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Abstract
Numerical interactions leading to users sharing textual content published by others are naturally represented
by a network where the individuals are associated with the nodes and the exchanged texts with the edges. To
understand those heterogeneous and complex data structures, clustering nodes into homogeneous groups
as well as rendering a comprehensible visualisation of the data is mandatory. To address both issues, we
introduce Deep-LPTM, a model-based clustering strategy relying on a variational graph auto-encoder
approach as well as a probabilistic model to characterise the topics of discussion. Deep-LPTM allows to build
a joint representation of the nodes and of the edges in two embeddings spaces. The parameters are inferred
using a variational inference algorithm. We also introduce IC2L, a model selection criterion specifically
designed to choose models with relevant clustering and visualisation properties. An extensive benchmark
study on synthetic data is provided. In particular, we find that Deep-LPTM better recovers the partitions of
the nodes than the state-of-the art ETSBM and STBM. Eventually, the emails of the Enron company are
analysed and visualisations of the results are presented, with meaningful highlights of the graph structure.
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1 INTRODUCTION AND RELATED WORK

Numerical interactions between individuals often imply the creation of texts. For instance, on social media such as Twitter, it is
possible to publish some content, a tweet or a post, that will in turn be republished, or re-twitted, by other accounts. Also, it is
possible to mention another account directly in the publication. In the same way, the exchange of mails between collaborators can
be seen as connections between accounts exchanging documents. Both examples can be represented by a network with the nodes
corresponding to the accounts, and the edges to the exchanged texts. Such data structure is particularly difficult to apprehend, due
to the heterogeneity and the volume of the data. One solution is to cluster homogeneous nodes into groups to obtain intelligible
and useful information. However, very few methods performing node clustering are actually able to simultaneously exploit both
the texts present on the edges, and the connections.

In the following, we first present the advancements in the statistical network analysis field. We then review some of the
core probabilistic models that can capture the main topics in a corpus of texts. Eventually, we close this section with models
considering both texts and networks to cluster nodes, before introducing the contribution of the present work.

Statistical network analysis
Network analysis first started with heuristic based methods. To obtain uncertainty estimates as well as more robust models,
probabilistic modelling was developed in the second half of the 20th century. Statistical network analysis aims at capturing
information from the network structure and making it intelligible for Human beings. One of the core model to perform model-
based clustering on networks has been the stochastic block model (SBM) [1, 2, 3]. It assumes that the nodes are grouped into
clusters and that the edges are independent of the nodes given their respective clusters. This model allows to discover any
connectivity pattern. Another line of work has focused on obtaining relevant representations of the data in a Euclidean space. For
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instance, the latent position model (LPM, [4]) obtains an informative representation of the network in a Euclidean space by
assuming that each node can be modelled by a Gaussian variable in a low dimensional space. LPM was extended to the latent
position clustering model (LPCM, [5]). The authors assumes that the latent node positions are sampled from a mixture of normal
distributions. This extension incorporates the clustering within the model and therefore combines the clustering task with the
network representation. A review of standard models for statistical network analysis can be found in [6] and [7].

Deep probabilistic model for graph clustering
Deep neural networks (DNN) have been introduced to perform clustering in the Euclidean setting, as described in [8]. The use of
DNN, as a parametric function to encode data into a latent representation, has soared thanks to the variational auto encoders
(VAE). This method rely on variational Bayes inference and the reparametrisation trick [9, 10]. The interested reader can refer
to [11]. Unfortunately, most traditional VAE can only be applied to Euclidean data, and, in particular, cannot be employed
for network analysis. This issue was solved with the variational graph auto-encoder (VGAE, [12]) that first combined the
advancement in graph neural networks, namely the graph convolutional networks (GCN, [13, 14]) and deep probabilistic models.
VGAE improves upon state-of-the-art methods for the link prediction task and is capable of using node features. In [15], the
authors regularise VGAE by using an adversarial inference strategy to improve the results. Unfortunately, those models rely on
external methods, such as k-means, on the posterior node representations, to achieve node clustering. As an answer to this limit,
[16] presented an extension of the overlapping stochastic block model [17]. They proposed to encode the node embeddings with
a NN. Lately, [18] combined the two and introduced the deep latent position model (Deep-LPM). Indeed, the model relies on
VGAE and assumes that the latent representations are distributed according to a mixture of Gaussians, depending on the node
cluster memberships. Their results advocate the incorporation of the clustering into the latent representations.

Topic Modelling
Like network analysis, the field of topic modelling was first developed using heuristics and was only studied from a statistical
perspective at the end of the 20th century. [19] provided statistical foundations for the latent semantic index (LSI) and [20]
introduced a mixture model to represent the vocabulary distribution where each component modelled a specific topic. Ultimately,
the latent Dirichlet allocation model (LDA) was proposed by [21]. They assumed that the topic proportions of the documents are
sampled from a Dirichlet distribution. Many extensions of LDA have been proposed, including the use of a normal-logistic prior
to better model the correlations between topics [22]. In the end, the gap between deep generative modelling and topic models
was bridged by [23] who introduced a variational distribution parametrised by a DNN. More recently, the embedded topic model
(ETM, [24]). allowed to use embeddings in order to represent both the words and the topics in the same vector space. They are
used as part of the decoder and can be pre-trained on large datasets to incorporate semantic meaning, as illustrated in the original
paper with examples relying on continuous bag of words [25].

Joint analysis of network and texts
While both topic modelling and statistical network analysis gave rise to many publications over the last 20 years, only few works
have combined the two approaches. The community-user topic model (CUT, [26]) added a latent variable to the author-topic
model (AT, [27] to represent the communities either as a set of co-authors or as a set of topics. Thereafter, the community-author-
recipient-topic model (CART, [28]) used communities both at the document generation level and at the author and recipient
generation level which corresponds to the network generation. However, the high number of parameters combined with the
inference based on a Gibbs sampler does not allow to scale those models to large datasets. The topic-link LDA, presented in
[29], also offers a joint-analysis of texts and links in a unified framework by conditioning the generation of a link on both the
topics within the documents and the community of authors. The inference relies on a variational EM algorithm to scale the
approach to large datasets. However, this method only deal with undirected networks. Finally, the topic-user-community models
(TUCM) was introduced in [30] and was able to discover topic-meaningful communities. The main feature of this model was
its capacity to incorporate different types of interactions, well-suited for social networks applications. The inference relied on
Gibbs sampling approach which can be limiting when dealing with large datasets. More recently, the stochastic topic block
model (STBM) presented in [31] was the first model to handle the simultaneous clustering of nodes and edges while keeping
the inference tractable to large datasets thanks to a variational classification EM based inference. This model was extended in
[32] for the simultaneous clustering of bipartite networks with textual edges. It was also adapted for dynamic networks in [33].
Recently, [34] introduced the embedded topic in the stochastic block model (ETSBM) to incorporate embeddings and semantic
meanings into the word representations. However, despite their modelling qualities, all these approaches do not allow for the
construction of a meaningful representation of the data which characterises both the connections and the documents exchanged.
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True network SBM & LDA ETSBM Deep−LPTM

F I G U R E 1 Illustration of Deep-LPTM main contributions on a synthetic network. The colours of the nodes and of the edges
denote the node clusters and the main topics of the corresponding documents respectively. The true node partition as well as the
true topics of the documents are represented on the left-hand side. The three other figures are based on the respective results of
SBM and LDA (second figure), ETSBM (third figure) and Deep-LPTM (fourth figure). Only Deep-LPTM is able to provide
node positions incorporating information about the network structure as well as the documents content. The four figures were
obtained with the gplot function from the sna library [35]. While the first network is plotted manually to highlight the generative
structure, the two networks in the middle are based on the Fruchterman-Reingold algorithm while the fourth graph uses the
node positions estimated by Deep-LPTM. Contrary to former methods STBM and ETSBM, which require the use of an exterior
method, our methodology provides an end-to-end method tailored for representing networks with clustering properties.

