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Abstract Community detection allows understanding how networks are or-
ganised. Ranging from social, technological, information or biological networks,
many real-world networks exhibit a community structure. Consensual com-
munity detection fixes some of the issues of classical community detection like
non-determinism. This is often done through what is called a consensus ma-
trix. We show that this consensus matrix is not filled with relevant information
only, it is noisy. We then show how to filter out some of the noise and how it
can benefit existing algorithms.
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1 Introduction

Graphs representing real-world data exhibit particular features that make
them far from regular. The distribution of edges is not homogeneous: parts
of the graph are densely connected, while between such dense parts, there
tend to be only a few edges. Such feature of real-world graphs is called com-
munity structure. Finding these densely connected parts is called community
detection. In social graphs, community detection could help identify group of
people such as families, friends or co-workers.

Many community detection algorithms exist like Walktrap, Infomap or
Louvain [1]. Some algorithms are non-deterministic like the latter, where the
communities produced are determined by the order in which the nodes are
visited. Since the nodes may be visited in any order, such an algorithm may
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produce different partitions of communities. To get a deterministic result, we
combine the information of different partitions of communities into consensual
communities [2].

Our contribution is twofold: we show that the information from the differ-
ent partitions of communities is noisy. Then, when combining the partitions
into consensual communities, we show that some of the noise can be avoided.

2 Consensual Communities

A graph G = (V,E) is made of a set of nodes V and a set of edges E ⊆ V ×V ,
where |V | = n and |E| = m. Communities form a partition of the nodes of the
graph. That is, each node belongs to exactly one community. Lancichinetti,
Fortunato and Radicchi (LFR) have proposed a model to generate synthetic
graphs with a known community structure [3]. Those graphs are generated
with a mixing parameter µ that defines the proportion of edges between com-
munities. It ranges from 0 to 1, and the smaller µ, the easier it is to detect
communities. The Modularity measures the quality of a partitions of a graph
into communities. When the ground-truth communities are known, the NMI
measures how close they are to a set of discovered communities. The Edge
Clustering Coeffieicnt (ECC (i, j)) is a similarity metric between two nodes i
and j [5].

Since most community detection algorithms are non-deterministic, running
np times an algorithm A on a graph G may result in different partitions. We
define a consensus matrix, C, where Cij is the number of times that nodes
i and j were put in the same community by A across the np executions,
called the consensus coefficient of i and j. Consensual communities can then
be computed by building the consensus graph GC , whose adjacency matrix is
C. One way to derive the consensual communities is to set a threshold λ, and
remove the edges of GC whose weight is lower than λ. The resulting connected
components would be the consensual communities [6]. It is also possible to
execute again A on GC until convergence [2].

Note that the consensus matrix is an n×n matrix. Filling such a matrix is
a lengthy process that requires a lot of memory. Different authors worked on
improving this computation, as in Tandon’s algorithm [7] or ECG [4], where
only the entries Cij that correspond to edges (i, j) of G are computed. This
brings the number of entries from n2 down to m, the number of edges in G.

3 Identifying and filtering the noise

We show that the consensus matrix C is noisy. To do so, we generate an
LFR graph G (along with its ground-truth communities). We also use the
ECC, which allows ordering our pairs of nodes. Next, we execute np times a
community detection algorithm A on G. Finally, we build a consensus matrix
C, but we fill it one entry Cij at a time in increasing order of ECC(i, j). In case
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of a tie, we break it by selecting an arbitrary pair of nodes among the tie. After
each addition in the incomplete consensus matrix C, we build the associated
partial consensus graph GC and execute A on GC . We then compute the
NMI between the LFR ground-truth communities and the communities we
just computed. We iterate this way until C is completely filled. This method
allows us to study how the NMI varies based on the number of entries in C.
Figure 1 shows the NMI as a function of the number of entries in C, for LFR
graphs with 1 000 nodes, and 4 different values of µ. As we fill C, we observe
that the NMI increases, reaches a maximum, then decreases. Notice that the
maximum NMI corresponds to a consensus matrix that is far from filled.
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Fig. 1: NMI vs the number of entries of C, respectively for µ = .5, .6 and .7

In real scenarios, we do not know the ground truth communities, so we
cannot compute the NMI. We therefore need to decide beforehand how many
entries of C need to be computed to get as close as possible to the maxi-
mum NMI. Our experiments show that the average modularity Q of the np

executions of A (G) is strongly correlated to the threshold on the ECC τ be-
low which entries should not be added to C. Thus, from Q, we can deduce
when to stop filling C. We then feed the consensus graph GC to existing al-
gorithms. We call Tandon Filtered the heuristic that feeds the consensus
graph GC to Tandon, and ECG Filtered when we feed it to ECG. We call
Generic Filter the approach that feeds GC back to A one last time. Note
that when the algorithm that is fed with GC supports weighted graphs, we
weight the edges of GC with their consensus coefficient.

To validate our approach, we generate LFR graphs with 10 000 nodes, with
different values of µ. We choose A = Louvain, and we execute our filtered
and non-filtered algorithms on those graphs1. Figure 2 shows the NMI and
the running time as a function of µ. ECG filtered provides a higher NMI
than ECG, at the cost of a higher running time, due to the computation
of the ECC. Tandon Filtered yields a comparable NMI, but takes longer
than Tandon because of the computation of the ECC. The Generic Filter
provides a higher NMI than ECG, but lower thanTandon, but allows working
on bigger graphs than Tandon thanks to its better running time. We observe
a high NMI, then a sharp decrease for our filtered approaches. This is because

1 All the implementations are available on Software Heritage.

https://archive.softwareheritage.org/swh:1:cnt:4b787656631739f059695c3cc7cf7787812b4eae;origin=https://gitlab.univ-lr.fr/ahuche01/pij_correlation;visit=swh:1:snp:b023c8b4545faa6d4ad390512012bed2cd098a5e;anchor=swh:1:rev:dd1361356c36db71170a60a3750b95c9d8ca63af;path=/main_new.py;lines=339
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Fig. 2: NMI as a function of µ, LFR graphs with 10 000 nodes (left); Running
time as a function of the size of the graph (number of nodes), for LFR graphs
with µ = 0.6 (right)

for high µ, the communities do not correspond to dense parts of the graphs
anymore, so we tend to filter out intra-community edges.

We also applied our filters on real graphs and obtained similar results.

4 Conclusion and future work

We have shown that the information in the consensus matrix can be noisy
but that it is possible to filter out some of the noise. We then used these
observations to improve existing algorithms, and verified the effectiveness of
our approach on synthetic and real graphs.

We believe that our noise filtering method would be useful for most al-
gorithms that use a consensus matrix. Moreover, some algorithms perform
community detection in several iterations, it could be worthwhile to study the
effect of filtering the graph at each iterations.
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