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Robust Structure from Motion observer:
Input to State Stability approach
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∗ Laboratoire IBISC, Université Paris-Saclay, 40 Rue de Pelvoux,
Essonne 91080 France ( e-mail: hichem.arioui@univ-evry.fr )

Abstract: The authors present a novel nonlinear Thau-Luenberger observer for estimating
Structure from Motion using a calibrated camera. Accurate reconstruction of the 3D structure of
a scene relies on precise estimation of the camera’s translational and angular velocities, which can
be challenging for cameras on mobile platforms. The proposed observer aims to estimate these
velocities robustly in the presence of measurement noise, with stability characterized through
Input to State Stability analysis and Lyapunov theory. The stability conditions are determined
using optimization techniques based on Linear Matrix Inequalities. The performance of the
proposed approach is validated through simulation and experimental data, demonstrating its
effectiveness in recovering the depth of tracked features and its robustness against disturbances.

Keywords: Nonlinear Observer, Structure from Motion, Linear Matrix Inequalities.

1. INTRODUCTION

The 3D structure of a scene can be reconstructed from
the depth information of features in images captured by
a moving camera. This process, known as Structure from
Motion (SfM), remains a significant area of research in
computer vision. Currently, proposed solutions for SfM can
be categorized as either offline, also referred to as batch, or
online approaches (Oliensis, 2000). In batch schemes, the
structure is estimated by processing all the information
acquired from an image sequence using nonlinear opti-
mization, commonly referred to as Bundle Adjustment
(Agarwal et al., 2010), or matrix factorization (Wang and
Jonathan Wu, 2011). However, these methods are com-
putationally intensive and pose challenges for real-time
applications. Additionally, they often require subsequent
iterative or online methods to ensure convergence.
Online methods formulate SfM as a differential equation,
where the image dynamics are derived from point sets
extracted from a continuous image sequence. Estimates
are obtained using recursive filtering methods or determin-
istic observers. Filtering techniques, such as the Kalman
Filtering, Extended Kalman Filter (EKF) (Civera et al.,
2012), Unscented Kalman Filter (Omari and Ducard,
2013), and Particle Filter (Pupilli and Calway, 2006),
have been shown to be efficient methods for estimating
3D structure, and have been developed in the context of
Visual-Monocular Simultaneous Localization And Map-
ping (VM-SLAM). As a result, the distinction between
SfM and VM-SLAM is ambiguous, depending on the field
where these terms are used: SfM is more popular in the
computer vision community, whereas VM-SLAM is gain-
ing increased interest in robotics research (Chhaya et al.,
2016). However, most filtering techniques do not guarantee
convergence, and their performance relies on an accurate a
priori noise model. Furthermore, their linearized dynamics
do not sufficiently approximate highly nonlinear systems.
To overcome these limitations, different approaches have

been proposed, relying on the design of nonlinear deter-
ministic observers with theoretical stability guarantees.
For example, in (Lowe, 2004), feature point depth esti-
mation is addressed using an active strategy to optimize
the convergence rate of the error by acting on the camera
translational velocity. Similarly, geometric primitives such
as lines (Oliensis, 2000), spherical and cylindrical targets
(Zhang et al., 2006), and moments (Agarwal et al., 2010)
have been introduced in the context of active SfM.
Active SfM typically require a priori knowledge of camera
velocity for accurate reconstruction of the 3D structure of
a scene. Camera velocity can be precisely measured and
controlled using methods such as differential kinematics,
joint encoders, and motors when the camera is mounted
on the end effector of a fixed base robotic manipulator.
However, this becomes considerably more challenging for
mobile or flying robots, as they are subject to significant
dynamics and non-holonomic constraints (Spica, 2015). To
address this issue, several approaches have been proposed,
including obtaining partial measurements/estimations of
camera linear/angular velocity (Keshavan and Humbert,
2017), or using rotation-invariant features to mitigate the
effects of disturbances on angular velocity.
In this work, a nonlinear deterministic observer is designed
for feature depth estimation. The stability conditions de-
rived are formulated in terms of LMI constraints. The
robustness of the observer to the estimation error uses the
Input-to-State (ISS) stability paradigm to minimize the
measurement perturbations of the camera velocity input
and unreliable feature tracking. The performance of the
proposed scheme is validated through experimental results
using a mobile platform (Spica, 2015). Additionally, the
performance is compared with the recent work presented
in (Tahri et al., 2017) which exploits rotationally invariant
features to design a robust active vision scheme based
on two transformations: the first transformation efficiently
decouples the nonlinear model, whereas the second trans-
forms the decoupled model into Brunovsky’s linear form.



