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Abstract: Novel anti-EGFR therapies target resistance to standard-of-care anti-EGFR in patients with
metastatic lung cancer. We describe tumors at progression versus at the initiation of novel anti-EGFR
agents in patients with metastatic lung adenocarcinoma harboring EGFR mutation. This clinical case
series reports the histological and genomic features and their evolution following disease progression
under amivantamab or patritumab-deruxtecan in clinical trials. All patients had a biopsy at disease
progression. Four patients harboring EGFR gene mutations were included. Three of them received
anterior anti-EGFR treatment. Median delay to disease progression was 15 months (range: 4–24).
At progression, all tumors presented a mutation in the TP53 signaling pathway associated with a
loss of heterozygosis (LOH) of the allele in 75% (n = 3), and two tumors (50%) presented an RB1
mutation associated with LOH. Ki67 expression increased above 50% (range 50–90%) in all samples
compared to baseline (range 10–30%), and one tumor expressed a positive neuroendocrine marker
at progression. Our work reports the potential molecular mechanisms of resistance under novel
anti-EGFR in patients with metastatic EGFR-mutated lung adenocarcinoma, with the transformation
to a more aggressive histology with acquired TP53 mutation and/or the increase in Ki67 expression.
These characteristics are usually found in aggressive Small Cell Lung Cancer.

Keywords: novel anti-EGFR; resistance; lung adenocarcinoma; SCLC-like; RB1; TP53

1. Introduction
1.1. Context

Non-small cell Lung cancer (NSCLC) accounts for 85–90% of all lung cancers, ade-
nocarcinoma representing the main histology [1]. A mutation in the EGFR (Epidermal
Growth Factor Receptor) gene is found in 15% of adenocarcinoma [2]. Common EGFR
mutations are exon 19 deletion and exon 21 L858R point mutation. They account for
85% of EGFR mutations, and they confer sensitivity to EGFR tyrosine kinase inhibitors
(TKIs) [3]. Although the majority of these patients initially respond to TKIs, they then
acquire resistance, preventing durable response. Today third-generation TKIs represent
the standard-of-care in the first-line setting of metastatic lung adenocarcinoma (LUAD)
harboring common EGFR mutation. However, complex and diverse molecular mechanisms
of resistance have been observed, including MET (MET proto-oncogene) dysregulation in
15% of cases, and additional acquired EGFR mutations [4,5]. The uncommon EGFR exon
20 insertion mutation (Exon20ins) is less frequent and found in 9–12% of EGFR-mutated
NSCLC. This latter alteration confers primary resistance to EGFR TKIs. Patients with
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NSCLC harboring an Exon20ins are not offered EGFR TKIs in routine care [6], but novel
anti-EGFR therapies are under development in this setting.

Small cell lung cancers (SCLC) represent 15% of lung cancer and have a worst progno-
sis than NSCLC [1]. They are known to harbor RB1 mutations in almost all cases and to
have an alteration in the TP53 signaling pathway [7].

Amivantamab is a fully human immunoglobulin G1 (IgG1)-based bispecific antibody
directed against the EGF and cMet receptors, administered in the phase 1 CHRYSALIS
trial (NCT02609776) [8]. Amivantamab was administered in this trial at progression after
platin-doublet-based chemotherapy in patients with NSCLC harboring an EGFR exon
20 insertion mutation, leading to primary resistance to all anti-EGFR TKIs. Patritumab-
deruxtecan is an antibody drug conjugate comprising a recombinant fully human anti-
human epidermal growth factor receptor 3 (HER3) IgG1 monoclonal antibody covalently
linked to a tetrapeptide linker containing a topoisomerase I inhibitor, administered in the
phase 2 HERTEHNA trial (NCT04619004) [9]. Patritumab-deruxtecan was administered at
progression after one or two EGFR TKIs.

Even when these innovative anti-EGFR therapies have promising results, some pa-
tients still present disease progression.

1.2. Objective

Our work is a retrospective case series of patients with metastatic lung cancer treated
in clinical trials with either amivantamab or patritumab-deruxtecan who presented disease
progression under novel ant-EGFR agents. Our objective is to describe the pathological
and molecular features of tumor specimens at progression versus at treatment initiation, to
identify the potential mechanisms of resistance to novel anti-EGFR therapies. This could
help in the choice of subsequent treatments.

1.3. Method

We included patients with EGFR-mutated NSCLC, enrolled, either in the phase 1
CHRYSALIS trial or in the phase 2 HERTHENA trial, implemented from 1 January 2020 at
our institute. Patients were consecutively included in our case series whenever they were
experiencing disease progression. The cutoff date was 31 December 2021. All patients gave
their informed consent for this report.

