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Hopfield networks are iterative procedures able to solve
combinatorial optimization problems. New studies re-
garding algorithm-architecture adequacy are fostered by
the re-emergence of hardware implementations of such
methods in the form of Ising machines. In this work, we
propose an optoelectronic architecture suitable for fast
processing and low energy consumption. We show that
our approach allows effective optimization relevant to
statistical image denoising. © 2023 Optica Publishing Group
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Bio-inspired physical systems made from a large number of4

interconnected simple elements can yield interesting compu-5

tational properties. In his seminal work, Hopfield introduced6

networks of neuron-like elements and their usefulness in combi-7

natorial optimization problems expressed as the minimization8

of a quadratic energy function, both in continuous [1] and dis-9

crete time [2]. While theoretical guidelines to achieve feasible10

solutions were investigated in [3], a number of practical im-11

provements have also been published to escape local minima12

including tailoring the energy function and its hyperparame-13

ters [4], incorporating simulated annealing heuristics [5], ran-14

dom noise [6] or transient chaotic behavior [7]. A generalization15

to highly nonlinear energy functions has also appeared in [8].16

The introduction of efficient hardware architectures of Hop-17

field networks and their generalizations during the last decade18

has sparked renewed interest in this field. These implementa-19

tions, known as Ising machines, are based on various physical20

principles such as quantum [9], nanomagnetic [10], memresis-21

tive [11] and photonic [12] technologies. Note that specific meth-22

ods for optical Ising machines to escape local minima, have also23

appeared recently in [13]-[14]. Unfortunately, most papers on24

the subject lack a comparison with respect to near-global opti-25

mization techniques as well as an evaluation of energy efficiency.26

In this letter, we implement a mixed hardware/digital ar-27

chitecture of a coherent Ising machine (CIM) based on off-the-28

shelf telecommunication components. The main novelties are29

as follows: from an application perspective, we demonstrate30

the potential of a CIM for statistical image denoising - from31

a system-level perspective, we compare the proposed mixed32

hardware/digital system to a standard digital implementation33

of Hopfield networks and Simulated Annealing (SAN) [15] in34

terms of probability of reaching the ground state, computational35

complexity, and energy consumption.36

We implement the coherent Ising model in a digital simula-37

tion running on a CPU and the equivalent optoelectronic hard-38

ware. We describe the model formally by letting Ω be a square39

n × n lattice. Any pixel s = (l, c) ∈ Ω can be assimilated to a40

position in the lattice with line (resp. column) coordinate l (resp.41

c), where 1 ≤ l, c ≤ n. ∀s ∈ Ω, we let the spin σs be a random42

variable in {−1,+1}. The random vector σ is obtained by raster43

scanning the spins columnwise. A particular Markov random44

field (MRF) defines the probability mass function (pmf) of σ as45

P(σ = (σs)s∈Ω) ∝ e−E(σ), (1)

where the system’s energy function has the form of an Ising46

Hamiltonian47

E(σ) = −1
2 ∑

(s,t)∈N
Js,tσsσt − ∑

s∈Ω
bsσs, (2)

where N denotes all couples of neighboring pixels with end-48

around boundary conditions. Note that finding the most proba-49

ble spin configuration (the so-called ground state) is equivalent50

to the combinatorial optimization problem consisting in mini-51

mizing Equation 2.52

The numerical simulation follows [12] by numerically im-53

plementing a generalized Hopfield network to minimize the54

discrete time equation of the form:55

xs(k) = f

(
αxs(k − 1) + β

(
∑

t:(s,t)∈N
Js,txt(k − 1) + bs

))
σ̂s(k) = sign(xs(k)), ∀s ∈ Ω

(3)

where k is the discrete-time, f (.) is a nonlinear activation func-56

tion, α and β are scaling coefficients controlling the self-coupling57

and feedback strength affecting the neuron output xs(k), while58

σ̂s(k) is the spin estimate of pixel s. We call digital CIM a Python59

implementation of the algorithm described by the equation60

above executed on an Intel Xeon E5-1603 processor. The nonlin-61

ear function is the sin2(.) imitating the transfer function of the62

MZM followed by a photodiode used in the hardware imple-63

mentation.64
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Building on the digital implementation we implement mixed65