The paper is organized as follows: Section 2 summarizes
the vision model expressed here in quasi-Linear Parameter
Varying (qLPV) form and discusses the observability con-
ditions. Section 3 addresses the design of the non-linear ob-
server to estimate the depth information. The simulation
and experimental results demonstrating the performance
of the presented work are evaluated in section 4. Finally
section 5 summarizes the conclusions of this work.

2. MODEL DESCRIPTION

This work adopts the following notations: matrices are
represented in bold uppercase X and vectors in bold
lowercase x . The symmetric matrix property is expressed
as X = X⊺ and (.)−1 is the inverse of a square matrix.
X ≻ 0 (resp. X ≺ 0) means that X is a positive definite
(resp. negative definite) matrix. 0 and I denote to null
and identity matrices of appropriate dimensions. [.]× is the
skew-symmetric matrix operator. ∥(.)∥

2
and ∥(.)∥

∞
are the

Euclidean and infinity norms respectively. Lastly, x̄ is the
representation of x in homogeneous coordinates.
This section introduces the Takagi-Sugeno transformation
utilized for observer synthesis. Subsequently, an analysis
of the uniform observability conditions is presented.

2.1 Camera-Object Relative Motion Model

Consider a 3D point p of coordinates defined in the camera
frame Fc as cp = (Xc Y c Zc)⊺ ∈ R3 and defined in the
world frame Fw as wp̄ = (X Y Z 1)⊺. Its projection into a
2D point on the image plane with normalized homogeneous
image coordinates, given by m̄ = (x y 1)⊺. The projection
is expressed by the pinhole equations:

x =
Xc

Zc
y =

Y c

Zc
(1)

The pose of Fc with respect Fw is defined in terms
of the camera extrinsic parameters, encapsulated by the
homogeneous transformation matrix Twc.

Twc = (
R t
0 1

) (2)

where R ∈ SE (3) is the rotation matrix Fc between and
Fw and t ∈ R3 represents transalational displacement
between Fc and Fw The inverse of Twc, denoted by
Tcw = T−1

wc takes the following form:

Tcw = (
R⊺ −R⊺ t
0 1

) (3)

Then, the mapping coordinates from Fw to Fc is given by:
cp̄ = Tcw

wp̄ (4)

Time derivative of (4) to obtain the velocity of p in Fc:

c ˙̄p = Ṫcw
wp̄ +Tcw

w ˙̄p (5)

= ṪcwTcw
cp̄ +Tcw

w ˙̄p

which can be written as:
c ˙̄p = V̄c p̄ +Tcw

w ˙̄p (6)

where w ˙̄p is the homogeneous representation of the ab-
solute velocity of p in Fw, and V̄c = ṪcwTcw

c, called
twist, is an element of the Lie group SE (3) representing
the velocity of Fw with respect to Fc in Fc. Hence, the
homogeneous matrix representation of V̄c is given by:

V̄c
= (

Ṙ⊺R −R⊺ ṫ
0 1

) (7)

= (
[ω]× −υ

0 1
) (8)

with υ = (υx υy υz)⊺ and ω = (ωx ωy ωz)
⊺ are the instan-

taneous translational and angular velocity of the camera
frame origin. Thus, (6) is equivalent to:

c ˙̄p = (
Tcw

wṗ − υ + [ω]× p
0

) . (9)

with wṗ representing the translational velocity of p in Fw
which is always assumed to be zero since the feature is
considered fixed in the scene. Expanding (9), the following

matrix is obtained where u = (υ⊺ ω⊺)
⊺

is the measured
spatial velocity of the camera motion:

cṗ =
⎛
⎜
⎝

−1 0 0 0 −Zc Y c

0 −1 0 Zc 0 −Xc

0 0 −1 −Y c Xc 0

⎞
⎟
⎠
u (10)

