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Comment on the subdifferential formula given in the article "Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing"

. We believe that expressing the sorted 1 norm as the maximum of linear functions, as suggested by the authors, is an appropriate approach to derive its subdifferential. However the formula provided in this article contains many flaws and we hope that authors would take into account this note in order to rewrite and prove their formula.

However this inclusion is wrong as soon as some components of s are negative. To conclude, instead to use implicitly the permutation group, we suggest to authors to use the signed permutation group G (see e.g. [8] or [10, Definition 22]) and to rewrite the sorted 1 has a maximum of linear functions: J λ (s) = max{g(λ) T s : g ∈ G}.

3 The weighted 1 norm is differentiable at s since, by assumption, s does not have any null component. 4 This formula is also wrong when s = 0 but this particular case is discarded by the authors.

We remind that the sorted 1 norm is defined as follows

J λ (x) = p i=1 λ i |x| (i) ,
where λ = (λ 1 , . . . , λ p ) ∈ R p with λ 1 > 0 and λ 1 ≥ • • • ≥ λ p ≥ 0 is a sequence of penalty parameters and |x| (1) ≥ • • • ≥ |x| (p) are non-increasing components of x in absolute value. Fact V3 in the article of Bu et al., [START_REF] Bu | Algorithmic analysis and statistical estimation of slope via approximate message passing[END_REF] provides a formula for the subdifferential of J λ reported hereafter 1 :

∂J λ (s) =    v ∈ R p : for each equivalent class I,    if s I = 0 =⇒ v I ∈ P([ Π-1 s (λ)] I )sgn(s I ) if s I = 0 =⇒ v I ∈ P 0 ([ Π-1 s (λ)] I )    . (1) 
In the above, P, P 0 are polytope-related mappings: P(u) = {y : y = Au for some doubly stochastic matrix A} P 0 (u) = {y : y = Au for some doubly sub-stochastic matrix A} Hereafter, we are going to discuss the notation Π-1 s given in (1), the polytope mappings as well as sketch of proof for this formula. First, before commenting (1), we remind that for a given norm • whose dual norm is • * , the subdifferential at s satisfies (see e.g. [START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF])

∂ • (s) = {v ∈ R p : v * ≤ 1 and v T s = s }.

In particular

• The subdifferential at 0 is the unit ball of the dual norm.

• If v is an arbitrary subgradient of • at s ∈ R p , namely v ∈ ∂ • (s), then v * ≤ 1.
Note that the dual sorted 1 norm has the following explicit expression (see e.g. [START_REF] Negrinho | Orbit regularization[END_REF])

J * λ (x) = max |x| (1) λ 1 , . . . , |x| (1) + |x| (2) λ 1 + λ 2 , . . . , |x| (1) + • • • + |x| (p) λ 1 + • • • + λ p .
Mappings Πx and Π-1

x

The mapping Πx : R p → {maximal atoms} and its pseudo-inverse Π-1

x are not properly defined; instead authors only provide the following example for these notations. If x = (5, 2, -3, -5) then Πx (x) = ({5, -5}, {5, -5}, -3, 2) and Π-1

x (λ) = ({λ 1 , λ 2 }, λ 4 , λ 3 , {λ 1 , λ 2 }).
As pointed out by the authors, there exists λ ∈ Π-1

x (λ) such that J λ (x) = λ, |x|2 . We agree with this fact, indeed

J λ (x) = λ 1 |x 1 | + λ 4 |x 2 | + λ 3 |x 3 | + λ 2 |x 4 | = λ 2 |x 1 | + λ 4 |x 2 | + λ 3 |x 3 | + λ 1 |x 4 |. Therefore, J λ (x) = λ, |x| as soon as λ ∈ {(λ 1 , λ 4 , λ 3 , λ 2 ), (λ 2 , λ 4 , λ 3 , λ 1 )}. This fact suggests that Π-1 x (λ) is a Cartesian product, namely Π-1 x (λ) = {(λ 1 , λ 4 , λ 3 , λ 1 ), (λ 1 , λ 4 , λ 3 , λ 2 ), (λ 2 , λ 4 , λ 3 , λ 1 ), (λ 2 , λ 4 , λ 3 , λ 2 )}.
However, if Π-1