analog/digital processing in the form of a CIM that can lead66

to savings in terms of achievable processing speeds and energy67

consumption. The potential for high-speed solutions to combina-68

torial optimization problems is very attractive for applications re-69

quiring real-time processing or adaptation to dynamically chang-70

ing environments. We solve the algorithm-architecture adequacy71

problem by selecting only commercially available telecommuni-72

cation components in the optoelectronic oscillator setup shown73

in Figure 1. We call this setup the hardware CIM.74

The hardware CIM uses a Distributed Feedback (DFB) laser75

diode emitting light at 1.55µm to a Mach-Zehnder Modulator76

(MZM) that modulates the optical phase of the light. The phase77

is modulated proportionally to the feedback signal allowing for78

the electro-optical conversion of the system’s state. The MZM79

also provides the nonlinear activation function in the optical80

domain thanks to its sin2(.) transfer function. Note that alterna-81

tive nonlinearities could improve the photonic optimizer [16],82

but at the expense of more complex hardware. The modulated83

light from the MZM is photodetected by a 20 GHz photodiode84

and the electrical signal is sent to the Zmod Scope 1410 − 12585

Analog-to-Digital Converter with 125MSa/s and 14-bit resolu-86

tion. The scope supplies the digital part with the node-states87

vector for the spin interactions computation according to Equa-88

tion 3 and the subsequent digital processing of the spins. The89

digital part is an Eclypse-Z7 featuring the Field Programmable90

Gate Array (FPGA) board along with two ZMod connectors91

allowing high-speed data conversions and processing. We im-92

plement via VHSIC Hardware Description Language (VHDL)93

the logic for high-speed data acquisition, matrix multiplication,94

and transfer of signals. After digital processing, the resultant95

node-states vector is sent to a Zmod AWG 1411: 2-channel 14-bit96

Arbitrary Waveform Generator (AWG) with a sample rate of97

100MSa/s.This allows for the conversion of the FPGA digital98

data to a continuous signal that modulates the phase of the MZM99

completing the loop. We also incorporate a 10 GHz Analog RF100

Amplifier Driver with an output voltage of 9Vpp allowing proper101

signal scaling before modulating the MZM and a Digital Serial102

Analyser (DSA) to visualize in real-time the evolution of the103

signals and spin formation in the loop.104

The presented setup can implement Equation 3 only for a105

single spin, the feedback delay is decomposed into n2 inter-106

FPGA
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Optical Signal

Electrical Signal
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Modulator
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biasV

J X (k-1)s, t t
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Driver
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Fig. 1. Experimental setup of the proposed opto-electronic
CIM. Vbias is the bias voltage control of the MZM.