The motion of the feature m is related to the velocity of the
camera by an interaction matrix which itself depends on
the current value of the features and other 3D information
(depth). From the equations (1) and (10), one can deduce
that the time derivative of the image point m is linked to
the camera spatial velocity u by the following interaction
matrix (Tahri et al., 2015):

ṁ = (
− 1
Zc

0 x
Zc

xy −(1 + x2) y
0 − 1

Zc
y
Zc

(1 + y2) −xy −x
) u (11)

The dynamics of the depth information 1
Z

denoted by χ is
deduced from the equation (10):

χ̇ = (0 0 χ2 y χ −xχ 0) u (12)

Let x = (m⊺, χ) denote the state vector where m = (x y)⊺

is a measurable vector, and χ = 1
Zc

is the unmeasurable 3D
information to be estimated. A moving camera observing
a scene induces a motion in the image plane and hence
in the features. Point correspondences (the measurable
variables) in an image sequence can be computed using
feature-tracking techniques (Bay et al., 2006).

2.2 T-S Representation

The objective of this work is to design a nonlinear observer
which robustly estimates the depth information χ during
the camera motion in the presence of measurement noise.
For this purpose, a new system representation of the state
vector is adopted x expressed as a qLPV model:

{
ẋ = A(x,u) x +B(y) ω
y = Cx

(13)

where:

A(x,u) =
⎛
⎜
⎝

0 0 −vx + xvz
0 0 −vy + yvz
0 0 χvz + ywx − xwy

⎞
⎟
⎠

B(y) =
⎛
⎜
⎝

xy −(1 + x2) y
1 + y2 −xy −x

0 0 0

⎞
⎟
⎠

and y represents the output of the system:

C = (
1 0 0
0 1 0

)



Furthermore, the qLPV system is transformed into TS
form with unmeasured premise variables. Following the
sector nonlinearity approach (Kazuo and Wang, 2001), the
TS model of the system is formulated as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ =
r

∑
i=1
µi(x)(Ai x +B(y) ω)

y = Cx
(14)

where Ai ∈ R3×3, B ∈ R3×3 and x ∈ R3 is the state
vector. The weighting functions µi, i = 1, . . . , r satisfy the
following convex sum property:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ⩽ µi ⩽ 1
r

∑
i=1
µi = 1 (15)

with r is the number of the sub-models defined by the
following three system nonlinearities:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

h1 = −vx + xvz
h2 = −vy + yvz
h3 = χvz + ywx − xwy

(16)

These terms are assumed to be bounded, so that the TS
model obtained is a weighted sum of 8 sub-models r = 23

corresponding to the nonlinear model on the compact set.

3. OBSERVER DESIGN

This section develops the estimation of the unmeasured
state by considering the given polytopic observer:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

˙̂x =
8

∑
i=1
µi(x̂)(Aix̂ +Li(y − ŷ)) +Bω

ŷ =Cx̂
(17)

The estimated state and output vector are respectively
denoted by x̂ and ŷ. A state estimator is developed for the
system in equation (13) under the following assumptions.

Assumption 1. We consider tha a frozen values of param-
eters (Sename and Fergani, 2017):

(1) the state vector and the system inputs are bounded.
(2) the system is structurally uniformly observable.

The aim is to compute the gain Li to minimize the
following estimation error.

e(t) = x(t) − x̂(t) (18)

The time dependency is omitted for brevity. The dynamics
model of the error is:

ė = ẋ − ˙̂x

=
8

∑
i=1
µi(x)(Aix +Bω) −

8

∑
i=1
µi(x̂)(Aix̂ +Bω +Li(y − ŷ))

=
8

∑
i=1
µi(x)Aix −

8

∑
i=1
µi(x̂)(Aix̂ +Li(y − ŷ)) (19)

it follows:

ė =
8

∑
i=1
µi(x̂)(Ai −LiC)e +

8

∑
i=1

(µi(x) − µi(x̂))Aix

=Aee +∆(x̂,x) (20)