A biopsy was performed at baseline per routine care, and a supplementary biopsy was
systematically performed at disease progression. All samples were directed to pathological
review.

Paraffin sections of lung biopsies were analyzed by two independent pathologists,
who performed a blinded review of the samples. Immunohistochemistry for neuroen-
docrine differentiation (CD56, synaptophysin, chromogranin A) and the Ki67 marker of
proliferation were scored.

Concerning the NGS method, samples were systematically assessed for quality control,
which included verification of sufficient cell content >30% in the biopsies (quality criteria
used in routine care in clinical trials). Samples were not additionally processed before se-
quencing so as to not alter the analysis. Sequencing was carried out using an in-house large
capture-based targeted next-generation sequencing panel of 571 genes, called DRAGON Dx
(Detection of Relevant Alterations in Genes involved in Oncogenetics). This NGS panel has
been developed by the genetics department of Institut Curie (Paris, France) and can detect
mutations, copy number alterations (CNA), tumor mutational burden, and microsatellite
instability. It is composed of 571 genes of interest in oncology for diagnosis, prognosis, and
theragnostics. The whole method is described in different papers and allow detection of a
larger panel of mutations than can be detected in routinely-used NGS panels [10]. NGS
libraries are prepared using an Agilent SureSelect XT-HS kit, Agilent Technologies France,
Les Ulis, France. Following this, sequencing was performed on NovaSeq (Illumina) at the
Institut Curie core genomic facility, with a mean reading depth of 1500× and a minimal
depth of 300×. Variant calling was performed using Varscan2 (v2.4.3) (RRID:SCR006849)
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2. Detailed Case Description
2.1. Patient Information and Molecular Profile of the Initial Tumor

Four patients with metastatic lung adenocarcinoma were included. They were harbor-
ing EGFR gene mutations; exon 20 insertion (n = 2), EGFR exon 21 L858R mutation (n = 1),
co-occurring EGFR exon 19 deletion, and exon 20 T790M mutation (n = 1) were included.
All were women (100%). At the time of inclusion in the clinical trial, Patient#1 (Tumor#1,
harboring exon21 EGFR L858R mutation) had received two previous lines of treatment
with one third-generation TKI (osimertinib and platin-doublet chemotherapy); Patient#2
(Tumor#2, harboring EGFR exon 20 insertion) had received one line of platin-doublet
chemotherapy); Patient#3 (Tumor#3, harboring del19 and T790M EGFR mutations) had
received four anterior lines of treatment with two TKIs: erlotinib (first-generation), then
osimertinib (third-generation) for the T790M acquired resistance mutation under erlotinib,
and two lines of platin-doublet chemotherapy; Patient#4 (EGFR exon 20 insertion) had
received two lines of platin-doublet chemotherapy and 1 TKI afatinib (second-generation)
before starting the experimental treatment. The median delay to progression disease was
15 months (range: 4–24 months), Table 1. Patient#3 had the shorter progression-free sur-
vival under experimental treatment (4 months) and was the higher pretreated patient
from the cohort (the only patient with two previous TKIs). He was also the only one with
the transformation in undifferentiated large cell aggressive neuroendocrine carcinoma in
histology. Sites of progression that were biopsied were in all cases pre-existing known
tumoral sites (lung, bone, and liver).

2.2. Pathological Findings: Differentiation in a More Aggressive Histology

All four tumors were morphologically well differentiated lung adenocarcinoma at
baseline. At progression, one tumor transformed in an undifferentiated large cell neuroen-
docrine carcinoma (Tumor#3), and all samples increased the Ki67 expression above 50%
(range 50–90%), compared with the expression at baseline (range 10–30%); Table 1, Figure 1.

2.3. Molecular Profile of the Tumor at Progression: Alteration in TP53 and RB1 Signaling Pathway

All initial EGFR mutations were still found at progression with a similar allele fre-
quency (AF), except in one patient: Tumor#2 presented a gain on the mutated EGFR allele
(allele frequency of the EGFR exon 20 insertion reaching 51% at progression versus 10% at
baseline), Table 1.

An alteration in the TP53 signaling pathway was found in all tumors at progres-
sion. In three tumors, this was conducted to an inactivation of the TP53 gene: muta-
tion c.920-1G>A/p.? with an AF of 52% associated with an LOH, (Tumor#1); mutation
c.301A>T/p.(Lys101*) with an AF of 37% (Tumor#2); and mutation c.395A>G/p.(Lys132Arg)
with an AF of 75% associated with an LOH (Tumor#3). The TP53 mutation was already
present at baseline in Tumor#3. In Tumort#4, a c.2702-4 del, p.? TP53BP1 mutation with an
AF of 12% was found.

