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Community detection allows understanding how networks are organised. Ranging from social, technological, information or biological networks, many real-world networks exhibit a community structure. Consensual community detection fixes some of the issues of classical community detection like non-determinism. This is often done through what is called a consensus matrix. We show that this consensus matrix is not filled with relevant information only, it is noisy. We then show how to filter out some of the noise and how it can benefit existing algorithms.

Introduction

Graphs representing real-world data exhibit particular features that make them far from regular. The distribution of edges is not homogeneous: parts of the graph are densely connected, while between such dense parts, there tend to be only a few edges. Such feature of real-world graphs is called community structure. Finding these densely connected parts is called community detection. In social graphs, community detection could help identify group of people such as families, friends or co-workers.

Many community detection algorithms exist like Walktrap, Infomap or Louvain [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF]. Some algorithms are non-deterministic like the latter, where the communities produced are determined by the order in which the nodes are visited. Since the nodes may be visited in any order, such an algorithm may produce different partitions of communities. To get a deterministic result, we combine the information of different partitions of communities into consensual communities [START_REF] Lancichinetti | Consensus clustering in complex networks[END_REF].

Our contribution is twofold: we show that the information from the different partitions of communities is noisy. Then, when combining the partitions into consensual communities, we show that some of the noise can be avoided.

Consensual Communities

A graph G = (V, E) is made of a set of nodes V and a set of edges E ⊆ V × V , where |V | = n and |E| = m. Communities form a partition of the nodes of the graph. That is, each node belongs to exactly one community. Lancichinetti, Fortunato and Radicchi (LFR) have proposed a model to generate synthetic graphs with a known community structure [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. Those graphs are generated with a mixing parameter µ that defines the proportion of edges between communities. It ranges from 0 to 1, and the smaller µ, the easier it is to detect communities. The Modularity measures the quality of a partitions of a graph into communities. When the ground-truth communities are known, the NMI measures how close they are to a set of discovered communities. The Edge Clustering Coeffieicnt (ECC (i, j)) is a similarity metric between two nodes i and j [START_REF] Radicchi | Defining and identifying communities in networks[END_REF].

Since most community detection algorithms are non-deterministic, running n p times an algorithm A on a graph G may result in different partitions. We define a consensus matrix, C, where C ij is the number of times that nodes i and j were put in the same community by A across the n p executions, called the consensus coefficient of i and j. Consensual communities can then be computed by building the consensus graph G C , whose adjacency matrix is C. One way to derive the consensual communities is to set a threshold λ, and remove the edges of G C whose weight is lower than λ. The resulting connected components would be the consensual communities [START_REF] Seifi | Community cores in evolving networks[END_REF]. It is also possible to execute again A on G C until convergence [START_REF] Lancichinetti | Consensus clustering in complex networks[END_REF].

Note that the consensus matrix is an n × n matrix. Filling such a matrix is a lengthy process that requires a lot of memory. Different authors worked on improving this computation, as in Tandon's algorithm [START_REF] Tandon | Fast consensus clustering in complex networks[END_REF] or ECG [START_REF] Poulin | Ensemble clustering for graphs[END_REF], where only the entries C ij that correspond to edges (i, j) of G are computed. This brings the number of entries from n 2 down to m, the number of edges in G.

Identifying and filtering the noise

We show that the consensus matrix C is noisy. To do so, we generate an LFR graph G (along with its ground-truth communities). We also use the ECC, which allows ordering our pairs of nodes. Next, we execute n p times a community detection algorithm A on G. Finally, we build a consensus matrix C, but we fill it one entry C ij at a time in increasing order of ECC(i, j). In case of a tie, we break it by selecting an arbitrary pair of nodes among the tie. After each addition in the incomplete consensus matrix C, we build the associated partial consensus graph G C and execute A on G C . We then compute the NMI between the LFR ground-truth communities and the communities we just computed. We iterate this way until C is completely filled. This method allows us to study how the NMI varies based on the number of entries in C. Figure 1 shows the NMI as a function of the number of entries in C, for LFR graphs with 1 000 nodes, and 4 different values of µ. As we fill C, we observe that the NMI increases, reaches a maximum, then decreases. Notice that the maximum NMI corresponds to a consensus matrix that is far from filled. In real scenarios, we do not know the ground truth communities, so we cannot compute the NMI. We therefore need to decide beforehand how many entries of C need to be computed to get as close as possible to the maximum NMI. Our experiments show that the average modularity Q of the n p executions of A (G) is strongly correlated to the threshold on the ECC τ below which entries should not be added to C. Thus, from Q, we can deduce when to stop filling C. We then feed the consensus graph G C to existing algorithms. We call Tandon Filtered the heuristic that feeds the consensus graph G C to Tandon, and ECG Filtered when we feed it to ECG. We call Generic Filter the approach that feeds G C back to A one last time. Note that when the algorithm that is fed with G C supports weighted graphs, we weight the edges of G C with their consensus coefficient.

To validate our approach, we generate LFR graphs with 10 000 nodes, with different values of µ. We choose A = Louvain, and we execute our filtered and non-filtered algorithms on those graphs 1 . Figure 2 shows the NMI and the running time as a function of µ. ECG filtered provides a higher NMI than ECG, at the cost of a higher running time, due to the computation of the ECC. Tandon Filtered yields a comparable NMI, but takes longer than Tandon because of the computation of the ECC. The Generic Filter provides a higher NMI than ECG, but lower than Tandon, but allows working on bigger graphs than Tandon thanks to its better running time. We observe a high NMI, then a sharp decrease for our filtered approaches. This is because for high µ, the communities do not correspond to dense parts of the graphs anymore, so we tend to filter out intra-community edges.

We also applied our filters on real graphs and obtained similar results.

Conclusion and future work

We have shown that the information in the consensus matrix can be noisy but that it is possible to filter out some of the noise. We then used these observations to improve existing algorithms, and verified the effectiveness of our approach on synthetic and real graphs. We believe that our noise filtering method would be useful for most algorithms that use a consensus matrix. Moreover, some algorithms perform community detection in several iterations, it could be worthwhile to study the effect of filtering the graph at each iterations.
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 1 Fig. 1: NMI vs the number of entries of C, respectively for µ = .5, .6 and .7
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 2 Fig. 2: NMI as a function of µ, LFR graphs with 10 000 nodes (left); Running time as a function of the size of the graph (number of nodes), for LFR graphs with µ = 0.6 (right)
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  All the implementations are available on Software Heritage.
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