To satisfy the asymptotic stability of (19), let the following
assumptions hold true (Bergsten and Palm, 2000):

(1) the system Ae is Hurwitz.
(2) ∆(x̂,x) is a vanishing disturbance i.e:

∆(x̂,x) → 0 when x̂→ x

Theorem 1. Assuming that the system nonlinearities are
bounded, the error dynamics in (19) are ISS with respect
to ∆(x̂,x) with minimized ISS gain φ2:

∥(e(t))∥
2
< φ1 ∥(e(0))∥2 e

−σ2 t + φ2 ∥(∆(x̂,x)∥∞ (21)

Thus, there exists a positive definite symmetric matrix P ∈

R3×3, matrices Fi ∈ R3×3, positive scalars η̄ and ε such that
the LMIs constraints (22c),(22d) and (22e) are satisfied.
The resulting observer gains are given by Li = P−1Fi. If
it exists a symmetric positive definite matrix P ∈ R3×3
with the minimal and maximal eigenvalues denoted by X1

and X2, matrices Fi ∈ R3×3 such that the following LMI
conditions for a given σ, α,β and X1 hold ∀ i = 1, . . . ,8:

minγ s.t. (22a)

X1 I ≤ P (22b)

(
A⊺
iP +C⊺F⊺

i +PAi +FiC + σP P
P −γ I

) < 0 (22c)

(
βP PAi +FiC

AT
i P +CTFTi βP

) > 0 (22d)

AT
i P +CTFTi +PAi +FiC + 2αP < 0 i = 1, . . . ,8 (22e)

with: Fi = PLi , φ1 =
√
X2

X1
, φ2 =

√
γ
αX1

, and X1 I ⩽ P ⩽

X2 I.

Proof 1. Lyapunov theory is used to investigate the sta-
bility of the error dynamics in (19) by considering the
following quadratic function:

V = eTPe P = PT > 0 (23)

Given that the Lyapunov function is positive definite, it is
bounded in the following manner:

X1 ∥(e(t))∥
2
⩽ V (t) ⩽ X2 ∥(e(t))∥

2
(24)

where X1 and X2 are the minimum and maximum eigen-
values of the matrix P. By taking the time derivative of
the Lyapunov function and replacing the estimation error
(19) derived previously, one obtains:

V̇ = ė⊺Pe + e⊺Pė (25)

= (e⊺Ae +∆
⊺
(x̂,x))Pe + e⊺P(Aee +∆(x̂,x))

= e⊺(Ae
⊺P +PAe)e +∆

T
(x̂,x)Pe + eTP∆(x̂,x)

which is equivalent to:

V̇ (t) = e⊺ Ae
⊺P +PAe e + 2eP∆ (26)

= (
e
∆
)

⊺
(
Ae

⊺P +PAe + σP P
P −γI

) (
e
∆
)

−σ e⊺Pe + γ ∆⊺∆
where σ is a real positive constant.

Recalling the relations
8

∑
i=1
µi(x̂)(Ai − LiC) = Ae and

Fi = PLi , then if the feasibility of the LMIs expressed in
(22c) ∀i = 1, . . . ,8 holds, this infers the following bounds
of the Lyapunov function derivative:



V̇ (t) < −σ e⊺Pe + γ ∆⊺∆ (27)

By integrating the previous inequality (27), one obtains:

V̇ (t) < V (0) e−σt + γ ∫
t

0
e−σ(t−s) t∥∆(s)∥

2
ds (28)

⩽ V (0) e−σt +
γ

σ
∥∆(s)∥

2

∞

including the bounds of the Lyapunov function in (24)
yields:

∥e(t)∥
2
<
X2

X1

∥e(0)∥
2
e−σt +

γ

αX1

∥∆(t)∥
2

∞ (29)

which is equivalent to:

∥(e(t))∥ <

√
X2

X1

∥e(0)∥ e−
σ
2 t +

√
γ

σX1

∥(∆(t)∥∞ (30)

