times for sediment properties and belowground seagrass bio-
mass. For example, though organic carbon and infauna
abundance recovered within 2 years in a restored Amphibolis
antarctica meadow, it took 4-6 years for faunal richness,
belowground biomass, and sediment grain size to become simi-
lar to natural seagrass (Tanner et al. 2021).

Patterns in Faunal Composition and Functional Traits

We expected that differences in, for example, differential trapping
or predation pressure caused by the different patch sizes might
shape the invertebrate communities in the different treatments as
previously observed in many studies (Bostrom et al. 2006; Yar-
nall et al. 2022 and references therein). However, we did not
observe any consistent relationships between patch size and the
density of any of the faunal groups, nor were any of the patterns
we observed consistent between years. We did note that several
measures (eelgrass density, eelgrass biomass, total faunal abun-
dance) indicated that the “Large” treatment was the least effective,
but this is likely a reflection of this plot being located slightly shal-
lower than the others, and subject to different environmental con-
ditions (pers. obs.). Nematodes and harpacticoid copepods were
the most abundant epifaunal groups, with similar densities in the
planted plots and the meadow, as seen in previous studies of sea-
grass fauna in the area (Baden 1990; Riera et al. 2020) while the
infauna was dominated by polychaetes. However, due to different
sieve size used (0.2 mm for epifauna vs. 0.5 mm for infauna), the
two groups are not directly comparable.

In 2019, epifaunal gastropods (mostly Rissoid species) in the
planted plots quickly reached densities higher than the meadow
and on par (1-2000 m’2) with previous studies (Baden 1990;
Riera et al. 2020). These species are opportunistic, fast colonizers
with planktotrophic larvae and play an important role as epiphyte
grazers (Jaschinski et al. 2011; Avila et al. 2012). In the infauna
samples, gastropods were represented mostly by epibenthic
Hydrobids, and these were present in similar densities in the
meadow, planted plots, as well as bare sand plots. Hydrobids are
generalist detritus feeders, and not specifically associated with eel-
grass. Epifaunal bivalves (dominated by the blue mussel Mytilus
edulis) also quickly colonized planted eelgrass in the first year

and were more abundant in the checkerboard plots than the
meadow and continuous plots. This likely represents an edge effect
in which the eelgrass blades are trapping bivalve larvae (Carroll
et al. 2012). On the other hand, infaunal bivalves (including epi-
benthic My. edulis and infaunal Macoma balthica) were much less
common in the planted plots than in the meadow. Eelgrass shoots
likely represent temporary habitat for juvenile bivalves, which set-
tle on the shoots in early summer, but migrate to become epi-
benthic in late summer, either within the eelgrass or in rockier
habitats (Moller et al. 1985; Baden 1990; Bostrom & Bonsdorff
1997; Baden et al. 2021). Both mussels and clams may play an
important role in fertilizing and stabilizing sediment and thus facil-
itating restored seagrass (Gagnon et al. 2020; Meysick et al. 2020).
In 2020, both gastropods (dominated by Rissoids) and bivalves
(dominated by My. edulis) had unusually low abundances in all
treatments (except for carnivorous Retusa truncatula in unvege-
tated plots), though the reasons for this are unclear. One possible
explanation could be much higher densities of the invasive cteno-
phore Mnemiopsis leidyi along the Swedish west coast in 2020
than 2019 (3-5 times higher densities; data from Swedish Meteo-
rological and Hydrological Institute SMHI, https://sharkweb.smbhi.
se/hamta-data/). Mnemiopsis leidyi blooms from August could
potentially decimate the planktotrophic larvae of small gastropods
settling in eelgrass in late summer (Baden 1990), but further sam-
pling and experimentation would be needed to verify this.

Both epifaunal (Ericthonius spp., Microdeutopus gryllotalpa,
Monocorophium insidiosum) and infaunal (Corophium volutator)
amphipods were less abundant in the planted plots than meadow
in 2019, indicating slower colonization than mollusks. However,
in 2020, this trend was reversed, and they were especially abun-
dant in the smaller plots. As amphipods have non-planktonic
reproduction with brood pouches, they may thus have slower col-
onization of planted plots. However, once established, they may
move to the smaller plots due to lower predation from intermedi-
ate fish predators which avoid the less dense planted plots and
open spaces between (Baden et al. 2012). Though our sampling
method was not targeted toward larger invertebrates, we found
higher densities of decapods (especially Palaemon spp.) in 2019
than 2020. Epifaunal polychaete (mostly Platynereis dumerilii)
density decreased with plot size but was 3—5 times more abundant
in 2020 than 2019. As this species builds tubes on seagrass
shoots, this likely represents a response to higher substrate avail-
ability. On the other hand, infaunal polychaetes (dominated by
Capitella capitata and several Nereid species) were more abun-
dant in the medium and small plots, in similar densities to the
unvegetated plots, while they were less abundant and more simi-
lar to the meadow in the continuous and large plots. This likely
reflects a longer transition time from the original infaunal commu-
nities to the eelgrass-associated communities in smaller plots.
Chironomid larvae were more common in 2020 than 2019,
though with no consistent differences between treatments, sup-
porting another recent study showing that they have become an
important part of the faunal communities in eelgrass meadows
over the last 20 years (Riera et al. 2020). Other faunal groups
were highly variable, and overall, there was no clear plot size
favored across groups.
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Rapid faunal colonization in restored eelgrass

