
HAL Id: hal-04068536
https://hal.science/hal-04068536

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blood cell DNA methylation biomarkers in preclinical
malignant pleural mesothelioma: The EPIC prospective

cohort
Alessandra Allione, Clara Viberti, Ilaria Cotellessa, Chiara Catalano,

Elisabetta Casalone, Giovanni Cugliari, Alessia Russo, Simonetta Guarrera,
Darío Mirabelli, Carlotta Sacerdote, et al.

To cite this version:
Alessandra Allione, Clara Viberti, Ilaria Cotellessa, Chiara Catalano, Elisabetta Casalone, et al..
Blood cell DNA methylation biomarkers in preclinical malignant pleural mesothelioma: The EPIC
prospective cohort. International Journal of Cancer, 2023, 152 (4), pp.725-737. �10.1002/ijc.34339�.
�hal-04068536�

https://hal.science/hal-04068536
https://hal.archives-ouvertes.fr


C AN C E R G E N E T I C S A ND E P I G E N E T I C S

Blood cell DNA methylation biomarkers in preclinical malignant
pleural mesothelioma: The EPIC prospective cohort

Alessandra Allione1 | Clara Viberti1 | Ilaria Cotellessa1 | Chiara Catalano1 |

Elisabetta Casalone1 | Giovanni Cugliari1 | Alessia Russo1 |

Simonetta Guarrera2,3 | Dario Mirabelli4,5 | Carlotta Sacerdote6 |

Marco Gentile7 | Fabian Eichelmann8,9 | Matthias B. Schulze8,10 |

Sophia Harlid11 | Anne Kirstine Eriksen12 | Anne Tjønneland12,13 |

Martin Andersson14 | Martijn E.T. Dollé15 | Heleen Van Puyvelde16 |

Elisabete Weiderpass16 | Miguel Rodriguez-Barranco17,18,19 | Antonio Agudo20,21 |

Alicia K. Heath22 | María-Dolores Chirlaque19,23 | Thérèse Truong24 |

Dzevka Dragic24,25,26 | Gianluca Severi24,27 | Sabina Sieri28 |

Torkjel M. Sandanger29 | Eva Ardanaz19,30,31 | Paolo Vineis32 |

Giuseppe Matullo1,5,33

Correspondence

Giuseppe Matullo, Department of Medical

Sciences, University of Turin, Via Santena

19, 10126, Turin, Italy.

Email: giuseppe.matullo@unito.it

Funding information

Associazione Italiana per la Ricerca sul Cancro,

Grant/Award Number: IG21390; Ministero

dell'Istruzione, dell'Università e della Ricerca,

Grant/Award Number: D15D18000410001;

International Agency for Research on Cancer

(IARC); Department of Epidemiology and

Biostatistics, School of Public Health, Imperial

College London; Danish Cancer Society

(Denmark); Ligue Contre le Cancer, Institut

Gustave Roussy, Mutuelle Générale de

l'Education Nationale, Institut National de la

Santé et de la Recherche Médicale (INSERM)

(France); German Cancer Aid, German Cancer

Research Center (DKFZ), German Institute of

Human Nutrition Potsdam-Rehbruecke (DIfE),

Federal Ministry of Education and Research

(BMBF) (Germany); Associazione Italiana per la

Ricerca sul Cancro-AIRC-Italy, Compagnia di

SanPaolo and National Research Council (Italy);

Dutch Ministry of Public Health, Welfare and

Abstract

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer mainly caused

by asbestos exposure. Specific and sensitive noninvasive biomarkers may facilitate

and enhance screening programs for the early detection of cancer. We investigated

DNA methylation (DNAm) profiles in MPM prediagnostic blood samples in a case-

control study nested in the European Prospective Investigation into Cancer and

nutrition (EPIC) cohort, aiming to characterise DNAm biomarkers associated with

MPM. From the EPIC cohort, we included samples from 135 participants who devel-

oped MPM during 20 years of follow-up and from 135 matched, cancer-free, con-

trols. For the discovery phase we selected EPIC participants who developed MPM

within 5 years from enrolment (n = 36) with matched controls. We identified nine

differentially methylated CpGs, selected by 10-fold cross-validation and correlation

analyses: cg25755428 (MRI1), cg20389709 (KLF11), cg23870316, cg13862711

(LHX6), cg06417478 (HOOK2), cg00667948, cg01879420 (AMD1), cg25317025

(RPL17) and cg06205333 (RAP1A). Receiver operating characteristic (ROC) analysis

showed that the model including baseline characteristics (age, sex and PC1wbc) along

with the nine MPM-related CpGs has a better predictive value for MPM occurrence

than the baseline model alone, maintaining some performance also at more than

Abbreviations: AUC, area under curve; DNAm, DNA methylation; EPIC, European Prospective Investigation into Cancer and nutrition; EWAS, Epigenome Wide Association Study; miRNA,

microRNA; MM, malignant mesothelioma; MPM, malignant pleural mesothelioma; ROC, receiver operating characteristic.
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5 years before diagnosis (area under the curve [AUC] < 5 years = 0.89; AUC

5-10 years = 0.80; AUC >10 years = 0.75; baseline AUC range = 0.63-0.67). DNAm

changes as noninvasive biomarkers in prediagnostic blood samples of MPM cases

were investigated for the first time. Their application can improve the identification

of asbestos-exposed individuals at higher MPM risk to possibly adopt more intensive

monitoring for early disease identification.

