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The differential equation (DE) of second order for advanced Lorentz-Einstein-factor in fourth order can be written in a Sturm-Liouville form (STL). Therefore it can be formulated as an eigenwertproblem (eigenvalueproblem) for local flat spacetime-states.These eigenvalues are calculated.

Introduction:

In the following paper there will be shown, that a second-oder differential-equation can represent equations of eigenvalues ("eigenwerte") [5.] for advanced Lorentz-term of fourth order whose eigenvalues only exist under special conditions.

For the advanced SRT with ftl there can be written a Lorentz-Einstein -factor of fourth-order in root [1.].

Γ= 4 √ (1-v ² c ² )²+ n⋅v ²⋅a ² c ⁴ (1.)
For this term there exists a differential equation of second order which means, this DE is the generating equation for that factor [2.].

A⋅ ψ+ AB ψ+( A⋅C-D)⋅ψ=0 (2.)
The limiting cases to standard-SRT are fulfilled, because for B≡0 follows a≡0 and in this case there is generated by this DE the ordinary, common Lorentz-factor of [3.] and his counterpart of Feinberg for classical tachyons, see [4.] and Appendix:

γ= √ 1-v ² c ² (3.)
This DE (2.) can be written in a Sturm-Liouville-form. This means, there is a description of an eigenwert-problem of this equation.This description follows now.

General Calculation:

The Sturm-Liouville-form of a DE can be formulated in its eigenform as:

-( p⋅ ψ) °+ q⋅ψ=λ n ⋅ω⋅ψ (4a.)
This means:

-p⋅ ψ-ṗ⋅ ψ+ q⋅ψ=λ n ⋅ω⋅ψ (4b.)

Then can this equation be written as an eigenwertproblem:

L⋅ψ=λ⋅ψ (4c.)
with the operator:

L= 1 ω ⋅((-p)+q ) (4d.)
For the DE of advanced Einstein-Lorentz-factor (2.) this model can be written as:

-A⋅ ψ-A⋅B ψ+ D ψ= A⋅C⋅ψ (5a.) with ψ(r )=A⋅e i ⋅( r r PL -θ )
(5.b) (All dots above an variable or bracket are derivations after time in Newtonian notation).

Comparison of coefficients leads to:

A= p A⋅B= ṗ D=q A⋅C=λ n ⋅ω (5c.)
Boundary condition after Sturm (BC) for this STL-system is the equation:

ψ(r )⋅sin(θ)+ ψ(r )⋅cos (θ)=0 (6.)
This leads especially to the BCs:

ψ(r Pl )⋅sin(0)+ ψ(r Pl )⋅cos(0)=0 (6a.) ψ(r Pl )⋅sin( π)+ ψ( r Pl )⋅cos (π)=0 (6b.) with r ∈[r Pl ; n⋅r Pl ]; n∈ℕ; θ∈[0 ; π] (6c.)
Then the eigenwert-problem of a STL-equation can be written as:

λ n =π 2 ⋅n ² ⋅ ( ∫ a b √ ω p dx ) -2 (7a.)
This leads in this case here to a selfreferential condition of:

λ n =π ²⋅n ²⋅ ( ∫ a b √ C λ n dr ) -2 (7b.)
After some boring calculations this formulation leads to an eigenwert-solution of:

λ n =e 2⋅π⋅n⋅∫ 1 √C d ω+k (8a.)
Since C= ω ² PL , the integration has to be after the frequency ω of the oscillating system because of condition of absence of units of measurement in exponent of the value. Especially this integration leads to ω=Ω , the frequency of the modelled damping system, which is the only quantity which makes sense to use in these circumstances. Finally this equation leads to the expression of:

λ n =e 2⋅π⋅n⋅Ω ω PL + k , ( 8b.) 
where k is an unknown, constant integration variable, which could be set to zero (or not).