Two patients (Tumor#1, Tumor#2) acquired a mutation leading to an inactivation of
the TP53 gene at progression, and also acquired an RB1 gene alteration at progression:
c.2106+1G>A/p? mutation (AF = 41%), also associated with an LOH, and c.1389+1_1389+2del/p.?
mutation (AF = 35%) associated with an LOH, respectively; Figure 2.

The patient with a TP53 mutation at baseline and at progression (Tumor#3) was
not harboring an alteration of the RB1 gene at progression. However, Tumor#3 was
an undifferentiated large cell carcinoma with a positive expression of neuroendocrine
markers at progression, suggesting a transformation to a more aggressive histology, and a
supplementary step towards a differentiation in SCLC-like tumors; Table 1, Figure 1.
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Table 1. Comparison of molecular and histological features at baseline versus at progression under novel anti-EGFR therapies. LUAD = Lung adenocarcinoma;
AF = allelic frequency; LOH = Loss of heterozygocy.

# Age Molecular Characteristics
at Baseline

Pathological
Characteristics at
Baseline before

Treatment

Treatment
Administered

Delay under
Treatment

before
Progression

Molecular Characteristics at Progression

Pathological
Characteristics at

Progression
after Treatment

1 56 Exon 21 EGFR L858R
(c.2573T>G), AF of 52%

Differenciated LUAD
Ki67 30%

Chromogranin A −
CD56 −

Synaptophysin −

patritumab
deruxtecan 15 months

EGFR c.2573T>G/p.(Leu858Arg), AF of 35%
RB1 c.2106+1G>A/p.?, AF of 41% with LOH
TP53 c.920−1G>A/p.?, AF of 52% with LOH

Differenciated LUAD
Ki67 60%

Chromogranin A −
CD56 −

Synaptophysin −

2 66

EGFR exon 20 Insertion,
c.2313_2314insGTC/

p.(Asn771_Pro772insVal),
AF of 10%

Differenciated LUAD
Ki67 20%

Chromogranin A −
CD56 −

Synaptophysin −

amivantamab 17 months

EGFR exon 20 Insertion,
c.2313_2314insGTC/p.(Asn771_Pro772insVal),

AF of 51%
RB1 mutation c.1389+1_1389+2del/p.? (AF of 35%),

heterozygocy with LOH
TP53 mutation c.301A>T/p. (Lys101*), AF of 37%

with LOH
RBM10 mutation c.2398G>T/p.(Glu800*), AF of 24%

Differenciated LUAD
Ki67 > 90%

Chromogranin A −
CD56 −

Synaptophysin −

3 58

Del 19 EGFR c.2240_2257del/p.,
AF of 49%

EGFR
c.2369C>T/p.(Thr790Met),

AF of 12%
TP53 mutation c.395A>G

(p.Lys132Arg) (AF of 90%)
with LOH

Differenciated LUAD
Ki67 10%

Chromogranin A −
CD56 −

Synaptophysin −

patritumab
deruxtecan 4 months

Del 19 EGFR c.2240_2257del/p., AF of 34.2%
EGFR c.2369C>T/p.(Thr790Met), AF of 9%

TP53 c.395A>G/p.(Lys132Arg), AF of 75% with LOH
MYC amplification

PIK3CB c.3151G>A/p.(Glu1051Lys), AF of 59%)

Undifferenciated
Large cell carcinoma

Ki67 90%
Chromogranin A +

CD56 –
Synaptophysin +

4 66

EGFR exon
20 Insertion c.2284-5_2290dup/p.
(Ala763_Tyr764insPheGlnGluAla),

AF of 18%

Differenciated LUAD
Ki67 10%

Chromogranin A −
CD56 −

Synaptophysin −

amivantamab 24 months

EGFR exon 20 Insertion c.2284-5_2290dup/p.
p.(Ala763_Tyr764insPheGlnGluAla), AF of 16%

FGFR1 c.1731C>A/p.(Asn577Lys), AF of 2%
TP53BP1 mutation c.2702-4del, p.?, AF of 12%

Differenciated LUAD
Ki67 50%

Chromogranin A −
CD56 −

Synaptophysin −
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Figure 1. Immunohistochemistry patterns in post-therapeutic biopsies. (A) Tumor#2. High Ki67,
estimated to be more than 90%. Tumor#3. (B1) Tumor#3. High Ki67, estimated to be more than 90%;
(B2) Tumor#3. Slight Chromogranin A positivity; (B3) Tumor#3. Strong synaptophysin positivity.