This inequality proves the ISS stability of the system
(19) with respect to the disturbance ∆ and with minimal
ISS gain ensured by the condition (22a) defined by φ2 =
√
γ/ (σX1). The pole placement of (Ai−LiC), i = 1, . . . ,8

is selected to in order to maximize the convergence rate of
the estimation. The eigenvalues are assigned in particular
regions defined by the combination of a disk of radius β
centered at (0,0) and the half-plane delimited by α:

S(α,β) = {z ∈ C, R(z) < −α, ∣z∣ < β} (31)

The following constraints define the chosen pole clustering:

(
βP (Ai −LiC)

(Ai −LiC)TP βP
) > 0 (32a)

(Ai−LiC)
TP+P(Ai−LiC)+2αP < 0 i = 1, . . . ,8 (32b)

To obtain feasible LMIs, the variables must appear linearly
in the constraints. Hence, the following change of variables
is performed: Fi = PLi The pole clustering in inequality
(32) is equivalent to the following and this ends the proof.

(
βP PAi +FiC

AT
i P +CTFTi βP

) > 0 (33a)

AT
i P +CTFTi +PAi +FiC + 2αP < 0 i = 1, . . . ,8 (33b)

The feasibility of the LMIs in (22) after imposing the
parameters α, β, σ and X1 ensures the stability of the
error dynamics in (19) with improved convergence rate.

4. VALIDATION RESULTS

The performance of the proposed observer is validated
against simulation and experimental results. The proposed
approach is compared to the active Incremental Structure
from Motion (ISfM) scheme proposed in (Tahri et al.,
2017) in the presence of strong measurement noise on
the camera velocity. The latter observer was chosen for
comparison due to its robust performance.

4.1 Simulation Results

Concerning the simulation results, three points defined
with respect to the initial camera frame by the following
coordinates were considered:

P0 =
⎛
⎜
⎝

−1 .9 0.7
0.2 0.9 0.8
1.6 1.1 1.2

⎞
⎟
⎠

(34)

The Root Mean Squared Error (RMSE) is used to compare
the performance of the proposed work with the results ob-
tained in (Tahri et al., 2017) to quantify the performance
of our estimator in the presence of measurement noise and
modeling error where κ is the parameter to be estimated
and n is the number of error samples in a given interval.

RMSE =

¿
Á
ÁÀ 1

n

n

∑
i=1

(κ − κ̂)
2
i (35)

The RMSE of the depth estimation error in the steady-
state performance for both approaches is compared in
order to conclude which observer delivers more robust
performance with respect to camera velocity uncertainties.
Hence, both the gains of both observers were tuned to
have approximately the same rate convergence and the
steady state was chosen to start at 0.5 seconds. The initial
values of all estimated parameters were set to zero for the
comparison test. The following four cases were considered:

Case 1 : Noise-free measurements.
Case 2 : The controlled angular velocity is affected by a

measurement noise of zero mean and variance of 0.001
using the random number block function in Simulink.

Case 3 : Both translational and angular velocities are
affected by measurement noise of zero mean and
variance of 0.001.

Case 4 : Both translational and angular velocities are
affected by measurement noise of zero mean and
variance of 0.003.

Observer Observer in (Tahri
et al., 2017)

Proposed Observer

Case 1 1.4781 × 10−5 6.5898 × 10−4

Case 2 5.0537 × 10−3 0.0654

Case 3 0.2529 0.0854

Case 4 0.4247 0.1549

Table 1.

From the RMSE table, it can be seen that both observers
perform almost identically for noise-free system. RMSE
results obtained with the observer in (Tahri et al., 2017)
in the second case show a lower value implying that it
performs better in the presence of measurement noise on
the angular velocity due to extracted features being rota-
tion invariant. However, when the observer performance is
evaluated for strong measurement noise in cases 3 and 4,
one notices that the proposed observer has favourable noise
rejection properties. Thus, our observer delivers better
performance in the presence of measurement noise.