K E YWORD S

cancer biomarkers, DNA methylation, mesothelioma, prospective nested case-control study

What's new?

Malignant pleural mesothelioma (MPM), though rare, is an aggressive cancer chiefly caused by

exposure to asbestos. Here, the authors describe a distinctive DNA methylation profile that can

help clinicians identify people who are at higher risk of developing MPM. Using samples from

135 individuals who developed MPM and 135 cancer-free controls, they identified nine sites

that had methylation differences between the cancer cases and the controls. This biomarker

profile could help screen asbestos-exposed individuals for MPM and improve early detection.

1 | INTRODUCTION

Malignant mesothelioma (MM) is an aggressive cancer of the serous

membranes with an increasing incidence worldwide. MM shows a

latency period for up to 40 years and its prognosis is poor, with a

median survival of about 12 months from diagnosis.1 At the time of

clinical diagnosis, disease is usually unresectable and chemotherapy

only vaguely improves prognosis, compared to best supportive care.

Currently, the diagnosis of malignant pleural mesothelioma (MPM) is

particularly challenging, with no established tissue or soluble bio-

markers in clinical practice. The diagnosis of mesothelioma at early

stages might be a promising opportunity to improve prognosis over

time. Today, most of the MPM studies are focused on biomarkers

research, including genetic and epigenetic ones.2,3

Exposure to asbestos fibres is a major risk factor for MPM, lung

cancer and other non-neoplastic conditions, such as asbestosis and

pleural plaques.4 However, several studies have shown that polymor-

phisms in genes involved in xenobiotic and oxidative metabolism or in

DNA repair processes may modify individual susceptibility to disease

after exposure to asbestos.5 The risk of developing MPM is slightly

increased among people exposed to asbestos with a positive history

of familial cancers.6

Several blood-based potential MPM biomarkers have been

reported recently in retrospective studies, including peripheral blood

DNA methylation (DNAm) variation and microRNAs (miRNAs)7: the

finding of asbestos fibres in extrapulmonary tissues, translocated

through lymphatic and blood flows and causing continuous exposure

of blood cells to asbestos, supports the search for epigenetic changes

in blood cell DNA.8

Epigenetic mechanisms may modulate gene expression without

altering the DNA sequence itself. DNAm is a crucial type of epigenetic

modification of DNA, by which a methyl group covalently bonds

to the C5 position of cytosine in 50-C-phosphate-G-30 (CpG)

dinucleotides; ultimately DNAm regulates gene transcription activity

and may modulate key biological functions.9

Systematic studies of genome-wide DNAm profiles at single CpG

level associated with MPM in prospective cohorts are lacking. Most

studies so far used biological samples collected at or after diagnosis,10

that may limit application for early disease detection of the identified

biomarkers due to reverse causality.

We previously identified DNAm biomarkers in blood taken at

MPM diagnosis able to discriminate between MPM and non-MPM

asbestos-exposed individuals, assuming that DNAm profile of blood

cells may contribute to identify early changes associated with MPM

development.11 More recently, we identified one single-CpG signal in

FKBP5 gene associated with asbestos-exposure as a biomarker of

MPM and MPM survival.12,13

In the current study we investigated, for the first time, the rela-

tionship between DNA methylation profiles in prediagnostic blood

samples and MPM, in a case-control study nested in the prospective

European Prospective Investigation into Cancer and nutrition (EPIC)

cohort.14

Our aim was to identify predictive biomarkers of MPM develop-

ment in asbestos-exposed individuals by DNAm analysis in blood

samples.

2 | MATERIALS AND METHODS

2.1 | Study design and population

EPIC is a multicentre cohort study, conducted in 23 centres across

10 European countries, aiming at investigating the aetiological role of

biological, lifestyle and environmental factors in cancer and other

chronic diseases. Overall, 521 468 healthy participants were enrolled

in EPIC, and followed up on an ongoing basis.14 In the frame of EPIC
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cohort, 135 participants developed MPM (EPIC-Meso) after a mean

follow-up of 8.3 years (range 0.5-18.8 years). The disease was classi-

fied by ICD-10 diagnosis codes (ICD, International Statistical Classifi-

cation of Diseases, Injuries and Causes of Death) as C38.4 (malignant

neoplasm of pleura) in all participants. Cancer endpoint data is based

on the latest round of follow-up received from the EPIC centres and

centralised at IARC between 2014 and 2016.

Prediagnostic DNAm profiles of their blood samples, taken at

enrolment, were compared to those of matched controls with no

oncological diagnosis.

As one case did not pass the data quality control, the final dataset

included 134 cases and 134 matched controls (dataset “MESO_ALL,”
Table 1). Controls were 1:1 matched to the cases by sex, age at enrol-

ment (±1.5 years), study centre and asbestos-exposure (see

Section 2.2).