x (λ) is Cartesian product then the formula given in (1) is wrong since (λ 1 , λ 4 , λ 3 , λ 1 ) / ∈ ∂J λ (x) (indeed J * λ ((λ 1 , λ 4 , λ 3 , λ 1 )) > 1). Overall we believe that the notations Πx and Π-1

x are very complicated and not useful to derive a formula for the subdifferential of J λ . Instead, one may probably replace Π-1 s (λ), in [START_REF] Ma Lgorzata Bogdan | Pattern recovery by slope[END_REF], by λ = (λ π -1 (1) , . . . , λ π -1 (p) ) where π -1 is the inverse of π an arbitrary permutation in {1, . . . , p} for which (|x π(1) |, . . . , |x π(p) |) = (|x| (1) , . . . , |x| (p) ).

Polytope mappings

We agree with the authors, when components of s are all equal (and positive) then ∂J λ (s) is the permutoèdre: conv{(λ π(1) , . . . , λ π(p) ) : where π is a permutation on {1, . . . , p}}. The permutoèdre is closely related to the Birkhoff polytope (the set of doubly stochastic matrices); indeed, P(λ) = conv{(λ π(1) , . . . , λ π(p) ) : where π is a permutation on {1, . . . , p}}.

On the other hand, the link between the unit ball of the dual norm J * λ (the permutoèdre signé) and the set of the sub-stochastic matrices is unclear. We conjecture the following statement

P 0 (λ) = {x ∈ [0, +∞) p : J * λ (x) ≤ 1}.
However, if this conjecture is wrong it would be impossible to recover the permutoèdre signé: ∂J λ (0), based on P 0 .

Sketch of proof for the formula

Authors claim that a rigorous proof of Fact V3 is given in [START_REF] Tyrrell | Variational analysis[END_REF]Exercise 8.31]. Actually, this exercise only provides a well known formula for the subdifferential of the maximum of a finite family of convex smooth functions (this fact is also proved in the book of Hiriart-Urruty and Lemaréchal [6, pp. 182-183,187-188]). So, currently fact V3 is not yet proven. Concerning the sketch of proof, authors "rewrite J λ (s) as a finite max function

J λ (s) = max{λ T f 1 (s), . . . , λ T f m (s)}, (2) 
where {f i (s)} 1≤i≤m is the collection of all possible permutations for the entries of |s|". To our understanding expression ( 2) is unclear, indeed:

1. If f i (s) = (|s π(1) |, . . . , |s π(p) |)
for some permutation π on {1, . . . , p} then the formula (2) is true.

However, λ T f i (s) is a weighted 1 norm thus not a smooth function, the gradient 3 ∇ s λ T f i (s) depends on sgn(s) ∈ {-1, 1} p and the notation f -1 i (λ) does not make sense.

2. If f i (s) = (s π(1) , . . . , s π(p) ) then the gradient satisfies ∇ s λ T f i (s) = f -1 i (λ). However, the formula (2) is wrong as soon as some components of s are negative.

Authors claims that when components of s are all equal then ∂J λ (s) = conv{(λ π(1) , . . . , λ π(p) ) : where π is a permutation on {1, . . . , p}}. This equality is true when components of s are all equal and positive (see e.g [START_REF] Dupuis | Proximal operator for the sorted 1 norm: Application to testing procedures based on slope[END_REF][START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]). However, this formula is no longer true when components of s are all equal and negative 4 . Finally, we believe that the formula ∂J λ (s) = conv{f -1 i (λ) : i ∈ A(s)} is misleading. Indeed, if f -1 i (λ) is just a permutation of components of λ then we would have the following inclusion ∂J λ (s) = conv{f -1 i (λ) : i ∈ A(s)} ⊂ conv{(λ π(1) , . . . , λ π(p) ) : where π is a permutation on {1, . . . , p}}.

This formula also appears in supplementary material of the article[START_REF] Bu | Algorithmic analysis and statistical estimation of slope via approximate message passing[END_REF]; derivation for the subdifferential of the sorted 1 norm are very similar.

This statement is not formulated this way; in the article there is a confusion between x and b.

This formula might be very useful to derive the subdifferental of J λ .