vals along which the spins are multiplexed using Time Division107

Multiplexing (TDM). For each iteration, the FPGA waits for n2
108

readings from the ADC before computing the resultant spins109

after spin interaction in a way that is more reliable, scalable and110

inexpensive than today’s fully-photonic alternatives [17].111

As a benchmark, we implemented SAN similar to [18], ar-112

guably the most used heuristic method for gradual cooling of a113

’high-temperature’ problem to attain a frozen state that is, ideally,114

arbitrarily close to the solution of the problem. SAN is one of the115

most popular algorithms for this feat and has been implemented116

both in computer simulations as well as in dedicated hardware117

which provides parallelization of digital hardware accelerators118

and analog computing [19].119

To compare the optimization implementations under study120

we propose several metrics. Firstly, we evaluate the success121

probability of reaching (or approximating) the ground state for122

each method and compare them. We extend the analysis to123

incorporate the estimation of computational complexity, that124

in the digital domain, is measured via the number of Floating125

Point Operations (FPOs), while an experiment-impact-tracker [20]126

running in parallel is used to report the consumed energy and127

the corresponding carbon-dioxide and equivalent greenhouse128

gases emissions (CO2eq). For the hardware CIM, we estimate the129

average power consumption of constituent elements to obtain a130

rough estimate of the consumption. These metrics enable further131

analysis of the studied approaches by shedding light on the132

complexity vs. energy vs. performance trade-off, a subject that is133

mostly overlooked in the literature despite the recommendations134

for sustainable practices [21].135

The proposed performance metrics gauge the ability and136

efficiency of the digital CIM and hardware CIM. We also propose137

the near-global optimization using SAN based on the Gibbs138

sampler given in [22] as the benchmark. Unless otherwise stated,139

N is chosen as the couple of 4-point nearest neighbors in the140

lattice under end-around boundary conditions. For the digital141

and optoelectronic CIM, the initial spin configuration is chosen142

uniformly and independently at random. The hyperparameters143

are set to (α = 0.25, β = 0.29) (value retained in [12] Fig. 4(a)144

for 2D square lattices), while the number of iterations is set to145

Nit = 100. Also, we implement SAN with an initial temperature146

of 2, a geometric annealing parameter equal to 0.99, and 200147

iterations [22]. Moreover, the adopted legend for all images is148

as follows: bright yellow for spin-up (+1) and dark purple for149

spin-down (−1). We study two problems that can be formulated150

as the minimization of a Hamiltonian having the form given151

by Equation 2 such as the Antiferromagnetic Ising model and152

MAP image denoising using the optoelectronic Coherent Ising153

Machine (CIM) both in the simulations and hardware.154

We begin with a low-dimensional example where n = 10155

with antiferromagnetic interactions, that is Js,t = −1 ∀(s, t) ∈ N156

and bs = 0 ∀s ∈ Ω. It is well-known that the ground state corre-157

sponds to a checkerboard pattern (alternating spin-up and spin-158

down configuration with minimum energy equal to −n2). In our159

experiments, Figure 2 depicts the initial and final estimated spin160

configuration for a single run of the proposed optoelectronic161

CIM, that successfully converges to the ground state. Part of the162

TDM sequence of spins is copied on channel CH1 of DAC and163

sent to a Digital Serial Analyzer Sampling Oscilloscope (DSA).164

A screenshot in Figure 3 shows the resultant alternating up and165

down spins as a time series. Over a single successful run, Fig-166

ure 4 shows that the proposed optoelectronic CIM and the digital167

CIM have similar dynamics, with convergence reached typically168

after a few tens of iterations. Table 1 summarizes our perfor-169
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Fig. 2. The initial spins (Iteration = 0) are randomly and in-
dependently chosen for the digital CIM whereas, for the op-
toelectronic CIM, the system’s noise initializes the spins. A
checkerboard pattern appears (Iteration = 25) and stabilizes as
the system converges (Iteration = 50 to 200).

mance metrics by repeating all the aforementioned experiments170

independently 1000 times.

Fig. 3. Digital Serial Analyzer screen showing serial alternat-
ing spins after convergence for the hardware CIM - n = 10.
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Fig. 4. Energy evolution for a single run for the square-lattice
of spins with antiferromagnetic interactions - n = 10.

171

We observe that SAN converges later than both CIMs but172

reaches the ground state with approximately 98.9% success prob-173

ability compared to the approximately 91.4% digital CIM. For174

this task, success means attaining exactly the theoretical ground175

energy state of E(σ) = −100. From this standpoint, SAN is176

more performant. With further analysis, we noticed, however,177

that this win comes at a cost of 7.47 times the number of FPOs178

and runtime required by the digital CIM. It, therefore, takes179

more computational effort to attain a solution with SAN than180

it does with digital CIM. Moreover, energy estimates with the181

experiment-impact-tracker show that SAN requires 23 times the182

energy of the digital CIM and the same factor for the increase in183

Metric Digital Optoeletronic SAN
CIM CIM

Success probability (%) 91.4 90 98.9
Time (ms) 10 2.1 79

FPOs (×106) 0.76 0.32 5.68
Energy (×10−6 kWh) 0.6 3 × 10−4 14

CO2eq (×10−6kg) 0.044 2.2 × 10−5 1

Table 1. Average performance metrics for the antiferromag-
netic model over 1000 runs - n = 10.
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Fig. 5. The clean image (a) and the resultant noisy image (b)
after the salt and pepper noise addition - n = 64, p = 0.2.