Cases were divided into three subgroups (Table 1, MESO_ALL

Cases) based on the time between blood sample collection and

MPM diagnosis: Group 1, n = 36 participants who developed

MPM within 5 years; Group 2, n = 40 participants who developed

MPM from 5 to 10 years from the recruitment; and Group 3,

n = 58 participants who were diagnosed with MPM more than

10 years after recruitment. Group 1 cases and matched controls

(MESO_5YRS) were further analysed to identify differential meth-

ylation, and its trend with respect to the time before MPM diagno-

sis (Table 1, MESO_5YRS Cases).

2.2 | Asbestos-exposure assessment

Occupational information was available from the baseline EPIC

questionnaire. It included the occupation at enrolment and data on

ever working up to the time of enrolment in 52 at-risk occupations.

No information was available on duration of employment and time

of first employment. A semi-quantitative job-exposure matrix

(JEM) was developed by expert epidemiologists as previously

described,15 assigning an “exposure probability” and an “exposure
intensity” score to each of the 52 EPIC occupational categories.

Both scores were expressed over a numerical scale with four

levels: 0 “no exposure,” 1 “low,” 2 “intermediate,” 3 “high” and

multiplied to generate an Exposure Index (EI). Various exposure

metrics have been derived from the EI, as reported in Table S1. For

the present study, we used a categorical variable with three levels

defined as “no exposure” (EI = 0), “low exposure” (EI = from 1 to

3) and “high exposure” (EI ≥ 4).

2.3 | DNA methylation

DNAm levels were measured in DNA from buffy coat collected at

enrolment, using the Infinium Methylation EPIC Bead Chip (>850 000

methylation sites, Illumina, San Diego, California). Laboratory methods

for DNA extraction, BeadChip processing, methylation levels mea-

surement and data quality controls were previously described.11 T
A
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2.4 | DNA methylation bioinformatics analyses

The average methylation value at each CpG locus, that is, average

“beta (β) value” ranging from 0 to 1, was computed as the ratio of

the intensity of the methylated signal over the total signal

(unmethylated + methylated).

Data were processed using ChAMP Bioconductor package

(v2.22) filtering out the BeadChip probes with a detection

P value >.01 and with <3 beads in at least 5% of samples per

probe; non-CpG sites SNP-related and CpGs located in chromo-

some X and Y were excluded. The remaining signals were quality

controlled, normalised and batch effect corrected using ComBat

algorithm.

After quality controls 725 050 CpGs were used in the following

analyses.

DNA methylation regional differences were calculated by ChAMP

approach (champ DMR function).

2.5 | White blood cells estimate

In order to evaluate differences in white blood cells (WBCs) pro-

portion between cases and controls, we estimated WBC subtype

percentages from genome-wide methylation data.16 For each

individual, we extracted WBC subtype percentages, estimated

based on genome wide methylation data. We estimated the fre-

quencies of B cells, CD8+ and CD4+ T cells, natural killer cells,

granulocytes and monocytes using methylation profiles, both in

MESO_ALL and MESO_5YRS datasets. WBCs differences

between cases and controls were tested with Wilcox test R

function.

2.6 | Statistical analyses

All statistical analyses were conducted using the open source soft-

ware Rv4.1.0.

Epigenome-wide differential methylation on MESO_ALL dataset

(134 cases and 134 controls, Table 1) was tested by a multiple regres-

sion model (R function glm).

Cross-validation analysis was conducted on the subset of the

original group consisting of the 36 participants who developed

MPM within 5 years from the blood sample collection and

36 matched controls (dataset “MESO_5YRS”), in order to

improve the estimate of the mean model performance. Cross val-

idation was carried out mixing and splitting the dataset ran-

domly, summarising the goodness of the model using the sample

of model evaluation scores. Each run consisted of an Epigenome

Wide Association Study (EWAS) analysis done on 80% of the

samples (n = 58), with the option of maintaining comparable

proportions of matched cases and controls in the two groups;

we conducted a total of 10 cycles. As at false discovery rate

(FDR)-level we did not obtain any statistically significant

differentially methylated signal between cases and controls (pos-

sibly due to the small sample size population), we focused on

those signals that showed an jeffect sizej > 10% and a nominal

P ≤ .05 in at least 8 out of 10 runs.

All the analyses, including trend test, were adjusted for age

at blood collection, sex and WBC's first principal component

(PC1wbc; R prcomp function), which takes into account 66% of

the variance. WBC subtypes were estimated as previously

described.17

A Pearson correlation test was performed to evaluate the

association between two CpG sites, to select only one of the two

correlated signals (selecting correlating values of jrhoj > 0.7,

P ≤ .05). For each correlated couple, we selected the CpG signal

with the higher effect size.

Multiple regression models were done with glm R function, correla-

tions with cor.test R function, ROC analyses with ROCR and pROC

libraries.

3 | RESULTS

A flow diagram of participants and relative analyses performed in the

present study is represented in Figure S1.

3.1 | Differential methylation analysis

The baseline characteristics of the study participants are shown in

Table 1.

