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Patrick Tardivel, Institut de Mathématiques de Bourgogne, UMR 5584 CNRS,
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Abstract

Subdifferential formula for the sorted `1 norm attracted lot of attention recently to derive

screening procedures for SLOPE [5, 7], clustering and sparsity properties for SLOPE [1, 10] and

explicit expressions for the proximal operator of the sorted `1 norm [4, 11]. In this note, we discuss

the formula for the subdifferential of the sorted `1 norm given in the article of Bu et al., [3]. We

believe that expressing the sorted `1 norm as the maximum of linear functions, as suggested by

the authors, is an appropriate approach to derive its subdifferential. However the formula provided

in this article contains many flaws and we hope that authors would take into account this note in

order to rewrite and prove their formula.

We remind that the sorted `1 norm is defined as follows

Jλ(x) =

p∑
i=1

λi|x|(i),

where λ = (λ1, . . . , λp) ∈ Rp with λ1 > 0 and λ1 ≥ · · · ≥ λp ≥ 0 is a sequence of penalty parameters

and |x|(1) ≥ · · · ≥ |x|(p) are non-increasing components of x in absolute value. Fact V3 in the article

of Bu et al., [3] provides a formula for the subdifferential of Jλ reported hereafter1:

∂Jλ(s) =

v ∈ Rp : for each equivalent class I,

if sI 6= 0 =⇒ vI ∈ P([Π̂−1
s (λ)]I)sgn(sI)

if sI = 0 =⇒ vI ∈ P0([Π̂−1
s (λ)]I)

 . (1)

In the above, P, P0 are polytope-related mappings:

P(u) = {y : y = Au for some doubly stochastic matrix A}

P0(u) = {y : y = Au for some doubly sub-stochastic matrix A}

Hereafter, we are going to discuss the notation Π̂−1
s given in (1), the polytope mappings as well as

sketch of proof for this formula. First, before commenting (1), we remind that for a given norm ‖ · ‖
1This formula also appears in supplementary material of the article [2]; derivation for the subdifferential of the sorted

`1 norm are very similar.
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whose dual norm is ‖ · ‖∗, the subdifferential at s satisfies (see e.g. [6])

∂‖ · ‖(s) = {v ∈ Rp : ‖v‖∗ ≤ 1 and vT s = ‖s‖}.

In particular

• The subdifferential at 0 is the unit ball of the dual norm.

• If v is an arbitrary subgradient of ‖ · ‖ at s ∈ Rp, namely v ∈ ∂‖ · ‖(s), then ‖v‖∗ ≤ 1.

Note that the dual sorted `1 norm has the following explicit expression (see e.g. [8])

J∗
λ(x) = max

{ |x|(1)
λ1

, . . . ,
|x|(1) + |x|(2)
λ1 + λ2

, . . . ,
|x|(1) + · · ·+ |x|(p)
λ1 + · · ·+ λp

}
.

Mappings Π̂x and Π̂−1
x

The mapping Π̂x : Rp → {maximal atoms} and its pseudo-inverse Π̂−1
x are not properly defined;

instead authors only provide the following example for these notations. If x = (5, 2,−3,−5) then

Π̂x(x) = ({5,−5}, {5,−5},−3, 2) and Π̂−1
x (λ) = ({λ1, λ2}, λ4, λ3, {λ1, λ2}). As pointed out by the

authors, there exists λ̂ ∈ Π̂−1
x (λ) such that Jλ(x) = 〈λ̂, |x|〉2. We agree with this fact, indeed

Jλ(x) = λ1|x1|+ λ4|x2|+ λ3|x3|+ λ2|x4| = λ2|x1|+ λ4|x2|+ λ3|x3|+ λ1|x4|.

Therefore, Jλ(x) = 〈λ̂, |x|〉 as soon as λ̂ ∈ {(λ1, λ4, λ3, λ2), (λ2, λ4, λ3, λ1)}. This fact suggests that

Π̂−1
x (λ) is a Cartesian product, namely

Π̂−1
x (λ) = {(λ1, λ4, λ3, λ1), (λ1, λ4, λ3, λ2), (λ2, λ4, λ3, λ1), (λ2, λ4, λ3, λ2)}.