This study is one of the first to explore how functional traits
recover in restored eelgrass. In this case, we found that, as species
composition was similar between the meadow and the planted
plots, the functional trait composition also reflected this similarity.
The shift we observed in some functional traits between years also
reflects the temporal shift in community composition. Invertebrate
communities in both the meadow and planted plots showed a
diverse range of functional traits, including multiple sizes, trophic
positions, feeding modes, and mobility. Somewhat surprisingly,
we found only a slight increase in the proportion of individuals with
a pelagic larval phase in the planted plots in the infauna only, and
no difference in the epifauna, indicating that invertebrates are not
only colonizing through larval dispersal. Other dispersal mecha-
nisms are also at play, with some larger organisms likely colonizing
through their own power (especially epifaunal species, which
include many species able to swim or crawl such as crustaceans),
or through rafting or drifting with tidal currents from the meadow
to the planted plots in the shallower part of the bay (Edgar 1992;
Orth 1992; Bostrom & Bonsdorff 2000). Here, the distance
between the plots and the meadow was <100 m; pelagic larval dis-
persal is likely to be more important in the colonization of restored
seagrass areas that are further from intact meadows.

The Importance of Patch Size and Temporal Variation

The lack of consistent relationships between patch size and den-
sity or invertebrate body size indicates that patch size was not a
primary driver of invertebrate colonization, despite a large body
of literature indicating the contrary due to differences in, for
example, predation pressure or food availability (Irlandi 1997;
Bell et al. 2001). However, differences between the planted plots
and meadow were noticeable, some of which could potentially
be attributed to differing densities of intermediate predators.
However, our sampling was aimed at small invertebrates, and
though we did capture some larger decapod predators (Palae-
mon spp., Carcinus maenas), additional sampling using traps,
gill nets, or video monitoring would be needed to explore
whether and how mesopredators use the planted plots in com-
parison to the meadow. Predation, particularly by fish, is known
to have a strong influence on eelgrass ecosystems in the North
and Baltic Seas, and trophic cascades caused by changes in pred-
ator communities have been linked to shifts in eelgrass and asso-
ciated communities (Baden et al. 2012). Here, we observed a
strong shift in community structure (also reflected in the func-
tional traits) between 2019 and 2020, particularly a notable
decline in mollusks. Though this may have been due to preda-
tion by an invasive ctenophore, as described above, predation/
consumption assays combined with stable isotope studies
would be needed to unravel trophic dynamics in restored
eelgrass meadows (as previously carried out in natural
meadows; Jephson et al. 2008; Thormar et al. 2016; Gagnon
et al. 2021b). Whatever the cause of these community shifts,
our results show the complex, dynamic nature of seagrass
meadows and their associated communities.

The high temporal variation and community shift we
observed also shows that beyond planting methods and scale,
monitoring of reference sites and restoration projects deserve

careful consideration. Metrics of restored areas should be com-
pared to metrics of the reference site taken at the same time,
rather than comparing different areas across different years.
The idea of a “restored state” should not be considered as a
static measure, but instead focused on a community that resem-
bles the current reference site both taxonomically and function-
ally. Given the similarity in communities between the meadow
and the planted plots, we assume that the meadow is acting as a
source population for most species. In cases where natural sea-
grass meadows are further away, the choice of a reference site
may be more difficult, as restored communities may instead
reflect ambient available communities in surrounding habitats,
which might be rockweed or filamentous algae. Overall, we
show that restored eelgrass habitats rapidly become habitat for
an abundant and diverse invertebrate fauna, which over time
is likely to lead to increased ecosystem service provisioning
and support increased coastal biodiversity. We therefore sug-
gest that planting eelgrass in a checkerboard pattern can be an
effective method for large-scale restoration that results in simi-
lar outcomes for the epifaunal and infaunal communities while
using fewer shoots than planting in a continuous method. We
expect that, as the eelgrass continues to grow and fill the bare
patches between plots, forming a continuous meadow, the
restored habitat will provide similar biodiversity and produc-
tion to support higher trophic levels as natural meadows
do. In a practical sense, as faunal abundance and diversity were
similar across plots, the best practice is likely to consider patch
sizes that are most efficient to plant in a specific environment.
We also note that without replicating this study in a variety
of environmental conditions, these results may not hold true
in, for example, highly hydrodynamic areas, where less space
between plots may be necessary to maintain intraspecific facil-
itation. Although we show seagrass restoration is an effective
method to rapidly enhance coastal biodiversity, we point out
the importance of context-dependency and testing methods to
ensure their effectiveness in different environmental settings.
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