Leukocyte DNAm was used to quantify different leukocyte sub

proportions applying an implemented deconvolution pipeline for high-

resolution immune profiling.16 In MESO_ALL cases we observed a

slight difference in neutrophils, that were higher than controls

(Wilcoxon test P = .04, Table S2) and a weak decrease of CD4+ mem-

ory cells (Wilcoxon test P = .02, Table S2). In MESO_5YRS we did not

observe WBC differences between cases and controls (Table S3).

However, although we expected a larger deviation of WBCs close to

diagnosis, in both participant groups we did non observe any trend of

WBCs numbers with the time to diagnosis (data not shown).

We first focused the DNAm analysis on 36 participants who

developed MPM within 5 years from recruitment, vs 36 controls

matched by sex, age, study centre and asbestos-exposure level

(MESO_5YRS), under the hypothesis that the most significant changes

in blood should happen closer to MPM diagnosis, due to the already

ongoing carcinogenic process.

In the cross-validation analysis we identified 22 differentially

methylated CpGs with nominal P ≤ .05 and jeffect sizej > 10%

(Table 2). Unsupervised hierarchical clustering heatmap of DNA meth-

ylation of the 22 CpGs is shown in Figure S2.

We observed a very high correlation between DNA methylation

levels of CpGs located in the same gene (Table S4), allowing us to

select only one CpG for each gene, with a final list of nine significant

CpGs (highlighted in bold in Table 2).
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TABLE 2 Description of the 22 differentially methylated CpGs identified by 10-fold cross-validation EWAS analysis: number of runs for
which conditions of significance exist, their genomic localization, methylation levels (β-values) in cases and controls, effect size range in cross-
validation runs and the P value range among runs are indicated

CpG ID

Runs (n) with

eff.size >10%
(abs value)
and P-
value <.05 CHR MAPINFO

Gene
name

Relation
to gene

β-value
MPM
cases
(n = 36)

β-value
MPM
controls
(n = 36)

Effect size
min (min
as abs
value)

Effect size
max (max
as abs
value)

P-value
min

P-value
max

cg23870316 10 8 2 216 155 0.85 0.69 0.146 0.180 .0001 .002

cg20389709 10 2 10 184 303 KLF11 50UTR;
TSS200;
Body

0.12 0.28 �0.123 �0.197 .013 .00005

cg13498216 8 2 10 184 305 KLF11 50UTR;
TSS200;

Body

0.08 0.21 �0.106 �0.144 .00004 .002

cg06417478 9 19 12 876 846 HOOK2 Body 0.26 0.44 �0.159 �0.253 .002 .048

cg23899408 10 19 12 877 188 HOOK2 Body 0.27 0.43 �0.141 �0.226 .043 .001

cg16474696 9 19 13 875 014 MRI1 TSS1500 0.33 0.2 0.108 0.166 .0006 .022

cg25755428 10 19 13 875 111 MRI1 TSS1500 0.41 0.24 0.134 0.234 .0001 .023

cg25317025 9 18 47 019 823 RPL17 TSS1500 0.55 0.44 0.103 0.138 .003 .033

cg00667948 9 13 100 651 721 0.88 0.76 0.106 0.135 .007 .045

cg01879420 9 6 111 194 645 AMD1 TSS1500;
50UTR

0.17 0.29 �0.107 �0.145 .00003 .004

cg18434912 8 6 111 194 786 AMD1 TSS1500;

50UTR
0.2 0.3 �0.103 �0.139 .0002 .010

cg06205333 8 1 112 161 618 RAP1A TSS1500 0.63 0.76 �0.109 �0.174 .002 .023

cg04282082 9 9 124 988 720 LHX6 Body 0.67 0.51 0.140 0.244 .0003 .045

cg11479503 8 9 124 989 052 LHX6 Body 0.84 0.72 0.117 0.161 .00002 .002

cg21469772 9 9 124 989 294 LHX6 Body 0.74 0.59 0.124 0.224 .00002 .025

cg13571460 9 9 124 989 337 LHX6 Body 0.72 0.58 0.109 0.199 .00002 .024

cg05136264 9 9 124 989 408 LHX6 Body 0.73 0.6 0.109 0.193 .0001 .036

cg05037505 8 9 124 989 550 LHX6 Body 0.5 0.4 0.106 0.145 .0006 .019

cg15124400 9 9 124 989 839 LHX6 1st Exon;

50UTR;
Body

0.78 0.6 0.162 0.259 .0002 .021

cg13862711 9 9 124 989 915 LHX6 Body 0.74 0.54 0.174 0.279 .0001 .017

cg04622888 9 9 124 990 010 LHX6 TSS200; Body 0.7 0.55 0.141 0.217 .0006 .026

cg03363289 9 9 124 990 165 LHX6 Body 0.45 0.32 0.121 0.193 .0002 .021

Note: Signals selected after correlation analysis are highlighted in bold.