However, if Π̂−1
x (λ) is Cartesian product then the formula given in (1) is wrong since (λ1, λ4, λ3, λ1) /∈

∂Jλ(x) (indeed J∗
λ((λ1, λ4, λ3, λ1)) > 1). Overall we believe that the notations Π̂x and Π̂−1

x are

very complicated and not useful to derive a formula for the subdifferential of Jλ. Instead, one may

probably replace Π̂−1
s (λ), in (1), by λ̂ = (λπ−1(1), . . . , λπ−1(p)) where π−1 is the inverse of π an arbitrary

permutation in {1, . . . , p} for which (|xπ(1)|, . . . , |xπ(p)|) = (|x|(1), . . . , |x|(p)).

Polytope mappings

We agree with the authors, when components of s are all equal (and positive) then ∂Jλ(s) is the

permutoèdre: conv{(λπ(1), . . . , λπ(p)) : where π is a permutation on {1, . . . , p}}. The permutoèdre is

closely related to the Birkhoff polytope (the set of doubly stochastic matrices); indeed,

P(λ) = conv{(λπ(1), . . . , λπ(p)) : where π is a permutation on {1, . . . , p}}.
2This statement is not formulated this way; in the article there is a confusion between x and b.
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On the other hand, the link between the unit ball of the dual norm J∗
λ (the permutoèdre signé) and

the set of the sub-stochastic matrices is unclear. We conjecture the following statement

P0(λ) = {x ∈ [0,+∞)p : J∗
λ(x) ≤ 1}.

However, if this conjecture is wrong it would be impossible to recover the permutoèdre signé: ∂Jλ(0),

based on P0.

Sketch of proof for the formula

Authors claim that a rigorous proof of Fact V3 is given in [9, Exercise 8.31]. Actually, this exercise

only provides a well known formula for the subdifferential of the maximum of a finite family of convex

smooth functions (this fact is also proved in the book of Hiriart-Urruty and Lemaréchal [6, pp. 182-

183,187-188]). So, currently fact V3 is not yet proven. Concerning the sketch of proof, authors “rewrite

Jλ(s) as a finite max function

Jλ(s) = max{λT f1(s), . . . , λT fm(s)}, (2)

where {fi(s)}1≤i≤m is the collection of all possible permutations for the entries of |s|”. To our under-

standing expression (2) is unclear, indeed:

1. If fi(s) = (|sπ(1)|, . . . , |sπ(p)|) for some permutation π on {1, . . . , p} then the formula (2) is true.

However, λT fi(s) is a weighted `1 norm thus not a smooth function, the gradient3 ∇sλT fi(s)
depends on sgn(s) ∈ {−1, 1}p and the notation f−1

i (λ) does not make sense.

2. If fi(s) = (sπ(1), . . . , sπ(p)) then the gradient satisfies ∇sλT fi(s) = f−1
i (λ). However, the formula

(2) is wrong as soon as some components of s are negative.

Authors claims that when components of s are all equal then

∂Jλ(s) = conv{(λπ(1), . . . , λπ(p)) : where π is a permutation on {1, . . . , p}}.

This equality is true when components of s are all equal and positive (see e.g [4, 10]). However, this

formula is no longer true when components of s are all equal and negative4. Finally, we believe that

the formula ∂Jλ(s) = conv{f−1
i (λ) : i ∈ A(s)} is misleading. Indeed, if f−1

i (λ) is just a permutation

of components of λ then we would have the following inclusion

∂Jλ(s) = conv{f−1
i (λ) : i ∈ A(s)} ⊂ conv{(λπ(1), . . . , λπ(p)) : where π is a permutation on {1, . . . , p}}.

However this inclusion is wrong as soon as some components of s are negative. To conclude, instead

to use implicitly the permutation group, we suggest to authors to use the signed permutation group

G (see e.g. [8] or [10, Definition 22]) and to rewrite the sorted `1 has a maximum of linear functions:

Jλ(s) = max{g(λ)T s : g ∈ G}.
3The weighted `1 norm is differentiable at s since, by assumption, s does not have any null component.
4This formula is also wrong when s = 0 but this particular case is discarded by the authors.
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This formula might be very useful to derive the subdifferental of Jλ.
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