4.2 An Experimental Case Study

To validate the proposed approach experimentally, point
depth estimation was performed on images captured from
a Kinect camera mounted on a TurtleBot mobile robot
platform. The 2D feature considered in this experiment is
the center of a detected and tracked circle on the image.
The estimate is compared to the ground truth collected
using the indoor positioning tool VICON. After calibrating
the VICON Motion Capture system, the Kinect fixed on
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Fig. 1. Simulation results of the estimated χ̂ and real χ
depth information for the following initial values: (a)
χ̂ = 0, (a) χ̂ = 1 and (c) χ̂ = 10.

the turtleBot and the center of the image circle were
recognized by the VICON Tracker system (version 3.7.)
using mounted markers. The ground truth (VICON) date
was published to the ROS network and saved as .bag files
created with the rosbag utility. Images were published at
30Hz while VICON readings were updated at 100 Hz. Let
vpc be the position of the marker attached to the circle and
vpk the position of the Kinect camera with respect to the
VICON-fixed frame. The aim is to build a ground truth
consisting of successive circle center positions with respect
to the camera frame during camera motion. Hence, the
position of the marker pc

v can be expressed in the camera
frame with coordinates pc

k as follows:

pc
k
=
cRv

−1 pc
v⊺
−
cRv

−1 pk
v⊺ (36)

where: cRv is the rotation matrix from the VICON-fixed
frame to the camera frame.

The feature considered here is the center of the circle
on the image. The imposed parameters used in the opti-
mization problem were chosen in order to minimize ISS
gain between disturbances ∆(x̂,x) and the estimation
error e while satisfying all LMI constraints. If the opti-
mization problem did not permit a numerical solution,
the imposed parameters σ and X1 were relaxed further
and the optimization problem was re-run under these new
LMI constraints. The choice of predefined parameters of
the pole clustering is crucial: High values will result in a
rapid convergence of the estimation error. However, the
observer becomes more sensitive to measurement noise.
Ultimately, there was a compromise in the selection of the
imposed parameters between the accuracy of the estimate
and the feasibility of the LMIs. After extensive testing, the
following parameter set was used for feasibility reasons:
σ = 10, X1 = 10−5. After exploring different regions, the
pole clustering was taken in the region defined by β = 30
and α = 5 which resulted in a faster convergence rate
and reduced sensitivity to measurement noise. The LMIs
conditions in (22) are solved using YALMIP giving:

γ = 1.3171 10−6

P = 10−9
⎛
⎜
⎝

0.2193 −0.0002 −0
−0.0002 0.2193 −0
−0 −0 0.0004

⎞
⎟
⎠

The observability of (Ai,C) can be calculated from (14)
and it is shown that the eight sub-models of the TS system
are observable. Note that this does not necessarily guar-
antee the true observability of the nonlinear system, only
that it satisfies the observability criterion used here. The
experimental results show the satisfactory performance of
the observer. In Fig. 2, the true and estimated depth Zk

c

converge after 4 seconds. Fig. 1 illustrates the behavior
of the real and estimated depth information χ for dif-
ferent initial values of χ̂. In summary, the theoretical
claims have been validated against extensive simulations
and experimental results. Non-holonomic constraints and
non-negligible dynamics strongly perturb estimation of the
camera velocity, particularly the translational component.
Thanks to the ISS property of the proposed observer, the
impact of these disturbances is confined to a spherical re-
gion characterized by φ2. Finally, the experimental results
are highlighted in the video link https://t.ly/ub5K.

5. CONCLUSIONS

This paper presents a nonlinear observer design for struc-
ture and motion identification reconstruction using a cali-
brated monocular camera. Sufficient conditions were pro-
vided to ensure the uniform observability of the vision
system modeled as a qLPV system. The convergence of
the estimation error was investigated based on the ISS
property and Lyapunov analysis and the observer gains
were computed by solving the derived LMI constraints.
The observer was implemented in MatLab and compared
with a recently proposed rotation-invariant feature-based
active Incremental Structure from Motion scheme (Tahri
et al., 2017) against simulation data and experimental
results. An interesting use case of the proposed approach
would be navigation tasks for mobile robots: a robot could
apply this approach to scene features while exploring an
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Fig. 2. Simulation results of the estimated Ẑ and real Zkc
depth for the following initial values of χ̂: (a) χ̂ = 0,
(a) χ̂ = 1 and (c) χ̂ = 10.

environment to create a depth map.
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