TABLE 3 ROC analysis for each of
the nine statistically differentially
methylated CpGs, performed on all
MESO_5YRS cases (n = 36) and all the
asbestos-exposed controls (n = 71)

CpG ID Gene name AUC MODEL 0 AUC MODEL 1 DeLong's P

cg01879420 AMD1 0.66 0.73 .1

cg06417478 HOOK2 0.66 0.69 .42

cg20389709 KLF11 0.66 0.74 .08

cg13862711 LHX6 0.66 0.71 .2

cg25755428 MRI1 0.66 0.71 .2

cg06205333 RAP1A 0.66 0.67 .51

cg25317025 RPL17 0.66 0.67 .52

cg23870316 0.66 0.75 .02

cg00667948 0.66 0.71 .12

Note: Model 0: age, sex, PC1wbc; model 1: age, sex, PC1wbc, nine CpGs methylation levels. Statistically

significant results (DeLong's p < 0.05) are highlighted in bold.
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Regional differences in MESO_5YRS cases and controls were analysed

with no statistically significant results (Table S5). Looking at DMRs with a

mean of the estimate > j0.5j, we confirmed DMRs in genes already identi-

fied in Table 2: LHX6 (16 CpGs), HOOK2 (4 CpGs) and RAP1A (3 CpGs).

The association between methylation of 22 CpGs listed in Table 2

and asbestos-exposure was evaluated both in cases and in controls.

To do this, we performed a Trend test, adjusted for age, sex and

PC1wbc in MESO_5YRS individuals (26 cases and 26 controls with

exposure assessment). However, we did not observe any statistically

significant results (Table S6).

EWAS analysis performed on the whole population of 268 partici-

pants (MESO_ALL) showed three signals with nominal P ≤ .05 and jeffect
sizej > 10%: cg04131969 (MYADML gene, effect size = 0.11, P = .004)

was hypermethylated in cases compared to controls, while cg17939448

(FAM47E gene, effect size = �0.10, P = .001) and cg01201512 (NINJ2

gene, effect size = �0.10, P = .006) were hypomethylated.

71 controls, 36 cases with MPM in <5 years
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71 controls, 40 cases with MPM in 5−10 years
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71 controls, 58 cases with MPM in >10 years
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F IGURE 1 ROC curves including model 0 (dotted line): age, sex, PC1wbc; and model 1 (solid line): age, sex, PC1wbc, 9 CpGs methylation levels
(cg01879420, cg06417478, cg20389709, cg13862711, cg25755428, cg06205333, cg25317025, cg23870316, cg00667948) on the following subgroups
of MESO_ALL: (A) 107 participants, including 71 asbestos-exposed controls and 36 participants developing MPMwithin 5 years from recruitment (AUC
model 0= 0.656, AUC model 1= 0.885, De-Long's P= 6.44� 10�5); (B) 111 participants, including 71 asbestos-exposed controls and 40 participants
who developed MPM in 5-10 years from recruitment (AUC model 0= 0.671, AUC model 1= 0.795, De-Long's P= .018); (C) 129 participants, including
71 asbestos-exposed controls and 58 participants who developed MPMmore than 10 years from recruitment (AUC model 0 = 0.627, AUC model
1= 0.747, De-Long's P= .018). AUC, area under the curve. [Correction added after first online publication on 29 November 2022. In Figure 1, the legend
keys in the graphs have been removed.]

730 ALLIONE ET AL.

 10970215, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijc.34339 by U

niversité de V
ersailles-Saint-Q

uentin-en-Y
velines, W

iley O
nline L

ibrary on [11/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.2 | Receiver operating characteristic curves
of DNA methylation signals

To evaluate improvement in discrimination between cases and con-

trols when including single CpG methylation levels in the analysis

(nine CpGs obtained by cross-validation analysis and selected after

correlation analysis), we compared two receiver operating characteris-

tic (ROC) analyses: model 0 includes age, sex, PC1wbc and model

1 includes age, sex, PC1wbc and single CpG methylation levels.

ROC analyses (1 for each of the 9 CpGs identified in

MESO_5YRS) were performed on a larger population of

107 participants, including the 71 tumour-free asbestos-exposed

(asbestos-exposure= 1 or 2) participants fromMESO_ALL and 36 par-

ticipants who developed MPM within 5 years from recruitment from

MESO_5YRS (Table 3). One DNAm signal was statistically significant:

cg23870316 (AUC model 0 = 0.66; AUC model 1 = 0.75; De-Long's

P = .02). However, DNA methylation level of cg23870316 is not able

to discriminate cases from controls in participants recruited more than

5 years before MPM diagnosis (Table S7).

To investigate a potential extension of results to longer time win-

dows, we also carried out ROC analysis with all the nine identified

CpGs, to discriminate asbestos-exposed controls with no diagnosis of

controls over10years between5_10years within5years
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cg ID gene name linear effect size pval
cg01879420 AMD1 -0.060 0.006
cg23870316 0.107 0.001
cg06205333 RAP1A -0.059 0.055
cg25317025 RPL17 -0.001 0.968
cg13862711 LHX6 0.071 0.089
cg00667948 0.023 0.292
cg06417478 HOOK2 -0.021 0.571
cg20389709 KLF11 -0.029 0.181
cg25755428 MRI1 0.088 0.021