Main contributions and organisation of the paper
The model proposed in the present paper is the first to simultaneously cluster the nodes of a network, uncover the topics in the
texts exchanged between the nodes and to output a representation of both the topics and the edges in a Euclidean space. To this
aim, (i) we propose a generative model assuming that each node and each edge is represented in a latent space by a mixture of
Gaussians. By doing so, we incorporate the clustering in the generative process such that each mixture component models either
a cluster of nodes or the documents exchanged between a pair of clusters of nodes. Moreover, our model distinguishes itself
from former methods by allowing each node or edge to be represented by a latent position and not only by the group it belongs
to. This is illustrated in Figure 1, where the first graph depicts the true node clusters and main topics of the corresponding
documents of a simulated dataset.The second graph gives, for this dataset, the node clusters provided by SBM and the topics
estimated by LDA. SBM does not retrieve the true node partition and does not provide node positions to apprehend the results.
An external algorithm, namely the Fruchterman-Reingold algorithm [36], considering the presence of connections only in the
network, had to be used for graph representation. The third graph is based on state-of-the-art ETSBM and does not recover the
node partition either. Moreover, ETSBM is not able to render a comprehensive representation of the full network. Again, as for
SBM, the Fruchterman-Reingold algorithm had to be used for graph representation Finally, the figure on the right-hand side
presents the Deep-LPTM results. As opposed to the previous methods, Deep-LPTM is able to gather the information about
the network structure as well as the exchanged documents into the node positions while finding the true node partition and
topics. A representation of the graph is directly obtained by the estimation procedure such that no external graph representation
algorithm is needed. As we shall see, the node positions are computed by considering both the connections and the content of
the corresponding documents. (ii) We derive a two-stage variational expectation-maximisation (VEM) algorithm for estimating
the model parameters as well as the posterior parameters of the latent positions. The first stage relies on analytical formulas to
update the cluster probabilities as well as the mixture parameters. The second stage uses a stochastic gradient descent algorithm
to update the expected lower bound with respect to the VGAE parameters and the deep topic model parameters. In particular,
the deep topic model can make the best out of pre-trained embeddings. Thus, introducing semantic meaning into the word
representations is possible as well as learning the representation from scratch. (iii) In order to choose the relevant numbers of
clusters and latent space dimensions, we introduce the integrated classification and latent likelihood (IC2L) for model selection.
It extends the integrated classification likelihood criterion, which was conceived for mixture models, to account for the latent
representations of the nodes and of the edges. The criterion relevance is strongly upheld by the evaluation on synthetic data as
well as the provided real-word use case. Moreover, by selecting a low dimensions regarding the node embedding space, IC2L
praises for models with a strong and direct capacity of representation.
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We close this section with the organisation of the paper. In Section 2, we present the assumptions concerning the generation of
the data. The inference as well as the model selection criterion are presented in Section 3. In Section 4, Deep-LPTM and the
impact of the initialisation are evaluated on synthetic data. An extensive benchmark study against state-of-the-art methods is also
provided. Eventually, the emails of the Enron company are analysed with Deep-LPTM in Section 5. The results as well as the
visualisations are presented to illustrate the ease of interpretation of the model outcomes.

1.1 Notations

In this paper, we are interested in data represented by a graph G := {V , E} where V = {1, . . . , N} denotes the set of vertices.
The set E denotes the edges between the nodes with M = |E | the number of edges. We focus on binary a adjacency matrix
A ∈ MN×N({0, 1}) such that Aij equals 1 if (i, j) ∈ E , and 0 otherwise. The graph is assumed to be directed and without any self
loop. Therefore Aii = 0 for all i ∈ V . Finally, Q denotes the number of clusters of nodes.

Each edge in the graph represents a textual document sent from one node to another. An edge from node i to node j exists or
equivalently (i, j) ∈ E , if and only if node i sent a textual document to node j, denoted Wij. We use a bag-of-word representation
of the texts where Wij =

(
W1

ij , . . . , WV
ij

)
∈ NV denotes the vector of word occurrences in the document between nodes i and j

such that Wv
ij is the number of times word v appears in the document, Mij =

∑V
v=1 Wv

ij is the total number of words in document
Wij and V the size of the vocabulary. Hence, Aij = 1 if Wij exists. The set of documents will be denoted W := (Wij)(i,j)∈E and the
number of topics is denoted by K. Eventually, the simplex of dimension d will be denoted ∆d–1.

2 MODEL

In the following, the assumptions about the graph generation as well as the hypothesis concerning the documents construction
are presented.

2.1 Graph generation

Assuming that the number of clusters Q is fixed before hand, each node i is assumed to belong to a cluster, represented by the
cluster membership variable Ci. The variables Ci, for any i ∈ V , are assumed to be independent and identically distributed (i.i.d)
according to a multinomial distribution such that for any node i ∈ {1, . . . , N}:

Ci ∼ MQ(1,π), (1)

with π ∈ ∆Q–1 and Ci ∈ {0, 1}Q being one hot encoded so that Ciq = 1 if node i belongs to cluster q and Ciq = 0 otherwise.
Thus, denoting C = (C1, . . . , CN)T ∈ MN×Q({0, 1}) the cluster membership matrix, we have:

p(C | π) =
N∏

i=1

Q∏
q=1

π
Ciq
q . (2)

Moreover, given its cluster membership, the node i is assumed to be represented by a Gaussian vector Zi in a p dimensional
latent space such that:

Zi | Ciq = 1 ∼ N
(
µq,σ2

qIp
)

. (3)

Eventually, the connection between two nodes is assumed to depend on the closeness of the node representations in the latent
space. Therefore, denoting ηij := κ – ∥Zi – Zj∥, which accounts for the opposite of the distance between the node latent
representations, the probability for node i to be connected to node j is:

Aij | Zi, Zj,κ ∼ Ber
(

1
1 + e–ηij

)
, (4)
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where a logistic function is used as a link function. For the sake of brevity, we will denote pij = (1 + e–ηij )–1. The probability of
the entire adjacency matrix is given by:

p(A | Z,κ) =
∏
i̸=j

pAij
ij (1 – pij)1–Aij .

Finally, the joint-distribution of the adjacency matrix, the latent node vectors, as well as the cluster memberships can be factorised
as follow:

p(A, Z, C | κ,µ,σ,π) = p(A | Z,κ)p(Z | C,µ,σ)p(C | π). (5)

where µ = (µq)q and σ = (σq)q. It is worth noticing that the model described in Equations (1), (3) and (4) corresponds to the
latent position cluster model [5]. The fundamental difference with our approach for this part of the model will arise in the
inference, as discussed in Section 3.

2.2 Generation of the texts on the edges

At the core of our approach is the motivation to be able to use textual data to obtain more homogeneous and meaningful clusters.
To begin with, we make the assumption that each edge can be represented in a latent space by a Gaussian vector, depending

only on the node cluster memberships. Thus, given (Ci)i∈V , the latent variables Yij are assumed to be i.i.d such that:

Yij | AijCiqCjr = 1 ∼ N (mqr, s2
qrIK), ∀(i, j) ∈ E , (6)

where mqr ∈ RK , sqr ∈ R+.
Moreover, we assume that the topic proportions of the document Wij, denoted θij, can be deduced from the latent variables

such that:

Ỹij = softmax(Yij), (7)

where softmax(x) =
(∑F

f =1 exf

)–1
(ex1 , . . . , exF )⊤ if x ∈ RF.

Hence, assuming that the documents are i.i.d given their corresponding topic proportions, we have for any edge (i, j) ∈ E :

Wij | Aij = 1, θij ∼ MV
(
Mij,β⊤θij

)
, (8)

where βk = softmax(ρ⊤αk) ∈ RV , β = (β1 . . . βK)⊤ ∈ MK×V (R), ρ ∈ ML×V (R), αk ∈ RL and α = (α1 . . . αK) ∈ ML×K(R).
Thus, denoting m = (mqr)qr, s = (sqr)qr, the joint likelihood of the texts, the latent representation of the documents, as well as the
clusters memberships can be computed as:

p(W, Y | A, C, ρ,α, m, s) = p(W | A, Y , ρ,α)p(Y | A, C, m, s), (9)

where m = (mqr)1≤q,r≤Q and s = (sqr)1≤q,r Q.
Figure 2 gives a graphical representation of the generative assumptions presented above. We omitted the parameters for the

sake of clarity but the full version can be found in Appendix A1. Interestingly enough, those assumptions can be linked to
existing models as we shall see in the next section.

2.3 Link with other models

On the one hand, if the topic modelling alone is considered, restricting all topic proportions to be equal for all (i, j) such that
CiqCjr = 1 corresponds to the text modelling in ETSBM [34]. In that sense, Deep-LPTM increases the freedom of each edge
representation compared to ETSBM. Additionally, Deep-LPM corresponds to Deep-LPTM when the textual data present on the
edges are disposed of (or LPCM if no GCN-based encoder is used in the inference strategy). Accordingly, Deep-LPTM prolongs
Deep-LPM and LPCM to networks with textual data. On the other hand, discarding the information provided by the graph and
the clustering of the nodes would correspond to ETM applied on the observed documents. Therefore, Deep-LPTM extends ETM
to texts with a connectivity structure to improve the topic modelling.
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WijAij Observed data

Zi Zj Yij
Latent representation in a vector space

CjCi Clusters

(i, j)

F I G U R E 2 Graphical representation of the model without the parameters for the sake of clarity.

3 INFERENCE

In the next section, the inference of the model is presented as well as the model selection criterion.

3.1 Likelihood

In this work, we consider the marginal likelihood of the network and the texts for parameter estimation. The latent variables
are denoted by C = (Ci)N

i=1, Z = (Zi)N
i=1 and Y = (Yij)(i,j)∈E , and the set of parameters is Θ = {π,µ,σ,κ, m, s,α, ρ} .Thus, the

marginal log-likelihood is given by:

L(Θ; A, W) = log p(A, W | Θ) = log

(∑
C

∫
Z

∫
Y

p(A, W, C, Z, Y | Θ)dZdY

)
. (10)

Unfortunately, this quantity is not tractable since the sum over C requires to compute QN terms. Besides, it involves integrals that
cannot be computed analytically. Therefore, we choose to rely on a variational inference approach for approximation purposes.

