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Abstract:

The differential equation (DE) of second order for advanced Lorentz-Einstein-factor  in fourth order
can be written in  a Sturm-Liouville form (STL). Therefore it can be formulated as an 
eigenwertproblem (eigenvalueproblem) for  local flat spacetime-states.These eigenvalues are 
calculated.
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1. Introduction:

In the following paper there will be shown, that a  second-oder differential-equation can represent  
equations of eigenvalues  („eigenwerte“) [5.] for advanced Lorentz-term of fourth order whose 
eigenvalues only exist under special conditions.

For the advanced SRT with ftl  there can be written a Lorentz-Einstein -factor of fourth-order  in 
root [1.].

Γ=
4√(1−

v ²
c ²

) ²+
n⋅v ²⋅a ²

c ⁴
                                                                                             (1.)

For this term there exists a differential equation of second order which means, this DE  is the 
generating equation for that factor [2.].

A⋅ψ̈+AB ψ̇+(A⋅C−D)⋅ψ=0                                                                                     (2.)

The limiting cases to standard-SRT  are fulfilled, because for B≡0 follows  a≡0 and in this 
case  there is generated  by this DE  the ordinary, common Lorentz-factor of [3.] and his counterpart
of Feinberg for classical tachyons, see  [4.] and Appendix:  



γ=√1−
v ²
c ²

                                                                                                                 (3.)

This DE (2.) can be written in a Sturm-Liouville-form. This means, there is a description of an 
eigenwert-problem of this equation.This description follows now.

2.1. General Calculation:

The Sturm-Liouville-form of a DE can be formulated in its eigenform as:

−( p⋅ψ̇)
°
+q⋅ψ=λn⋅ω⋅ψ                                                                                             (4a.)

This means:

−p⋅ψ̈− ṗ⋅ψ̇+q⋅ψ=λn⋅ω⋅ψ                                                                                      (4b.)

Then can this equation be written as an eigenwertproblem:

L⋅ψ=λ⋅ψ                                                                                                                  (4c.)

 with the operator:

                               

L=
1
ω⋅((− p̈)+q )                                                                                                        (4d.)

For the DE of advanced Einstein-Lorentz-factor (2.) this model can be written as:

−A⋅ψ̈−A⋅B ψ̇+D ψ=A⋅C⋅ψ                                                                                 (5a.)

with

    ψ(r )=A⋅e
i⋅( r

r PL

−θ)

                                                                                                  (5.b)

 (All dots above an variable or bracket are derivations after time in Newtonian  notation).                  

Comparison of coefficients leads to:

A= p
A⋅B= ṗ
D=q

A⋅C=λn⋅ω

                                                                                                               (5c.)

Boundary condition after Sturm (BC) for this STL-system is the equation:



ψ(r )⋅sin(θ)+ψ̇(r )⋅cos (θ)=0                                                                                 (6.)

This leads especially  to the BCs:

ψ(rPl)⋅sin(0)+ψ̇(r Pl)⋅cos(0)=0                                                                            (6a.)

ψ(rPl)⋅sin(π)+ψ̇(rPl)⋅cos (π)=0                                                                            (6b.)

with 
 

r∈[r Pl ;n⋅rPl ];n∈ℕ;θ∈[0 ; π]                                                                                (6c.)

Then the eigenwert-problem of a STL-equation  can be written as:

λn=π
2
⋅n²

⋅(∫
a

b

√
ω
p

dx )
−2

                                                                                            (7a.)

This leads in this case here to a selfreferential condition of:

λn=π ²⋅n ²⋅(∫
a

b

√ C
λn

dr )
−2

                                                                                         (7b.)

After some boring calculations this formulation leads to an eigenwert-solution of:

λn=e
2⋅π⋅n⋅∫ 1

√C
dω+k

                                                                                                     (8a.)

Since C= ω ²PL , the integration has to be after the frequency ω  of the oscillating  system  
because of condition of absence  of units of measurement   in exponent of the value. Especially  this
integration leads  to ω=Ω , the frequency of the  modelled damping system, which is the only   
quantity which makes sense to use in these circumstances. Finally this equation leads to the 
expression of: 

λn=e
2⋅π⋅n⋅Ω

ωPL
+ k

,                                                                                                          (8b.)

where k  is an  unknown, constant  integration variable, which could be set to zero (or not).

2.2. Special calculation:

With

 Ω=
a
R

=
1
T

;R=m⋅r PL ;m=const . ;m∈ℕ;ωPL=
1
tPL

=
c

r PL

                                         (9.)

                                                      

follows as a solution  for the equation of  eigenvalues:



λn=e
2⋅π⋅n

m
⋅
a
c
+k

;                                                                                                         (10.)