F IGURE 2 Trend test analysis of nine differentially methylated CpGs on MESO_ALL cases divided into groups by time from recruitment to
diagnosis, controlling for age, gender and PC1wbc: >10 years (n = 58), between 5 and 10 years (n = 40), <5 years (n = 36). The table shows trend
test P values among groups of cases. Boxplots of significant CpGs are shown on the right, including also DNAm values of the control group (n = 71).
[Correction added after first online publication on 29 November 2022. In Figure 2, the table was missing and has been added to the figure.]
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MPM during follow up (n = 71, asbestos-exposure = 1 or 2) from par-

ticipants who developed MPM within 5 years after enrolment

(n = 36, Figure 1A), within 5 to 10 years (n = 40, Figure 1B) and over

10 years (n = 58, Figure 1C). We performed ROC analysis including

model 0: age, sex, PC1wbc; and model 1: age, sex, PC1wbc, 9 CpGs

methylation levels. De-Long's test showed a statistically significant

discrimination between the two groups in model 1 compared to model

0 in all the subgroups: within 5 years from MPM (AUC model

0 = 0.66, AUC model 1 = 0.89, De-Long's P = 6.4 � 10�5), from 5 to

10 years (AUC model 0 = 0.67, AUC model 1 = 0.80, De-Long's

P = .018) and > 10 years (AUC model 0 = 0.63, AUC model 1 = 0.75,

De-Long's P = .018), showing a good performance also when the par-

ticipants were recruited >10 years before MPM diagnosis.

ROC analysis with the nine CpG was also performed excluding

the 20 asbestos-exposed controls belonging to the MESO_5YRS data-

set and already used in discovery. Thus, ROC curves were performed

including model 0: age, sex, PC1wbc; and model 1: age, sex, PC1wbc,

nine CpGs methylation levels on 51 asbestos-exposed controls and

36 MESO_5YRS cases, obtaining similar results (AUC model 0 = 0.70;

AUC model 1 = 0.87; De-Long's P = .004). Moreover, to exclude

asbestos-exposure effect in case-control discrimination, we per-

formed also the same ROC analysis with model 0 (age, sex, PC1wbc,

asbestos-exposure) and model 1 (age, sex, PC1wbc, asbestos-expo-

sure, nine CpGs methylation levels), confirming previous results (AUC

model 0 = 0.73; AUC model 1 = 0.86; De-Long's P = .02).

3.3 | Biomarkers trend with time to diagnosis

We performed a trend test to evaluate the changes of the nine differ-

entially methylated CpGs in association with the time to diagnosis.

MESO_5YRS MPM cases were divided into participants who devel-

oped MPM within 1.5 years from sample collection (n = 9), partici-

pants who developed MPM after 1.5 and before 3 years (n = 13) and

participants who developed MPM after 3 and before 5 years (n = 14)

(MESO_5YRS cases, Table 1) and the trend test was performed com-

paring these three groups. We did not observe any statistically signifi-

cant trend (Table S8). On the other hand, three of these signals

showed a statistically significant linear trend in MESO_ALL cases

divided by time from recruitment to diagnosis as described in Table 1

(Figure 2): cg01879420 in AMD1 gene (P = .006), cg25755428 in

MRI1 gene (P = .021) and cg23870316 (P = .001). Nevertheless, EPIC

participants who were diagnosed with MPM a longer time from enrol-

ment showed DNAm levels very similar to control participants,

as expected (Figure 2).

3.4 | DNAm diagnostic biomarkers changes
in prediagnostic samples

We aimed to assess whether previously reported DNAm biomarkers

in MPM patients at diagnosis11,13 are also informative in DNA blood

samples taken up to 5 years before MPM diagnosis. To do this, we

performed a multiple regression model on MESO_5YRS dataset of

DNAm biomarkers previously identified as differentially methylated in

a case/control study (Table S9). Cg01521397 in TAF4 gene body was

statistically significantly hypomethylated in EPIC-Meso who devel-

oped MPM within 5 years from recruitment compared to matched

controls (P = .01). However, any of these CpGs showed statistically

significant differences in individuals closer to MPM diagnosis (data

not shown) compared to the other participants.

4 | DISCUSSION

In the present study, we identified nine DNAm biomarkers in blood

preclinical samples from MPM patients. The panel of the nine signals

was able to discriminate cases from controls with the highest perfor-

mance within 5 years before diagnosis, and maintaining some discrimi-

nating power up to 10 years before MPM symptoms. Generally, the

diagnosis of cancer at early stages, when clinical symptoms have not

yet occurred, appears to be a promising opportunity to improve thera-

peutic outcomes. Treatment at early stages together with newly

developed therapies could possibly lead to improvement in overall

survival of patients with MM.18 We focused the DNAm data analysis

mainly on individuals who were diagnosed with MPM within 5 years

from the blood sample collection, with the purpose to identify early

changes of tumour-related DNAm. A few previous studies measured

blood biomarkers several years before MPM diagnosis, but compari-

son with them is hard due to different time from measurements to

MPM diagnosis, most of them shorter than those of EPIC.16,19 Except

for mesothelin,19 no other biomarkers have been evaluated in a suffi-

ciently large prospective cohort study with serial prediagnostic sam-

ples of MM cases so far. Morrè and colleagues, observed that ENOX2

protein transcript variants characteristic of malignant mesothelioma

were present in serum 4 to 10 years in advance of clinical

symptoms.20

Among the 22 differentially methylated signals, we identified five

genes in which more than one CpG were differentially methylated:

LHX6, MRI1, HOOK2, AMD1 and KLF11.