3.1.0.1 Decomposition of the marginal log-likelihood
For any distribution R(C, Z, Y), the following decomposition holds:

L(Θ; A, W) = L (R(·);Θ) + KL(R(·)||p(C, Z, Y | A, W)), (11)

where

L (R(·);Θ) = ER

[
log

p(A, W, C, Z, Y | Θ)
R(C, Z, Y)

]
. (12)

Since the Kullback-Leibler divergence is always positive in Equation (11), the ELBO L (R(·);Θ) is a lower bound of the
marginal log-likelihood. Moreover, the closer R(·) is to the posterior distribution of the latent variables, in terms of Kullback-
Leibler divergence, the closer the ELBO is to the marginal log-likelihood. Since the marginal log-likelihood does not depend on
R(·), maximizing the ELBO with respect to R(·) is equivalent to minimizing the Kullback-Leibler divergence between R(·) and
the posterior distribution. To make the ELBO tractable, we restrict the family of variational distributions by considering a mean
field assumption. Moreover, the assumptions in Equations (14) to (16) allow us to take full advantage of the SGD efficiency
to optimise the variational distribution while keeping a high flexibility thanks to the neural network parametrisations of the
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distributions (see, section 2.5 and 2.6 of [37]). The assumptions are given by:

R(C, Z, Y | A, W) = R(C)R(Z | A)R(Y | A, W), (13)

R(C) =
N∏

i=1

Rτi (Ci) =
N∏

i=1

MQ(Ci; 1, τi), (14)

R(Z | A) =
N∏

i=1

RϕZ (Zi | A) =
N∏

i=1

N (Zi;µϕZ (A)i,σ2
ϕZ

(A)iIP), (15)

R(Y | A, W) =
∏
i ̸=j

RϕY (Yij | Wij)Aij =
∏
i ̸=j

N
(
Yij;µϕY (Wij), diag

(
σ2
ϕY

(Wij)
))Aij , (16)

where τ = (τi)N
i=1 with ∀i ∈ {1, . . . , N}, τi ∈ ∆Q–1. Moreover, in Equation 15, the mapping µϕZ : MN×N(R) 7→ MN×P(R)

(σ2
ϕZ

: MN×N(R) 7→ (R+)N respectively) is the mapping normalising the adjacency matrix by its degree, D–1/2AD–1/2, and
encoding the normalised adjacency matrix into the approximated posterior means (standard deviations) of the node latent
positions. The diagonal matrix D is filled with Dii, the degree of node i, for all nodes. The two mappings µϕZ and σ2

ϕZ
rely on a

GCN parametrised by ϕZ [12]. Similarly, in Equation 16, µϕY : MM×V (R) 7→ MM×K(R) (σ2
ϕY

: MM×V (R) 7→ MM×K(R+)
respectively) encodes the documents into the approximated posterior means (standard deviations) of their corresponding latent
vectors. However, the two functions rely on the ETM encoder with parameter ϕY [24]. In practice, in all the experiments we
carried out, we used a feed-forward neural network to encode the documents, with three layers and 800 units on each layer. The
first two layers are shared to encode the variances and the means while the last layer is specific to each vector. Regarding the
encoder of the adjacency matrix, we rely on [12] such that, µϕZ (A) = Ã ReLU(ÃW0)Wµ and logσ2

ϕZ
(A) = Ã ReLU(ÃW0)Wσ,

where Ã = D–1/2AD–1/2 and ReLU(x) = (max(0, x1), . . . , max(0, xF)) if x ∈ RF. µϕZ (·) and logσ2
ϕZ

(·) share the first-layer
parameter W0 ∈ MN×D with D = 10 in all the experiments we carried out, and Wµ, Wσ ∈ MD×P. For the sake of brevity, we
will take the exponential of the encoder of the log variance and consider σ2

ϕZ
(·).

Thus, the ELBO can be decomposed as follow :

L (R(·);Θ) = ER
[
log p(A | Z,κ)

]
+ ER

[
log p(W | A, Y , ρ,α)

]
+ ER

[
log p(C | π)

]
+ ER

[
log p(Z | C,µ,σ)

]
+ ER

[
log p(Y | A, C, m, s)

]
– ER

[
log R(C)

]
– ER

[
log R(Z | A)

]
– ER

[
log R(Y | A, W)

]
. (17)

The computation of each term in Equation (17) is detailed in Appendix B. To optimise the ELBO, we propose here to alternate
between closed form updates and stochastic gradient descent steps thanks to the results presented in the next section.

3.2 Optimisation

3.2.1 Analytical updates

Given a variational distribution R(·) complying with Equations (13) to (16), the model parameters can be updated using
Propositions (1) and (2).

Proposition 1. Let R(·) be a variational distribution complying with Equations (13) to (16). The parameters of the nodes
embeddings distributions maximising the ELBO are given by:

µq =
1

Nq

N∑
i=1

τiqµϕZ (A)i, (18)

σ2
q =

1
pNq

N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

)
, (19)

where Nq =
∑N

i=1 τiq is the posterior mean of the number of nodes in cluster q.

The proof is given in Appendix C.1.0.3. Interestingly, this proposition states that the µq are the weighted mean of the
(approximated) posterior mean nodes positions µϕZ provided by the DNN. It also indicates that the σq are updated as the sum
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of two terms: the first one corresponds to a weighted mean of the posterior variances while the second one is the intra cluster
variance weighted by the posterior clusters membership probabilities τi.

Proposition 2. For a given variational distribution R(·) complying with Equations (13) to (16), with parameters τ ,µϕY ,σϕY , the
parameters of the edge embeddings distributions maximising the ELBO are given by:

mqr =
1

Nqr

N∑
i,j=1

AijτiqτjrµϕY (Wij), (20)

s2
qr =

1
KNqr

N∑
i,j=1

Aijτiqτjr

[
K∑

k=1

σ2
ϕY

(Wij)k + ∥µϕY (Wij) – mqr∥2
2

]
, (21)

where Nqr =
∑N

i,j=1 Aijτiqτjr denotes the expected number of documents sent from cluster q to cluster r under the approximated
posterior distribution.

The proof is given in Appendix C.1.0.4 The interpretation following Proposition 1 can also be applied to Proposition 2 while
a second DNN is used. The main difference lies in the weighting that here corresponds to the probability that the pair of nodes
composing each edge belong to a pair of cluster. For instance, for the edge (i, j), the posterior probability that node i belongs to
cluster q and node j to cluster r is given by τiqτjr.

3.2.2 The stochastic gradient descent

The other model parameters κ, ρ and α, and variational parameters ϕZ and ϕY cannot be updated with analytical formulas
because of the integral involving the variational distribution R(·) in the ELBO. In the following section, we aim at deriving
estimates of the gradients of the ELBO with respect to these parameters, to perform stochastic gradient descent.

3.2.2.1 Model parameters
The partial derivatives of the ELBO with respect to each parameter κ, ρ and α are obtained thanks to Monte-Carlo estimates. For
instance, the gradient of the ELBO with respect to κ is estimated by:

∂

∂κ
L (R(·);Θ) =

∂

∂κ
ER
[
log p(A | Z,κ)

]
= ER

[
∂

∂κ
log p(A | Z,κ)

]
≈ 1

S

S∑
s=1

∂

∂κ
log p(A | Z(s),κ),

where Z(s) = (Z(s)
1 , . . . , Z(s)

N ) and Z(s)
i

i.i.d∼ N (µϕZ (A)i,σ2
ϕZ

(A)iIp). The same computations result in estimates for the partial
derivatives of the ELBO with respect to ρ and α. In practice, we rely on the common practice in the field of VAE and set S = 1.

3.2.2.2 Variational parameters
The last parameters to update are the variational parameters ϕY and ϕZ . Ideally, we would like to use the same computation as in
the previous section. For instance, we would like to compute the following partial derivates of the ELBO with respect to ϕZ :

∂

∂ϕZ
L (R(·);Θ) =

∂

∂ϕZ
ER
[
log p(A | Z,κ) + log p(Z | C,µ,σ) – log R(Z)

]
=

∂

∂ϕZ
ER
[
log p(A | Z,κ)]

]
(22)

–
N∑

i=1

Q∑
q=1

τiq
∂

∂ϕZ
KLZ

iq

(
µϕZ (A)i,σϕZ (A)i,µq,σq

)
, (23)
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with

KLZ
iq

(
µϕZ (A)i,σϕZ (A)i,µq,σq

)
= log

σp
q

σϕZ (A)p
i

–
p
2

+
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

2σ2
q

.