2.4. Transformation under Novel Anti-EGFR Therapies Patient by Patient

Patient#1. The histological transformation was mainly the elevation of Ki67 expres-
sion from 30% at baseline towards 60% at progression. The phenotype description was
comparable to a differentiated adenocarcinoma at baseline and at progression. Neuroen-
docrine markers were not seen at progression. Concerning molecular alterations, Tumor#1
presented an RB1 LOH and a TP53 LOH at progression, these two alterations not being
found at baseline. This suggests either a pressure on the more proliferative tumoral clone
under patritumab-deruxtecan, and/or the development of acquired mutations.

Patient#2. The histological transformation consisted of the elevation of Ki67 expres-
sion (from 20% at baseline towards >90% at progression). The histological phenotype
remained comparable at baseline and at progression to a differentiated adenocarcinoma.
Neuroendocrine markers were not seen at progression. Concerning molecular alteration,
Tumor#2 presented an RB1 mutation with LOH as well as a TP53 mutation with LOH at
progression; these two alterations were not found at baseline.

Patient#3. This is the only patient who presented with true histological subtype trans-
formation, from a differentiated adenocarcinoma at baseline towards an undifferentiated
large cell carcinoma with positive neuroendocrine markers at progression (positivity of chro-
mogranin A and synaptophysin markers at progression). We also noticed an elevation of
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the Ki67 expression from 10% at baseline towards 90% at progression. Concerning molecu-
lar alteration, Tumor#3 did not harbor a RB1 alteration, but presented a TP53 mutation with
LOH at baseline and at progression. This result suggests that the transformation in more
aggressive neuroendocrine tumors could be explained by the pre-existence of an aggressive
clone that was positively selected by the novel therapy (here, patritumab-deruxtecan).

Pattent#4. The histological transformation noted in the patients was an elevation of
the Ki67 proliferative marker expression (from 10% at baseline versus 50% at progression).
Neuroendocrine markers were not seen at progression. Concerning molecular alteration,
Tumor#4 harbored a mutation in the TP53BP1 gene.
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3. Discussion

Our report is the first to provide insights into the resistance mechanisms to novel
anti-EGFR agents in NSCLC. Here we identified the emergence of more aggressive and
proliferative tumor features at progression: an increased expression of the Ki67 marker,
the presence of inactivating mutations in the RB1 tumor suppressor gene, and alteration in
the TP53 signaling pathway. These results suggest the acquisition of multiple alterations
in our patients towards the SCLC-like tumor phenotype. As previously reported, the
pathway towards the SCLC phenotype would start with the acquisition of TP53 and RB1
loss of function [11,12], followed by an increased expression of Ki67, followed by the
acquisition of the neuro-endocrine markers in favor of the histological transformation in
neuro-endocrine tumors [13]; Figure 3. Acquired RB1 suppression has previously been
reported after progression under EGFR tyrosine kinase inhibitors in patients with common
EGFR mutations [14]. Concerning Patient#4, with a tumor harboring a TP53 mutation at
baseline, progression-free survival was the shortest under the experimental treatment. It
has been reported that concomitant the TP53 mutation confers worse prognosis in EGFR-
mutated NSCLC patients treated with TKIs [15].
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Figure 3. Transformation from NSCLC to SCLC under novel anti-EGFR treatment. Legend:
NSCLC = Non-Small Cell Lung Cancer; SCLC = Small Cell Lung Cancer.

In line with our findings, Offin et al. recently published that patients affected by
triple EGFR/TP53/RB1-mutant lung cancers are at risk of histologic transformation, with
25% presenting with de novo SCLC or SCLC transformation [16]. SCLC transformation
represents a known mechanism of resistance to osimertinib (third-generation EGFR TKIs)
in EGFR-mutated lung adenocarcinoma, which dramatically impacts patients’ prognosis
due to high refractoriness to conventional treatments [17].

4. Conclusions

Our case series is the first, to our knowledge, to report the molecular and pathological
mechanisms of resistance to amivantamab and patritumab deruxtecan, novel and innova-
tive anti-EGFR therapies. Histological transdifferentiation to a more aggressive histology
and towards SCLC-like transformation was identified in one of our patients that subse-
quently render the patient eligible for chemotherapy, based on the platin and etoposide
indicated in this histology. The profound inhibition of the EGFR, MET, and HER3 signaling
pathways associated with amivantamab and patritumab deruxtecan makes it likely for
such complex molecular resistance mechanisms to emerge. We highly recommend rebiopsy
being performed, if possible, in patients developing acquired resistance to novel anti-EGFR
targeted therapies to help understand the underlying mechanisms of resistance. This could
help in the choice of subsequent treatment.
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