In particular, LHX6 gene contained 10 hypermethylated CpGs

(Figure S3 shows a gene-based visualisation of DM CpGs in LHX6

gene), two of which were located in transcriptionally active gene

regions (eg, TSS200, 1st exon). Methylation-mediated inactivation of

LHX6 (LIM Homeobox domain 6) has been shown in lung,21 head and

neck,22 cervical23 and pancreatic24 tumours. The mechanism by which

LHX6 acts as a tumour suppressor gene is related to the interference

with the Wnt/β-catenin pathway,25 which is severely involved also in

MPM progression.26 Moreover, LHX6 is a target gene of miR-214, and

upregulated LHX6 gene expression was observed to be related to

downregulation of miR-214 in non-small-cell lung cancer.27 The role

of miR-214 has also been evaluated in mesothelioma, and previous

studies in human samples showed a down-regulation of miR-214

expression.28

Although it is already known that LHX6-cg13862711 hyper-

methylation in tissue is associated with several types of cancer (eg, in
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breast, kidney and upper aerodigestive tract; https://cancer.sanger.ac.

uk/cosmic), the epigenetic regulation of LHX6 in blood cells of preclin-

ical samples needs further investigation.

Two hypomethylated signals in cases compared to controls in the

KLF11 50UTR/TSS200 region were identified. Krüppel-like factors

(KLFs) form a highly conserved family of zinc finger transcription fac-

tors, and play important roles in the progression of human malignant

tumours, such as breast cancer and colon cancer.29 Recently, high

KLF11 expression was associated with poor prognosis of glioma.30

In MRI1 gene we identified two hypermethylated signals located

in the promoter region (TSS1500) in cases compared to controls.

MRI1 codes for an enzyme (methylthioribose-1-phosphate isomerase)

that catalyses the interconversion of methylthioribose-1-phosphate

(MTR-1-P) into methylthioribulose-1-phosphate (MTRu-1-P). In addi-

tion to the catalytic activity, MRI1 promotes cell invasion and signal

transmission in response to RhoA activation in cancer cells, and for

this reason is also called “Mediator of RhoA-dependent Invasion”
(MRDI).31 Elevated expression of the encoded protein is associated

with metastatic melanoma and this protein promotes melanoma cell

invasion independently of its enzymatic activity.31

In the gene body of Hook Microtubule Tethering Protein

2 (HOOK2) we identified two hypomethylated CpGs. Several studies

focused on differentially methylated regions in HOOK2, showing its

implication in several pathological conditions, as in diabetes, obesity,

polycystic ovary syndrome and cardiometabolic diseases.32-34 In par-

ticular, the deregulation of cg06417478 DNAm was shown as associ-

ated with diabetes,34 while DNAm changes in cg23899408 were

identified in blood as a prediction marker in liver diseases.35 Deregula-

tion of both CpGs was associated with colon adenocarcinoma in

patients with metabolic syndrome.36

Other deregulated CpGs were found in Adenosylmethionine Decar-

boxylase 1 (AMD1) gene. This gene encodes S-adenosylmethionine decar-

boxylase 1, an important intermediate enzyme in polyamine biosynthesis.

The polyamines spermine, spermidine and putrescine are highly regulated

in cellular proliferation and tumour promotion.37 Multiple alternatively

spliced transcript variants have been identified, also in association with

cancer survival (eg, non-small cell lung cancer).38 Several studies have

demonstrated that AMD1 differential expression is implicated in cancer,

such as chronic myeloid leukaemia (CML)39 and B-cell non-Hodgkin's

lymphoma.40

Finally, two other genes contain significant differentially methyl-

ated CpG sites: RPL17 (cg25317025) and RAP1A (cg06205333).

RPL17 encodes a ribosomal protein that is a component of the

large 60S subunit, called 60S ribosomal protein L17.41 A variety of

extra-ribosomal functions were recently recognised for ribosomal pro-

teins, including the regulation of immune signalling, tumorigenesis and

cellular development.42 RPL17 expression has been reported to be

associated with breast43 and liver44 cancer.

RAP1A deregulated CpG is located in the promoter region

(TSS1500). RAP1A encodes a small GTPase member of the Ras family.

Its encoded protein may be involved in signalling pathways that affect

cell proliferation, adhesion and may play a role in tumour malig-

nancy.45,46 Inactivation of RAP1 by bisphosphonates treatment has

been observed in several pathologies, including MM: growth inhibition

of MM cells by zoledronic acid has been shown both in vitro and

in vivo, and the described effect is related to RAP1 unprenylation.47,48

Besides the seven genes described above, we also identified two

deregulated CpGs in noncoding regions (cg23870316 and

cg00667948). In this regard, the cg23870316 is the unique DNAm

signal which was statistically significant in discriminating prospective

cases from controls. This CpG is located in the 8p23.2 DNA region

with scanty information in the literature.