See Appendix B1 for the computational details. Unfortunately, the expectation of the term on the left-hand side of Equation
(22), is taken with respect to the variational distribution which depends on ϕZ . Therefore, the derivation of this quantity is not
straightforward. Thanks to [9] and [10], this difficulty can be tackled by using the reparametrisation trick. In particular, let εi be
a centred, normalised and P-dimensional Gaussian vector. Hence, the vectors Zi and µϕZ (A)i ⊕

[
σϕZ (A)i ⊙ εi

]
have the same

distribution. Therefore, the expectation can be taken with respect to ϵ = (εi)i=1...,N which gives:

∂

∂ϕZ
ER
[
log p(A | Z,κ)]

]
=

∂

∂ϕZ
Eε

[
log p

(
A | µϕZ (A) ⊕

[
σϕZ (A) ⊙ ϵ

]
,κ
)]

where µϕZ (A) ⊕
[
σϕZ (A) ⊙ ϵ

]
=
(
µϕZ (A)i ⊕

[
σϕZ (A)i ⊙ εi

])
i=1,...,N

, ⊙ denotes the Hadamard product and ⊕ the element-wise

sum. A Monte-Carlo estimate of this quantity is derived by sampling S centred and reduced P-dimensional Gaussian vectors ϵ(s)
i

with s = 1, . . . , S, i = 1, . . . , N and with ϵ(s) = (ε(s)
i )i=1,...,N . Plugging it back into (22) gives the following estimate:

∂

∂ϕZ
L (R(·);Θ) ≈1

S

S∑
s=1

[ ∂

∂ϕZ
log p

(
A | µϕZ (A) ⊕

[
σϕZ (A) ⊙ ϵ(s)] ,κ

)]
–

N∑
i=1

Q∑
q=1

τiq
∂

∂ϕZ
KLZ

iq

(
µϕZ (A)i,σ2

ϕZ
(A)i,µq,σ2

q

)
.

The same derivation steps lead to a similar estimate for the partial derivatives of the ELBO with respect to ϕY . Thanks to the low
variances of the gradients estimated with the reparametrisation trick and to avoid increasing the computations, we use a sample
size S = 1, as advised in the VAE literature. In addition, the computation of the partial derivatives is implemented with Pytorch
automatic differentiation framework [38] to take fully advantage of the computational efficiency of GPUs. Moreover, we rely on
the Adam optimiser [39] to carry out the stochastic gradient descent with a learning rate of 0.002 (0.005 respectively) for the
optimiser of κ and ϕZ (ϕY respectively).

3.3 Model selection

To complete the inference, we present IC2L, a new model selection criterion accounting for both the clustering partition as well
as the latent representations. In all previous sections, we considered the number of clusters Q, the number of topics K and the
dimension of the node latent space P fixed before hand. In this section, we aim at selecting the triplet (K, P, Q) that captures
the most information out of the data without over-parametrisation. The integrated complete (or classification) likelihood [40],
denoted ICL, was introduced for mixture models and is now a common model selection criterion in this context.

First, considering a mixture model M , with observed data X, latent cluster memberships C, Q clusters and distribution
parameters in the set Θ, the complete likelihood refers to p(X, C | M , Q,Θ). This quantity depends on both the clustering and the
model parameters. Then, to account for the uncertainty over the set of parameters and to penalise the model complexity, [40]
proposed to integrate over Θ and to evaluate the quantity log p(X, C | M , Q) =

∫
θ∈Θ

log p(X, C | M , Q, θ)dθ. Since the integral
is not tractable for many statistical models, the authors relied on a BIC-like approximation of this quantity. In the present paper,
we propose to extend ICL to include the evaluation of the node embeddings Z, as well as the edge embeddings Y . Denoting M
the model presented in Sections 2.1 and 2.2, we are interested in:

log p(A, W, Z, Y , C | M , Q, K, P) = log
∫
θ

p(A, W, Z, Y , C | θ, M , Q, K, P)p(θ)dθ. (24)

Since this quantity is not tractable, we derive an estimate in the following proposition.
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Proposition 3. Let us consider a model M , as described in Section 2, with Q denoting the number of clusters, K the number
of topics and P the dimension of the node latent space. In addition, let us assume that the prior of the model parameters
fully factorises, as p(κ,π,µ,σ, m, s, ρ,α) = p(κ)p(π)p(µ)p(σ)p(m)p(s)p(ρ)p(α). Then, the IC2L(M , Q, K, P, Ẑ, Ŷ , Ĉ) criterion,
denoted IC2L, is given by:

IC2L = max
θ

log p(A, W, Ẑ, Ŷ , Ĉ | θ, M , Q, K, P) – Ω(M , Q, K, P)

= max
κ

log p(A | Ẑ,κ, M ) –
1
2

log(N(N – 1))

+ max
µ,σ

log p(Ẑ | Ĉ,µ,σ, M , Q, P) –
QP + Q

2
log(N)

+ max
ρ,α

log p(W | A, Ŷ , ρ,α, M ) –
VL + KL

2
log(M)

+ max
m,s

log p(Ŷ | A, Ĉ, m, s, M , K) –
Q2K + Q2

2
log(M)

+ max
π

log p(Ĉ | π, M , Q) –
Q – 1

2
log(N), (25)

with Ẑ, Ŷ and, Ĉ the maximum-a-posteriori estimates, and

Ω(M , Q, K, P) =
1
2

log(N(N – 1))

+
Q(P + 2) – 1

2
log(N)

+
L(V + K) + Q2(K + 1)

2
log(M),

(26)

where each term in Equation (26) corresponds to the penalisation of the BIC-like approximation of the probabilities, as detailed
in Equation (25).

Proof. See Appendix C.2.

Ultimately, the relevance of this criterion as well as the parameters estimation are assessed in the next section on synthetic
data. Moreover, an extensive comparison with baseline methods is provided.

4 NUMERICAL EXPERIMENTS

This section is dedicated to the assessment of the proposed methodology. We start with an introductory example to illustrate the
results obtained with Deep-LPTM. We continue with an evaluation of the initialisation impact on our method. Then, we move on
to Section 4.4 to provide numerical evidence of the robustness of IC2L against the dimensions of the parameter spaces. We close
this section with a benchmark study to compare Deep-LPTM with the state-of-the-art ETSBM and STBM.‡

4.1 Simulation settings

To begin with, we introduce three simulation scenarios to be used for evaluating the methodology on different conditions detailed
hereinafter.

4.1.0.1 Scenarios
• Scenario A is constituted of three communities, each defining a cluster, and four topics. By definition, a community is a group

of nodes more densely connected together than with the rest of the network. For each cluster, a specific topic is employed to
sample the documents associated with the intra-cluster connections. Besides, an extra topic is employed to model documents

‡ Our code is available at https://plmlab.math.cnrs.fr/rboutin/deeplptm_package.

https://plmlab.math.cnrs.fr/rboutin/deeplptm_package
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Scenario A Scenario B Scenario C

F I G U R E 3 Networks sampled from each scenario. The node colours denote the node cluster memberships and the edge
colours denote the majority topic in the corresponding documents.

sent between nodes from different clusters. Hence, by construction, the clustering structure can be retrieved either using the
network or the texts only.

• Scenario B is made of a single community and three topics. Consequently, all nodes connect with the same probability. Then,
the nodes are spread into two clusters using distinct topics. An extra topic is used to model documents exchanged between
the two clusters. Accordingly, the network itself is not sufficient to find the two clusters but the documents are.

• Scenario C comprises three communities and three topics. Two of the communities are associated with their respective topics,
say t1 and t2. Furthermore, following Scenario B, the third community is split in two clusters, one being associated with topic
t1 and the other with t2. Thus, considering both texts and topology, each network is actually made up of four node clusters.
Consequently, both textual data and the network are necessary to uncover the clusters. This scenario will be of major interest
in this experiment section since it ensures that the two sources of information are correctly used to uncover the node partition.

For all scenarios, networks with 100 nodes are sampled and the edges holding the documents are constructed by sampling words
from four BBC articles, focusing each on a given topic. The first topic deals with the UK monarchy, the second with cancer
treatments, the third with the political landscape in the UK and the last topic deals with astronomy. In the general setting, for all
scenarios, the average text length for the documents is set to 150 words. The parameters used to sample data from the three
scenarios are given in Table 1. Moreover, three examples of networks generated from A, B and C are presented in Figure 3. To
summarise, the three proposed scenarios inspect different facets of the model. Scenario A insures that the model rightfully uses
the network structure, Scenario B focuses on the usage of the topics to recover the node partition. Finally, Scenario C combines
the two scenarios to guarantee that both sources of information are correctly utilised simultaneously.

Scenario A Scenario B Scenario C
Q (clusters) 3 2 4
K (topics) 4 3 3

Communities 3 1 3

πqr (connection probabilities)
ψ = 0.25, ϵ = 0.01

ψ ϵ ϵ
ϵ ψ ϵ

ϵ ϵ ψ

 (
ψ ψ
ψ ψ

) 
ψ ϵ ϵ ϵ

ϵ ψ ϵ ϵ
ϵ ϵ ψ ψ
ϵ ϵ ψ ψ


Topics matrix T between pairs of clusters (q, r)

t1 t4 t4
t4 t2 t4
t4 t4 t3

 (
t1 t3
t3 t2

) 
t1 t3 t3 t3
t3 t2 t3 t3
t3 t3 t1 t3
t3 t3 t3 t2


T A B L E 1 Detail of the three simulation scenarios used to evaluate our model.