CO2eq emissions. The hardware CIM has a success probability184

of 90% - close to that of the digital CIM. Since the hardware CIM185

benefits from the speed of optics and the FPGA’s programmable186

logic the energy analysis for the hardware CIM becomes inter-187

esting. We observe that the checkerboard solution obtained in188

digital CIM requires 2000 times the cost of the optoelectronic189

CIM counterpart. What’s more, the hardware CIM consumes190

1/46667th of the energy required by SAN. A significant gain in191

efficiency altogether.192

We now consider a hidden black and white image (σs)s∈Ω to193

be restored from an observed noisy image (ys)s∈Ω according to194

a salt and pepper noise model, i.e. ys = −σs with probability195

p and ys = σs with probability 1 − p, independently for each196

pixel s ∈ Ω. In our setting, n = 64 and the prior spin pmf197

is chosen as the MRF in Equation 1 with the coupling param-198

eter between neighboring pixels set to 1 (ferromagnetic inter-199

actions). It is easily shown that maximum a posteriori (MAP)200

image denoising corresponds to selecting Js,t = 1 ∀(s, t) ∈ N201

and bs = − 1
2 log(p/(1 − p))ys ∀s ∈ Ω (as derived in supple-202

mentary material). In our experiments, we use p = 0.2 and203

we show the clean image and the resultant noisy image after204

being impacted by the noise in Figure 5. Note that further results205

(although not reported) showed the robustness of the proposed206

denoising against different image structure and values for n and207

p.208

Figure 6 depicts the initial dirty image and the final image af-209

ter running SAN and digital/optoelectronic CIM. Over a single210

successful run, Figure 7 shows that the proposed optoelectronic211

CIM and the digital CIM have similar dynamics, with conver-212

gence reached typically after 15 iterations. Table 2 summarizes213

our performance metrics - adding the pixel-wise classification er-214

ror rate (PCER %) - by repeating all aforementioned experiments215

independently 1000 times.216

For this application, we observe that SAN attained the ground217

state successfully for all the runs whereas digital and hardware218

CIM attained the ground state in 89% and 86.75% of the runs219

respectively. Success means falling within three standard devia-220

tions of the average ground state energy (which is approximately221
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(a) (b) (c)

Fig. 6. A sample initial dirty image (iteration 1) shown in (a).
After convergence (iteration 100), we obtain (b) and (c) for the
digital and optoelectronic CIMs respectively - n = 64, p = 0.2.

E(σ) = −5550), thus corresponding to a 98% confidence interval.222

The clean images generated by SAN contain a PCER of 1.7%223

whereas the digital and hardware CIMs converged to a PCER224

of 2.3% and 3% respectively. For this task, SAN excels over the225

digital and hardware CIMs in these convergence metrics also.226

Nevertheless, further analysis reveals that SAN’s performance227

comes at approximately 9.5 times the execution time, 10 times228

the number of FPOs, and 12.22 times the energy (same factor for229

the CO2eq emissions) consumed by the digital CIM. The CO2eq230

emissions are reported taking into account the nature of electric231

grids in the Palaiseau city in France. The 11% gain in conver-232

gence success probability of SAN costs us at least 10 times the233

computation cost of digital CIM by all measures. Following the234

observation, with the Antiferromagnetic model we analyze the235

energy costs for the hardware CIM on this task as well. The236

energy consumption results for hardware CIM are reported in237

Table 2 showing a gain factor of 6206 and 75862 with respect238

to the digital CIM and SAN respectively for the energy and239

environmental impact.240
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Fig. 7. MAP image denoising energy evolution for a single run
- n = 64, p = 0.2.

Metric Digital Optoeletronic SAN
CIM CIM

Success probability (%) 89 86.75 100
PCER (%) 2.3 3 1.7
Time (ms) 4110 86 39130

FPOs (×109) 0.7 0.0131 7.1
Energy (×10−6 kWh) 90 1.45 × 10−2 1100

CO2eq (×10−6kg) 5 8 × 10−4 62

Table 2. Average performance metrics for MAP image denois-
ing over 1000 runs - n = 64, p = 0.2.

In summary, we have proposed and demonstrated the po-241

tential of CIM for image restoration applications. We have also242

illustrated that SAN outperforms our CIMs in terms of conver-243

gence success probability and PCER. We have argued, however,244

that SAN requires significantly more resources compared to dig-245

ital and hardware CIM implementations. With the severalfold246

increase in energy costs and computation efforts, a compromise247

on accuracy becomes reasonable. In most practical applications,248

a choice is often made to settle for less demanding solutions249

that yield acceptable performances. In this light, CIMs appear250

as the more reasonable and informed choice. And further en-251

ergy efficiency is attained with an optoelectronic hardware CIM252

compared to the digital one, also by a significant margin. This253

underlines the argument for the efficiency of neuromorphic pho-254

tonic implementations of brain-like algorithms. As we explore255

more complex combinatorial optimization problems and their256

interesting applications in various domains we will be mindful257

of the CIM’s promise for faster and more efficient solutions, this258

direction of exploration has the potential for interesting avenues.259
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