The nine differentially methylated CpGs together were not only

able to discriminate cases within 5 years from MPM diagnosis, but

they also partly maintained their discrimination power also for cases

who were diagnosed with MPM in a range of 5 to 10 years or more

than 10 years from sample collection. However, the significance (De-

Long's test) decreases moving away from the time of diagnosis, show-

ing that the prediagnostic potential of these biomarkers is limited to

time periods closer to diagnosis.

In summary, our results identified nine differentially methylated

CpGs that could be used as MPM biomarkers to identify early changes

in preclinical individuals (ie, within 5 years before diagnosis). Interest-

ingly, the identified CpGs are located on genes already known for

their potential role as tumour biomarkers.

Regarding the estimate of WBC subpopulations, we applied a

new reference-based deconvolution analysis of peripheral blood

DNA methylation data developed by Salas et al, which include

memory and naive cells from cytotoxic and helper T cells and B

cells and parse the granulocyte subtypes into neutrophils, eosino-

phils and basophils.16 Although we did not obtain statistically sig-

nificant results in MESO_5YRS dataset, we observed a statistically

significant difference between preclinical cases and controls in

CD4+ memory T cells and neutrophils in MESO_ALL dataset, indi-

cating a different immunological response in individuals who

developed MPM compared to controls. The reduction of estimated

CD4+ memory lymphocytes in cases suggests a weaker adaptive

immune system and is compatible with the possible occurrence of

functional changes in cellular subpopulations in MPM, while an

increase of neutrophils could correlate with the recent interest for

their cancer-promoting effects: an elevated neutrophil-to-

lymphocyte ratio is considered a prognostic indicator for cancer

patients, in particular in mesothelioma, although its value remains

debated.49 However, the WBCs differences that we estimated did

not change in relation to the time to diagnosis, and are so minimal

that it could need further insights.

We previously observed DNAm biomarkers in MPM patients11,13:

among them only cg01521397 in TAF4 gene is differentially hypo-

methylated in preclinical samples (as well as in MPM patients), but

with any significant changes closer to MPM diagnosis. The meaning of

this results is interesting in the context of biomarkers reverse causal-

ity interpretation, discriminating biomarkers related to the presence of

MPM from those associated to prediagnostic biological changes.

However, if reverse causality accounted for our findings, we would

expect the cg01521397 DNAm-MPM association to become stronger

closer to the time of diagnosis and this does not seem to be the case.
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Furthermore, we are aware of the limitations of our study.

First of all the lack of a replication in an independent cohort. Small

sample size-related problems are especially common in the study

of preclinical samples of rare diseases. For this reason, cross-

validation represents a common and efficient solution when the

available data are limited. In addition, when validation with a sepa-

rate dataset is not feasible, cross-validation allows to use all the

data for training and to reuse it for validation. The procedure of

splitting data at every run offers an efficient quality forecast and

we were also able to make predictions on all our data. Moreover,

each run is independent from the others, avoiding overestimation

of the generalisation of the model by/through developing a new

one with each CV cycle. The cross-validation approach is widely

used, representing a very powerful tool: reduces bias, improves

the use of the data, avoiding the overfitting problem, especially

with small datasets, produces robust and unbiased performance

estimates regardless of sample size.50 However, this limitation

needs to be considered interpreting results.

The use of whole blood samples to examine the DNAm levels,

which may not directly reflect the status of the target tissue, is

another limit of the study. However, the analysis of preclinical

samples with the main goal to monitor high MPM risk asbestos-

exposed individuals should rely on a noninvasive biosample such

as blood.

The coverage at disease relevant genes by CpG sites included in

the DNAm Infinium Methylation EPIC beadchip array used in the

study could be another limitation, as it investigates only 30% of the

human methylome. In comparison, whole-genome bisulphite sequenc-

ing is able to capture more than 28 million CpGs, but the feasibility

remains low for the population-based EWAS due to high cost and

large genomic DNA input requirements to compensate for degrada-

tion during DNA bisulphite treatment.

The large EPIC cohort is a unique and very valuable resource, as

the prospective nature of the study is more suitable to stratify high-

risk individuals on the basis of genetic and epigenetic profiles in com-

bination with other biomarkers and clinical risk factors. Moreover,

since MPM diagnosis takes place only in the late stage of the disease,

prospective cohort studies may be optimal for investigation of early

MPM-related changes in the asymptomatic phase.

The identified DNAm biomarkers could be associated with germ-

line mutations analysis in the follow-up of asbestos-exposed individ-

uals with MPM genetic predisposition. Based on published studies

from our group and others, germline mutations in several genes may

increase MPM susceptibility even with low levels of asbestos-expo-

sure, and possibly predict the response to standard treatments.51,52

Moreover, the detection of BRCA-mutated or BAP1-mutated MPM in

a very early phase of tumour development could address a persona-

lised therapy approach with PARP-inhibitors or immune checkpoint

inhibitors.53

Our study identified potential blood DNAm changes in preclinical

MPM individuals. If further replicated in other studies, these signals

could represent potential circulating biomarkers, promising for early

MPM detection.
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