4.1.0.2 Clustering performance evaluation
The adjusted rand index (ARI) is used as a measure of the closeness between two partitions. In this paper, ARI compares the true
node labels with the node partition provided by a model. In particular, obtaining an ARI of 0 suggests that the clustering is as
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F I G U R E 4 Evolution of the ELBO, as well as the node and edge ARI during the optimisation of Deep-LPTM.

close to the true node labels as a random cluster assignment of the nodes. On the contrary, the closer the ARI is to 1, the better
the results are. Ultimately, an ARI of 1 signifies that the true partition was perfectly recovered (up to a label permutation).

4.1.0.3 Level of difficulty
In order to generate more situations from the three scenarios, we introduce the Hard difficulty to test the model robustness
against two aspects. First, we want to test the model against documents using several topics. Thus, in the Hard difficulty, the
documents are formed of multiple topics such that, for any edge (i, j) with node i in cluster q and node j in cluster r, the topic
proportions are computed as a ratio between the pure topic proportions Ỹ⋆

qr ∈ {0, 1}K , with zeros everywhere except at the
coordinate corresponding to the true topic, and between the uniform distribution over the topics. This combination is controlled
by a parameter ζ such that ζ = 0 corresponds to a pure topic case while ζ = 1 leads to a uniform distribution over the topics. This
translates into:

Ỹqr = (1 – ζ)Ỹ⋆
qr + ζ ∗

(
1
K

, . . . ,
1
K

)⊤

, (27)

with ζ = 0.7 in the Hard setting. The second aspect tested by the Hard setting is the robustness in the presence of less connected
communities. Consequently, the intra-cluster connection probability is decreased from ψ = 0.25 in the classical setting to ψ = 0.1
in the Hard one.

4.2 Main features of Deep-LPTM

This section gives an overview of the main features of Deep-LPTM on one network simulated according to Scenario A, with an
intra cluster connection probability ψ equal to 0.15, an inter-cluster connection probability ϵ fixed to 0.05 and the parameter
controlling the topic proportions ζ set to 0.5. In addition, ϕY , ρ,α, the parameters referring to the topic modelling, are pre-trained
for only 5 epochs with ETM alone. Conversely, the parameters ϕZ ,κ,µ,σ, related to network modelling, are randomly initialised
without pre-training to illustrate the evolution of the node embeddings during the optimisation. In the rest of the paper, those
parameters will be pre-trained by running ETM and Deep-LPM independently before hand.

On the one hand, the evolution of the ELBO as well as the ARI of the nodes and the edges are presented in Figure 4. The node
ARI and the edge ARI increase to reach an ARI of 1 following the evolution of the ELBO. We only display the first 200 epochs
for the sake of clarity, but the entire training is provided in the appendix.

On the other hand, Figure 5 features the evolution of the node latent positions during the training. Interestingly enough,
Deep-LPTM finds a meaningful representation of the network even with a random initialisation. This difficult problem requires
to train the model longer when no initialisation is provided. Hence, the ELBO continues to increase as displayed in Figure D2,
presented in the appendix. In the rest of the paper, the GCN parameters as well as the topic model parameters are initialised
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Iteration 1 Iteration 333 Iteration 666 Iteration 1000

F I G U R E 5 Evolution of the latent node positions during the training of Deep-LPTM.

before hand. In addition, the node cluster memberships probabilities are initialised with a similarity-based method between the
topic proportions Ỹ of the node neighbours [31].

Cluster 1
Cluster 2
Cluster 3

Topic 1
Topic 2
Topic 3
Topic 4

F I G U R E 6 The meta-network is a representation of the network at the
cluster level based on Deep-LPTM estimates. Each cluster is represented by a
node, the node sizes depend on the number of nodes assigned to each cluster,
the node positions as well as the major topics between two connected clusters
(denoted by the colours of the edges) are estimated by the parameters (µq)q as
well as (mqr)qr respectively and the sizes of the edges depend on the number
of connections between two clusters.

1 2 3 4

1 cancer black princess seats
2 cell hole birth david
3 occur gravity charlotte political
4 genes light cambridge lost
5 cancers shadow queen kingdom
6 due credit granddaughter black
7 mutations event duchess party
8 radiation disc palace part
9 princess princess london resentment

10 include horizon great united

T A B L E 2 Topics of the model in Scenario A Easy, represented by the 10 most probable words per topic.

The meta-network, represented in Figure 6, describes the connectivity at the cluster level. The node sizes depend on the
number of nodes assigned to each cluster q and are given by

∑N
i=1 Ĉiq, with Ĉiq = 1 if argmax τi = q and 0 otherwise. The cluster

positions are estimated by (µq)q and the major topics (denoted by the colours of the edges on the figure) between two clusters is
estimated by the argmax mqr for all pairs of clusters (q, r). Finally, the sizes of the edges depend on the number of connections
between clusters, given by

∑N
i,j=1 ĈiqĈjr for all pairs of clusters (q, r).
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ScenarioA ScenarioB ScenarioC
Node ARI Node ARI Node ARI

Easy

Random init 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Dissimilarity init 0.97 ± 0.06 1.00 ± 0.00 0.98 ± 0.03
Deep-LPTM random 1.00 ± 0.00 1.00 ± 0.01 0.63 ± 0.20
Deep-LPTM dissim 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Deep-LPTM - PT random 1.00 ± 0.00 0.90 ± 0.30 0.55 ± 0.15
Deep-LPTM - PT dissim 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Hard

Random init 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Dissimilarity init 0.31 ± 0.14 1.00 ± 0.00 0.38 ± 0.24
Deep-LPTM random 0.80 ± 0.21 0.95 ± 0.05 0.47 ± 0.02
Deep-LPTM dissim 0.99 ± 0.02 1.00 ± 0.00 0.89 ± 0.15
Deep-LPTM - PT random 0.95 ± 0.05 0.73 ± 0.30 0.45 ± 0.04
Deep-LPTM - PT dissim 1.00 ± 0.01 1.00 ± 0.00 0.85 ± 0.18

T A B L E 3 Adjusted rand index (ARI) of the initialisations and the results of Deep-LPTM in terms of node clustering, without
and with pre-trained embeddings (denoted PT in that case). ARI is averaged over 10 graphs, for each scenario and difficulty.

Eventually, Table 2 presents the topics obtained by Deep-LPTM. They are both very interpretable and distinguishable one
from another which is crucial to understand complicated datasets. This will be stressed in the analysis of Enron email dataset in
Section 5.

4.3 Impact of the initialisation and the pre-trained embeddings

This section aims at evaluating the improvement of our method upon the initialisation, with a warm start and without. In this
regard, Table 3 presents the ARI of a random initialisation as well as a dissimilarity initialisation [31] ,denoted random and
dissimilarity respectively, in Table 3. The initialisation alone (without any model name preceding it in the table) as well as
the model with the initialisations (with the model preceding the initialisation) are provided. Moreover, the Deep-LPTM node
clustering is evaluated with and without pre-trained skipgram embeddings [25], denoted PT in the table. The results are obtained
by averaging the ARI over 10 graphs for each scenario and difficulty and can be summarised in three points.

First, in all cases where the initialisation has not already reached an ARI of 1, Deep-LPTM improves the node clustering, even
in difficult settings with no warm-start. For instance, in Scenario A with the Hard setting, the model starts from an ARI of 0.31,
with the dissimilarity initialisation, to reach 0.99 and 1.00 without and with pre-trained embeddings respectively.

Second, the improvement provided by the pre-trained embeddings depends on the scenario. On the one hand, Scenario A
benefits from the usage of pre-trained embeddings which always improves the results. For instance, in the Hard setting with a
random initialisation, the ARI increases from 0.80 ± 21 to 0.95 ± 0.05. On the other hand, Scenario B and C always favour the
results without pre-trained embeddings. As an example, with a random initialisation in the Hard setting, the ARI decreases from
0.95 ± 0.05 to 0.73 ± 0.30 and 0.47 ± 0.02 to 0.45 ± 0.04 in Scenario B and C respectively. The same deduction can be made
with the dissimilarity initialisation. Since Scenario B and C are the ones evaluating the text contribution to the clustering, we
advise not to use pre-trained embeddings.

Finally, the best ARI are all obtained with the dissimilarity initialisation. Consequently, Deep-LPTM will only be initialised
with it in the rest of the paper.

4.4 Model selection

In order to assess the model selection criterion, this section provides two experiments. First, we evaluate IC2L relevancy to
select Q on all three scenarios. Second, we test IC2L efficiency to select the triplet (K, P, Q) on Scenario C specifically.