The factor a  is damping velocity of outer model- system, which reduces to a≡0  for states of 
common, classical SRT.                                                                                                  

m=n;m ,n∈ℕ possible.

So the equation for eigenfunction is finally:

ψ̂n(t)=λn⋅ψ(t)=λn⋅A⋅e
i⋅(

v
c
⋅

t
t PL

−θ)

=
e

2⋅π⋅
n
m
⋅
a
c
+ k
⋅e

i ( v
c
⋅

t
tPL

−θ)

√(1−
v ²
c ²

)²+
n⋅a ²⋅v ²

c ⁴

                                   (11.)

k=±i⋅θ or k=±θ possible.

3. Conclusion:

There are calculated  the eigenwerte for the DE of second order which represents in its solution the 
advanced Lorentz-Einstein-factor as an  amplitude.They exist and are real e-functions.

Critical remark:

For a≡0 this equation (8b.) leads to

λ(n)=ek .                                                                                                               (11.)

This formula doesn‘t depend from an n  (see low  brackets in lambda), so it could  be 
reinterpreted as the classical form of SRT-Lorentz-factor because of a≡0  – but on the other 
hand  this form of a DE of second order can only  be written as a STL-problem for constant value of

p .Because p includes the velocity v of the inertial system (common classical Lorentz-
factor), this velocity can only be supposed as a constant. So in this case acceleration in resp. of  
inertial systems can‘t be described. 

Possibly k could be interpreted as  constant supposed phaseangle ±i⋅θ , but in case of 
classical SRT this phase-angle is  identical equal to zero ( or  multiplies of Pi  for classical 
tachyons), so the eigenwert will be reduced to a λ=|1| identity (see Appendix).

4. Summary:

The differential equation of second order for the advanced Lorentz-Einstein-factor in fourth order 
can be written as a Sturm-Liouville-problem. In this case the eigenvalue(s) can be calculated.They 
are real e-functions  and depend from the  velocity a of the outer model of a damping system.For

a≡0 the differential equation  will reduce to  the form for classical SRT-factor and possibly the 
eigenvalue be only the trivial case of λ=|1| or  at least λ=ek ; k=const . .



5. Appendix: Deduction of classical Lorentz-Einstein-factor from a DE

The aim is to determine the amplitude factor of A from the following DE of second order:

A⋅ψ̈(t)+C⋅(A−D)⋅ψ(t)=0                                                                                         (A1.)

with:  

C=ωPL
2 ;D=eiθ                                                                                                             (A2.)

and the  plane-wave function 

ψ(r )=A⋅e
i⋅( r

r PL

−θ)

                                                                                                            (A3.)

With the following  common  relations and the  transition from r  to t :

(r=v⋅t ; rPL=c⋅tPL)⇒ ψ(r )→ψ(t )                                                                               (A4.)

there is  the function of a planewave depending only  of time t :

ψ(t)=A⋅e
i⋅( v

c
⋅

t
t PL

−θ)

                                                                                                           (A5.)

with its derivations:

ψ̇(t)=i⋅A⋅( v̇c⋅
t

tPL

+
v
c
⋅

1
tPL

)⋅e
i ( vc⋅

t
tPL

−θ)
                                                                           (A6.)

and

ψ̈(t)=A⋅[ i( v̈c⋅ t
t PL

+2⋅
v̇
c
⋅

1
tPL

)−( v̇
c
⋅

t
tPL

+
v
c
⋅

1
tPL

)
2

]⋅e
i( v

c
⋅

t
tPL

−θ)

                                             (A7.)

For v=const . between  inertial-systems of classical SRT, this relation of second derivation 
reduces to:

ψ̈(t)=−A⋅
v2

c2⋅
1
tPL

2 ⋅e
i ( v

c
⋅

t
t PL

−θ)

                                                                                          (A8.)



Setting ψ(t)∧ψ̈(t) in the DE, this leads to calculation of amplitude A of the wave-function
ψ(t)  :

A=
e i⋅θ

1−
v ²
c ²

                                                                                                                 (A9.)

Remark:

Since e(i⋅θ)
=cos(θ)+i⋅sin (θ) and  comparison of coefficients in  

e(i⋅θ)
=A⋅(1−

v ²
c ²

) leads to the conclusion for  i⋅sin(θ)=0

and the conditions for calculation of θ :

i⋅sin(θ)=0 forθ=k⋅π ;k∈ℤ but

I cos(θ)=1 for k=2⋅n ;n∈ℤ ;
II cos(θ)=−1 for k=2⋅n+1; n∈ℤ

                                                                            (A10.)

I leads to  square of Einstein-Lorentz-factor, II to square of Feinberg-factor of classical, common  
SRT.
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7. Verification: this paper is written without using a chatbot like ChatGPT- 4 or other chatbots. It
is fully human work .