Special calculation:

With

Ω= a R = 1 T ; R=m⋅r PL ; m=const . ; m∈ℕ; ω PL = 1 t PL = c r PL (9.)
follows as a solution for the equation of eigenvalues:

λ n =e 2⋅π⋅ n m ⋅ a c +k ; (10.)
The factor a is damping velocity of outer model-system, which reduces to a≡0 for states of common, classical SRT. m=n ;m , n∈ℕ possible.

So the equation for eigenfunction is finally:

ψn (t)=λ n ⋅ψ(t)=λ n ⋅A⋅e i⋅( v c ⋅ t t PL -θ ) = e 2⋅π⋅ n m ⋅ a c + k ⋅e i ( v c ⋅ t t PL -θ ) √ (1-v ² c ² )²+ n⋅a ²⋅v ² c ⁴ (11.)
k =±i⋅θ or k =±θ possible.

Conclusion:

There are calculated the eigenwerte for the DE of second order which represents in its solution the advanced Lorentz-Einstein-factor as an amplitude.They exist and are real e-functions.

Critical remark:

For a≡0 this equation (8b.) leads to ) This formula doesn't depend from an n (see low brackets in lambda), so it could be reinterpreted as the classical form of SRT-Lorentz-factor because of a≡0 -but on the other hand this form of a DE of second order can only be written as a STL-problem for constant value of p .Because p includes the velocity v of the inertial system (common classical Lorentzfactor), this velocity can only be supposed as a constant. So in this case acceleration in resp. of inertial systems can't be described.

λ (n) =e k . ( 11. 
Possibly k could be interpreted as constant supposed phaseangle ±i⋅θ , but in case of classical SRT this phase-angle is identical equal to zero ( or multiplies of Pi for classical tachyons), so the eigenwert will be reduced to a λ=|1| identity (see Appendix).

Summary:

The differential equation of second order for the advanced Lorentz-Einstein-factor in fourth order can be written as a Sturm-Liouville-problem. In this case the eigenvalue(s) can be calculated.They are real e-functions and depend from the velocity a of the outer model of a damping system.For a≡0 the differential equation will reduce to the form for classical SRT-factor and possibly the eigenvalue be only the trivial case of λ=|1| or at least λ=e k ; k=const . .

Appendix: Deduction of classical Lorentz-Einstein-factor from a DE

The aim is to determine the amplitude factor of A from the following DE of second order:

A⋅ ψ(t)+C⋅(A-D)⋅ψ(t)=0 (A1.)

with:

C=ω PL 2 ;D=e i θ (A2.)
and the plane-wave function

ψ(r )=A⋅e i ⋅( r r PL -θ ) (A3.)
With the following common relations and the transition from r to t :

(r=v⋅t ; r PL =c⋅t PL )⇒ ψ(r )→ψ(t ) (A4.)
there is the function of a planewave depending only of time t :

ψ(t)= A⋅e i⋅( v c ⋅ t t PL -θ) (A5.)
with its derivations:

ψ(t)=i⋅A⋅ ( v c ⋅ t t PL + v c ⋅ 1 t PL ) ⋅e i ( v c ⋅ t t PL -θ ) (A6.) and 
ψ(t)= A⋅ [ i ( v c ⋅ t t PL +2⋅ v c ⋅ 1 t PL ) -( v c ⋅ t t PL + v c ⋅ 1 t PL ) 2 ] ⋅e i( v c ⋅ t t PL -θ) (A7.)
For v =const . between inertial-systems of classical SRT, this relation of second derivation reduces to: 

ψ(t)=-A⋅ v 2 c 2 ⋅ 1 t PL 2 ⋅e i ( v c ⋅ t t PL -θ) ( A8 

  .) Setting ψ(t)∧ ψ(t) in the DE, this leads to calculation of amplitude A of the wave-function ψ(t) : the conclusion for i⋅sin(θ)=0 and the conditions for calculation of θ : i⋅sin(θ)=0 for θ=k⋅π ; k ∈ℤ but I cos(θ)=1 for k =2⋅n ; n∈ℤ ; II cos(θ)=-1 for k=2⋅n+1; n∈ℤ (A10.) I leads to square of Einstein-Lorentz-factor, II to square of Feinberg-factor of classical, common SRT.