4.4.0.1 Selection of Q with P = 2 and the true K
Keeping P set to 2 and K fixed to its true value for the moment, Table 4 assesses the effectiveness of IC2L to select the number
of clusters Q. In all three scenarios, IC2L selects the true model 10 times out of 10.
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Scenario A Scenario B Scenario C
Q⋆ = 3 Q⋆ = 2 Q⋆ = 4

Q = 2 0 10 0
Q = 3 10 0 0
Q = 4 0 0 10
Q = 5 0 0 0
Q = 10 0 0 0

T A B L E 4 Number of times a value Q is selected by the IC2L criterion over 10 graphs with the true value of K and P = 2.

K = 2 K = 3 K = 4 K = 5 K = 6

Q = 2 0 0 0 0 0
Q = 3 0 0 0 0 0
Q = 4 0 10 0 0 0
Q = 5 0 0 0 0 0
Q = 6 0 0 0 0 0

T A B L E 5 Number of times a triplet (K, P, Q) is associated with the highest IC2L over 10 graphs simulated according to
Scenario C (Q⋆ = 4 and K⋆ = 3). All the models with the highest IC2L value correspond to P = 2. Therefore, only the table
corresponding to this value is shown.

4.4.0.2 Selection of the triplet (P, K, Q)
Let us now consider selecting the triplet (K, P, Q) simultaneously. Table 5 displays the number of times a triplet is selected by
IC2L for 10 graphs simulated according to Scenario C (with Q⋆ = 4 and K⋆ = 3 the true values). The selected node embedding
dimension is always P = 2, thus, we only provide K and Q in the table. First, it is satisfactory that IC2L always selects the true
number of topics and clusters. Second, by always picking the dimension P = 2, IC2L favours models with a lower complexity. In
our case, this translates into choosing models able to directly visualise the data in two dimensions, simply by plotting the latent
vectors Zi. This suits our purpose of building an explainable model.

4.5 Benchmark

ScenarioA ScenarioB ScenarioC

Easy

SBM 1.00 ± 0.00 -0.00 ± 0.01 0.73 ± 0.05
STBM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
ETSBM 0.99 ± 0.03 1.00 ± 0.00 0.96 ± 0.04
ETSBM - PT 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.05

Deep-LPTM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Deep-LPTM - PT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Hard

SBM 0.97 ± 0.03 0.00 ± 0.00 0.62 ± 0.1
STBM 0.63 ± 0.23 1.00 ± 0.00 0.66 ± 0.19
ETSBM 0.96 ± 0.10 0.90 ± 0.30 0.72 ± 0.25
ETSBM - PT 0.99 ± 0.01 1.00 ± 0.00 0.74 ± 0.21

Deep-LPTM 0.99 ± 0.02 1.00 ± 0.00 0.89 ± 0.15
Deep-LPTM - PT 1.00 ± 0.01 1.00 ± 0.00 0.85 ± 0.18

T A B L E 6 ARI of the node clustering averaged over 10 graphs in all three scenarios for the two levels of difficulty Easy and
Hard. Deep-LPTM, as well as ETSBM, are presented with and without pre-trained embeddings (denoted PT). Moreover, STBM
and SBM are also provided as baselines.



16 BOUTIN, LATOUCHE AND BOUVEYRON

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10

F I G U R E 7 Deep-LPTM representation of Enron email network. The nodes positions, the node cluster memberships
(denoted by the colour of the nodes) as well as the majority topic in the documents (denoted by the colour of the edges) are
estimated by Deep-LPTM.

We close this section with a benchmark study presented in Table 6 to compare Deep-LPTM with state-of-the-art ETSBM and
STBM. We also provide SBM and Deep-LPM as baselines even though they are not able to take into account the text edges. As
in the previous sections, the table presents the average of the ARI over 10 graphs. Each graph result is obtained by running each
method with five different initialisations and by taking the one resulting in the highest ELBO. The table is presented for three
different models, namely STBM, ETSBM and Deep-LPTM. The last two models are evaluated with and without pre-trained
embedding. In all cases, Deep-LPTM is either as good as or better than other models. In particular, in Scenario C with difficulty
Hard, the ARI of Deep-LPTM node clustering is higher than all other methods, by at least 0.15. Likewise, in Scenario A with
difficulty Hard, Deep-LPTM always recover the true partition while STBM only reaches an ARI of 0.66 ± 0.18.

5 APPLICATION TO THE ANALYSIS OF THE ENRON EMAIL NETWORK

Enron, formed in 1985, was an American company selling natural gas in North America. In 2001, the securities and exchange
commission (SEC) opened an investigation on October, 31th, for fraud, while on August, 14th, the company was "probably
in the strongest and best shape that it [had] probably ever been in" according to its CEO. On early December the same year,
the company filed for the largest bankruptcy at that time. We propose here to concentrate on the critical period September, 1st
to December, 31th leading to the downfall of the company in order to understand the organisation of the company during this
crucial period. Thanks to the decision of the federal energy regulatory commission (FERC), the dataset is publicly accessible,
and contains all 20,940 emails exchanged between 149 employees. All edges holding multiple messages were coerced into a
single meta-message by stacking the documents together. As a result, the network holds 1,234 edges between the 149 employees.
The dataset can be found at https://www.cs.cmu.edu/~./enron/.

https://www.cs.cmu.edu/~./enron/
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F I G U R E 8 The 10 most probable words of each topic according to Deep-LPTM.

The estimation of Deep-LPTM is conducted for all triplets (Q, K, P) where Q ∈ {5, 7, 10}, K ∈ {3, 5, 7, 10} and P ∈
{2, 4, 8, 16}. The highest value of IC2L corresponds to the triplet (Q, K, P) = (7, 10, 2). Deep-LPTM clustering results are
displayed in Figure 7. The node cluster memberships as well as the edge majority topics are represented by their respective
colours. In addition, the topics are interpreted by looking at their corresponding most probable words in Figure 8. Interestingly,
IC2L selected a low-dimensional node latent space, which fits with the observations made in [4].

5.0.0.1 Topics analysis
The topics can be depicted as follow:

• Topic 1 concerns Charles Watson, Dynegy CEO at the time, that negotiated a deal to finance Enron, involving the transwestern
pipeline, and to merge the companies

• Topic 2 refers to regional energy
• Topic 3 deals with business operations
• Topic 4 is related to office supplies and day-to-day work
• Topic 5 mentions the energy usage and delivery
• Topic 6 is related to legal and strategical aspects of Enron business, involving Sara Shakleton (vice president of Enron North

America Corporation), and Debra Perlingiere, from the legal department
• Topic 7 is concerned with infrastructures and geographical projects
• Topic 8 corresponds to a discussions about Enron activities in Afghanistan, which may be seen as sensitive given the american

situation in 2001
• Topic 9 focuses on financial aspects
• Topic 10 mentions the California electricity crisis, which almost led to the bankruptcy of the Southern California Edison

corporation

The topics as well as the visualisation provide significant information on the dataset. In particular, Deep-LPTM identifies different
departments and cases of the company through the topics and successfully represent it in the graph structure as we shall detail.
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Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10

F I G U R E 9 Enron email meta-network, based on Deep-LPTM estimates, represents the clusters and their interactions. The
node sizes depend on the number of email accounts assigned to each cluster and the node positions are estimated by Deep-LPTM.
The colours of the edges refer to the majority topic between the respective clusters and the sizes of the edges depend on the
number of connections between the clusters. We keep only the edges corresponding to more than five connections for readability
purposes.

5.0.0.2 Cluster analysis
The meta-network in Figure 9 gives an overview of the results to analyse the clusters. We keep only the edges corresponding to
more than five connections for readability purposes. However, important details provided by Figure 7 could not be uncovered
with the meta-network only.

First, Clusters 1 and 2 are well separated from the rest of the graph. Moreover, each one is characterised by a specific topic.
Cluster 1 is involved in discussions about a financial deal and a possible merge (Topic 1) and more than half of the employees in
Cluster 1 have a managerial position or work in the legal department (vice presidents, directors, lawyer). Cluster 2 refers to the
regional energy business (Topic 2) and nine out of the 15 nodes correspond to either employees or a traders.

Second, Cluster 6 displays a high level of internal connectivity and is essentially featured by discussions involving the legal
department (Topic 6) as well as financial aspects of the company (Topic 9). The status of the employees in that cluster are mainly
composed of directors, vice presidents as well as presidents of the company. Interestingly, Deep-LPTM placed a president,
corresponding to the node with the highest degree in the graph, at the centre of the network, and allocated it to the cluster of
managers of the company. This graphical property, unique to Deep-LPTM, stresses the incorporation of the connections, as well
as the topics in the emails, to obtain a meaningful representation of the network. Conversely, in Figure 9, the meta-network
is not able to dissociate the connectivity of a node with a different connectivity than the rest of the cluster. Thus, Cluster 6 is
central as a whole in the network in Figure 9.

Third, the topics involved in emails of Clusters 3 and 4 are the main drivers of the characterisation of the two clusters. For
instance, Cluster 3 is highly connected to the graph and is involved in discussions about infrastructures and geographical aspects
(Topic 7), as well as financial aspects (Topic 9). Emails related to Afghanistan were exchanged, mainly involving nodes from
Cluster 3. It is worth noticing that nodes in cluster 3 correspond to people with a high position in the hierarchy of the company
(almost two third of the employees in the clusters are either managers, directors, vice presidents, presidents or CEO). In addition,
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although many nodes in Cluster 4 are involved in regional energy discussions (Topic 2) like Cluster 2, they also discuss about
day to day business questions (Topic 4), and are highly connected with the rest of the network, unlike Cluster 2.

Finally, Cluster 7 is composed of four nodes that are at the crossroads between several clusters and topics. We close this
analysis with Cluster 5 that is composed of nodes mainly receipting emails and poorly connected to the graph, highlighted in the
representation by the node positions being on the rim of the network.

6 CONCLUSION

We introduced a novel deep probabilistic model, named the deep latent position topic model (Deep-LPTM) to analyse networks
with textual edges. Deep-LPTM allows to simultaneously cluster nodes, to model the topics in the documents, and to provide a
network visualisation. To represent networks into a Euclidean space, most methodologies rely either on heuristic method used a
posteriori or only focus on the connectivity of the graph. On the contrary, this work tackles this problem by incorporating the
network representation into the modelling, enabling the clustering as well as the topic modelling to be included in the calculation
of the node positions. To benefit from the flexibility of deep neural networks, our methodology is based on a graph convolutional
network (GCN) to encode the nodes into a vector space using the connectivity of the graph as well as a neural topic model
to encode the documents and the topics into a vector space. Even though we focused on directed networks, the extension to
undirected networks is straightforward. The applications of this methodology are numerous, including social sciences, journalism
or social network analysis. The proposed methodology relies on a variational inference algorithm to maximise the marginal
likelihood. The optimisation combines analytical formulas and stochastic gradient descent steps to estimate the parameters. In
this paper, we also derived the integrated classification and latent likelihood (IC2L) criterion to choose relevant numbers of
clusters and topics as well as the dimension of the node latent space. Both the extensive benchmark study as well as the Enron
emails analysis highlighted the visualisation power and the clustering efficiency of the proposed methodology. In future work,
it is crucial to adapt this methodology to networks with multiple edges, corresponding to the exchange of several documents
between nodes.

APPENDIX

A GRAPHICAL MODEL

Figure A1 provides the graphical representation of the model with its parameters.

B COMPUTATION OF THE ELBO TERMS

In this section, computational details regarding the ELBO are provided term by term. First, ER
[
log p(A | Z,κ)

]
is given by:

ER
[
log p(A | Z,κ)

]
=

N∑
i,j=1

{
AijER

[
log pij

]
+ (1 – Aij)ER

[
log
(
1 – pij

)]}
,

where pij = (1 + e–ηij )–1 and ηij := κ – ∥Zi – Zj∥.
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WijAij Observed data

Zi Zj Yij
Latent representation in a vector space

CjCi Clusters

(i, j)

π

M

ρ

α

Nµ

σ

N m

s

F I G U R E A1 Graphical model with the parameters of Deep-LPTM where the Zis denote the latent node vectors, Yijs the
latent document vector, Cis the node cluster memberships, A = (Aij)ij ∈ MN×N({0, 1}) the binary adjacency matrix and Wij the
document sent by node i to node j.

Second, denoting βk = softmax(ρ⊤αk) ∈ RV , β = (β1 . . . βK)⊤ ∈ MK×V (R) and wv
ij = (β⊤Ỹij)v, the probability for the word

v to appear in document Wij ,for any v ∈ {1, . . . , V}, ER
[
log p(W | A, Y , ρ,α)

]
is:

ER
[
log p(W | A, Y , ρ,α)

]
=

N∑
i,j=1

AijER
[
logMV

(
Wij; Mij,β⊤ softmax(Yij)

)]
=
∑

i,j

AijER

[
log

Mij!∏V
v=1(Wv

ij)!

V∏
v=1

(wv
ij)

Wv
ij

]
.

The difference between the terms related to the cluster memberships, ER
[
log p(C | π)

]
and ER

[
log R(C)

]
, gives the following:

ER
[
log p(C | π)

]
– ER

[
log R(C)

]
=

M∑
i=1

Q∑
q=1

ER
[
Ciq logπq

]
– ER

[
Ciq log τiq

]
=

N∑
i=1

Q∑
q=1

τiq log
πq

τiq
.
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The difference between the generative distribution of the node positions term ER
[
log p(Z | C,µ,σ)

]
and the one related to the

variational distribution of the node positions ER
[
log R(Z | A)

]
gives:

ER
[
log p(Z | C,µ,σ)

]
– ER

[
log R(Z | A)

]
=

N∑
i=1

Q∑
q=1

ER
[
Ciq logN

(
Zi;µq,σ2

qIp
)]

(B1)

–
N∑

i=1

ER
[
logN

(
Zi;µϕZ (A)i,σ2

ϕZ
(A)iIp

)]
= –

N∑
i=1

Q∑
q=1

τiq KL
(
N
(
µϕZ (A)i,σ2

ϕZ
(A)iIp

)
|| N

(
µq,σ2

qIp
))

= –
N∑

i=1

Q∑
q=1

τiq

[
log

σp
q

σϕZ (A)p
i

–
p
2

+
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

2σ2
q

]
︸ ︷︷ ︸

KLZ
iq(µϕZ (A)i,σϕZ (A)i,µq,σq)

= –
N∑

i=1

Q∑
q=1

τiq KLZ
iq

(
µϕZ (A)i,σϕZ (A)i,µq,σq

)
. (B2)

Symmetrically, the term regarding the edge positions is obtained as follow:

ER
[
log p(Y | A, C, m, s)

]
– ER

[
log R(Y | A, W)

]
=

N∑
i,j=1

Q∑
q,r=1

ER
[
AijCiqCjr logN

(
Yij; mqr, s2

qrIK
)]

–
N∑

i,j=1

ER
[
Aij logN

(
Yij;µϕY (Wij), diag

(
σ2
ϕY

(Wij)
))]

= –
N∑

i,j=1

Q∑
q,r=1

Aijτiqτjr KL
(
N
(
µϕY (Wij), diag

(
σ2
ϕY

(Wij)
))

|| N
(
mqr, s2

qrIK
))

= –
N∑

i,j=1

Q∑
q,r=1

Aijτiqτjr KLY
ijqr

(
µϕY (Wij),σϕY (Wij), mqr, sqr

)
,

where

KLY
ijqr

(
µϕY (Wij),σϕY (Wij), mqr, sqr

)
= K log sqr –

K∑
k=1

logσϕY (Wij)k –
K
2

+

∑K
k=1 σ

2
ϕY

(Wij)k + ∥µϕY (Wij) – mqr∥2
2

2s2
qr

.
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C INFERENCE

C.1 Optimisation

In this section, we provide the optimisation steps to recover the parameters maximising the ELBO. To begin with, let us recall
the ELBO expression:

L (τ ,ϕZ ,ϕY ;π,µ,σ,κ, m, s,α, ρ) := L (R(·),Θ)

=
∑

i,j

{
AijER

[
log pij

]
+ (1 – Aij)ER

[
log
(
1 – pij

)]}
+
∑

i,j

AijER

[
log

Mij!∏V
v=1(Wv

ij)!

V∏
v=1

(wv
ij)

Wv
ij

]

–
N∑

i=1

Q∑
q=1

τiq KLZ
iq

(
µϕZ (A)i,σ2

ϕZ
(A)iIp,µq,σ2

qIp
)

–
N∑

i,j=1

Q∑
q,r=1

Aijτiqτjr KLY
ijqr

(
µϕY (Wij), diag

(
σ2
ϕY

(Wij)
)

, mqr, s2
qrIK
)

+
N∑

i=1

Q∑
q=1

τiq log
πq

τiq
.

C.1.0.1 Update of τ
First, we optimise the ELBO with respect to τiq. Since τi ∈ ∆Q–1, the term ci(1 –

∑Q
q=1 τiq) is added to the ELBO, giving the

Lagrangian of the function. Thus, the derivative of the Lagrangian with respect to τiq gives:

∂

∂τiq
L(R(·);Θ) = – KLZ

iq –
N∑

j=1

Q∑
r=1

{
Aijτjr KLY

ijqr +Ajiτjr KLY
jirq

}
+ log

πq

τiq
– 1 – ci.

Setting this partial derivative to zero gives:

log τiq = – KLZ
iq –

N∑
j=1

Q∑
r=1

{
Aijτjr KLY

ijqr +Ajiτjr KLY
jirq

}
+ logπq – 1︸ ︷︷ ︸

Tiq

–ci.

Thus τiq = eTiq e–ci . Moreover, since
∑Q

q=1 τiq = 1, we have eci =
∑Q

q=1 eTiq . Therefore, τiq = eTiq /(
∑Q

q=1 eTiq ). The complete form is:

τiq =
πqe– KLZ

iq –
∑

j ̸=i

∑Q
r=1

(
AijτjrKY

ij,qr+Ajiτjr KLY
jirq

)
∑Q

l=1 πle
– KLZ

il –
∑

j ̸=i

∑Q
l′=1

(
Aijτjl′KY

ij,ll′+Ajiτjl′ KLY
jil′ l

) . (C3)

C.1.0.2 Update of π
Since π ∈ ∆Q–1, this constraint is added to the function to obtain the lagrangian. This corresponds to adding the term
c
(

1 –
∑Q

q=1 πq

)
to the ELBO. Thus, the partial derivative of the Lagrangian L with respect to πq of the lagrangian is:

∂

∂µq
L(R(·);Θ, c) =

N∑
i=1

τiq

πq
– c.
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Setting this to zero gives:

1
πq

N∑
i=1

τiq = c.

Multiplying by πq and summing over q gives that c = N. Therefore, after plugging it back into the previous expression, the
following holds:

πq =
1
N

N∑
i=1

τiq. (C4)

C.1.0.3 Updates of µq and σq

Taking the partial derivative of the ELBO with respect to µq gives the following:

∂

∂µq
L (R(·);Θ) = –

N∑
i=1

τiq

2σ2
q

(
2µq – 2µϕZ (A)i

)
.

Therefore, setting this quantity to zero gives the following update for µq:

µq =

(
N∑

i=1

τiq

)–1 N∑
i=1

τiqµϕZ (A)i. (C5)

The partial derivate of the ELBO with respect to σq is:

∂

∂σq
L (R(·);Θ) = –

N∑
i=1

τiq

(
p
σq

–
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

2
2σq

σ4
q

)
.

Thus, the first order condition on σq gives the following:

p
σq

N∑
i=1

τiq =
1
σ3

q

N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

)
σ2

q =

(
p

N∑
i=1

τiq

)–1 N∑
i=1

τiq
(
pσ2

ϕZ
(A)i + ∥µϕZ (A)i – µq∥2

2

)
. (C6)

C.1.0.4 Updates of m and s
As in the previous sections, we optimise the ELBO with respect to m and s with the first order conditions. The partial derivate of
L with respect to mqr is:

∂

∂mqr
L (R(·);Θ) = –

1
2s2

qr

N∑
i,j=1

Aijτiqτjr
(
2mqr – 2µϕY (Wij)

)
.

Therefore, setting this expression to zero gives the following update for mqr:

mqr =

 N∑
i,j=1

Aijτiqτjr

–1
N∑

i,j=1

AijτiqτjrµϕY (Wij). (C7)

The partial derivate of the ELBO with respect to sqr is:

∂

∂sqr
L (R(·);Θ) = –

N∑
i=1

Aijτiqτjr

(
K
sqr

–

∑K
k=1 σ

2
ϕY

(Wij)k + ∥µϕY (Wij) – mqr∥2
2

s3
qr

)
.
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Thus, the first order condition on sqr gives the following:

s2
qrK

N∑
i,j=1

Aijτiqτjr =
N∑

i,j=1

Aijτiqτjr

[
K∑

k=1

σ2
ϕY

(Wij)k + ∥µϕY (Wij) – mqr∥2
2

]
.

Hence, the update of s2
qr is given by:

s2
qr =

K
N∑

i,j=1

Aijτiqτjr

–1
N∑

i,j=1

Aijτiqτjr

[ K∑
k=1

σ2
ϕY

(Wij)k

+ ∥µϕY (Wij) – mqr∥2
2

]
.

C.2 Derivation of the selection model criterion

Proof of Proposition 3. Assuming a fully factorised prior distribution p(κ,π,µ,σ, m, s, ρ,α) =
p(κ)p(π)p(µ)p(σ)p(m)p(s)p(ρ)p(α), Lemma 3.1 in [40] can be directly extended to our case to decompose the integral in (24):

log p(A, W, Z, Y , C | M , Q, K, P) = log p(A | Z, M ) + log p(Z | C, M , Q, P)

+ log p(W | A, Y , M ) + log p(Y | A, C, M , K)

+ log p(C | M , Q). (C8)

Unfortunately, this expression cannot be computed since each term requires an integral with respect to the corresponding
parameter. For instance, p(A | Z, M ) cannot be integrated analytically because of the logistic link function. Fortunately, a BIC-
like approximation can be derived for p(A|Z, M ), p(Z|C, M , Q, P), p(Y |A, C, M , K) and p(W |A, Y , M ). For instance, p(A|Z, M )
can be approximated by:

log p(A | Z, M ) = log
∫
κ

p(A | κ, Z, M )p(κ)dκ

≈ max
κ

log p(A | Z,κ, M ) –
νA,M

2
log(nA),

where νA,M = 1 denotes the number of free components in κ and nA = N(N – 1) denotes the number of observations in A. This
can be applied to all terms except p(C | M , Q) since the posterior cluster memberships probabilities τi can be on the boundary
of the parameter space. Fortunately, this term can be computed analytically. By assuming a Dirichlet prior DQ(δ1, . . . , δQ) on the
topic proportions π:

p(C | M , Q) =
∫

p(C | π, M , Q)p(π)dπ

=
Γ
(∑Q

q=1 δq

)
∏Q

q=1 Γ
(
δq
) ∏Q

q=1 Γ(nq + δq)

Γ
(∑Q

q=1 nq + δq

) ,

where nq :=
∑N

i=1 Ciq. In this paper, we consider the non informative Jeffreys prior distribution (δq = 1/2), as in [40] and
[3]. Moreover, since Ci is not available, we replace it with its maximum-a-posteriori estimate Ĉi where Ĉiq = 1 if q =
argmax(τi1, . . . , τiQ), and 0 otherwise, which in turn gives n̂q :=

∑N
i=1 Ĉiq. Using Stirling formula to approximate the Gamma

function for a large value of N, we obtain:

p(Ĉ | M , Q) ≈ p(Ĉ | π̂, M , Q) –
Q – 1

2
log(N). (C9)
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To conclude, since Z and Y are not available, we replace the missing data with their maximum-a-posteriori estimates Ẑ and Ŷ .
Denoting IC2L the quantity log p(A, W, Ẑ, Ŷ , Ĉ | M , Q, K, P), we obtain:

IC2L = max
θ

log p(A, W, Ẑ, Ŷ , Ĉ | θ, M , Q, K, P) – Ω(M , Q, K, P)

= max
κ

log p(A | Ẑ,κ, M ) –
1
2

log(N(N – 1))

+ max
µ,σ

log p(Ẑ | Ĉ,µ,σ, M , Q, P) –
QP + Q

2
log(N)

+ max
ρ,α

log p(W | A, Ŷ , ρ,α, M ) –
VL + KL

2
log(M)

+ max
m,s

log p(Ŷ | A, Ĉ, m, s, M , K) –
Q2K + Q2

2
log(M)

+ max
π

log p(Ĉ | π, M , Q) –
Q – 1

2
log(N),

where

Ω(M , Q, K, P) =
1
2

log(N(N – 1))

+
Q(P + 2) – 1

2
log(N)

+
L(V + K) + Q2(K + 1)

2
log(M).

D NUMERICAL EXPERIMENTS

This section provides the entire ELBO evolution as well as the evolutions of the node ARI and the edge ARI, corresponding to
the example in Section 4.2.
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F I G U R E D2 Evolution of the ELBO, as well as the nodes ARI during the optimisation.
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E APPLICATION TO THE ANALYSIS OF THE ENRON EMAIL NETWORK

To compare our results with a state-of-the-art approach, we provide an analysis of the Enron email network with ETSBM. The
node positions displayed in Figure E3 were obtained using a Freichterman-Reingold algorithm [36] and the top words associated
to ETSBM topics are provided in Figure E4.

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8
Topic 9
Topic 10

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

F I G U R E E3 ETSBM clustering results on the Enron email network. The node positions were obtained using the
Fruchterman-Reingold algorithm.
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Topic 1
tw

watson
message

gas

mmbtu
capacity
deliveries
original

lynn
socalgas

Topic 2
enron

message
original

company

mail
november

pmto
amto

fw
trading

Topic 3
mike

message
original
grigsby
desk
john
pmto

october
daily
deals

Topic 4
enron

message

master
corp

original
agreement
attached
october
america

north

Topic 5
business
interview

enron
friday
phase

interviewers
unit

super

units
dinner

Topic 6
message

enron
original

jim
ferc

steffes
rto

group

market
energy

Topic 7
backup

plan
seat
work

location
west
enron
day

team
move

Topic 8
message

enron
original

gas

november
october

pmto
amto
mail

monday

Topic 9
day
ofo
gas

cycle
storage
usage
daily
socal
mmcf

scheduled

Topic 10
jeff

state
california
edison
power
puc

dasovich
davis

message
original

F I G U R E E4 The 10 most probable words of each topic according to ETSBM.
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