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Abstract:
Road curvature is an essential parameter of road geometry, and it is crucial to set vehicle
design and operating speeds. It can be utilized to identify the maximum stable velocity of a
Powered Two Wheeled Vehicle (P2WV) and predict other safety-related events, including Lane
departure and lane crossing. This paper proposes a new vision-based approach to estimate
the road’s curvature accurately and efficiently under real-time constraints for P2WV. The
proposed method is based on the vanishing point approach to estimate the relative heading
and its dynamics. Combined with the available vehicle speed and the yaw rate given by the
inertial measurement unit (IMU), the instantaneous curvature of the road is reconstructed.
The proposed algorithm is then tested using various simulated scenarios of different speeds and
curvatures to validate the approach. Then it was compared to other estimation methods based
on Inverse Perspective Mapping (IPM) to investigate the validity and efficiency in all scenarios
regarding accuracy and time complexity. The proposed method shows very promising results in
terms of error and real-time execution.

1. INTRODUCTION

Road safety has improved significantly during the past
decades, thanks to higher quality training programs
that have produced more qualified drivers on roads and
increased adoption of driver’s assistance and warning
systems. In particular, Powered Four-Wheeled Vehicles
(P4WV) have been gradually equipped with Advanced
Driver Assistance Systems (ADAS), many of which have
become required by law (e.g., Electronic Stability Control,
Anti-lock Braking System, airbag systems).

Despite these improvements, little has been done for
P2WV. Riders are still among the most vulnerable road
users. A study published in 2019 ONISR (2019) shows
that P2WV crashes are 22 times more fatal than P4WV,
accounting for 23% of all traffic fatalities. Most P2WV
crashes are due to problems when maneuvering curves.

For a novice driver, negotiating a bend in P2WV can be
very complicated. The rider must adapt his speed to the
geometry of the road, anticipate his trajectory, and carry
out the vehicle’s movement. The slightest error may lead
to a fall. Even for expert riders, bends are high-risk areas
due to inappropriate speeds or poor road conditions.

Schneider et al. (2010) and Clarke et al. (2004) conducted
studies concerning the influence of road geometry on
P2WV accidents. They clearly showed that curvature
impacts the frequency and severity of P2WV accidents.
They point out that 15% of all fatal P2WV accidents take
place in bends for riders who are, in general, inexperienced.
Among the factors involved, the authors identify the radius
of the road curvature. It seems evident that adequate
driver assistance systems could significantly contribute to
reducing the number of P2WV accidents when cornering.

When cornering, the rider is supposed to anticipate the
trajectory to perceive and decipher all the relevant safety
cues. In addition to safety requirements, such as main-
taining the traffic lane, it is necessary to consider the
possibility of adapting the trajectory by narrowing it or
widening it to avoid possible obstacles on the roadway.
Therefore, the road’s curvature determines the maximum
safe speed to execute a maneuver.

Vision-based techniques to estimate road curvature have
existed for a while. They all rely on the detection of lane
markers. In the early 1980s, Dickmanns and Zapp (1987)
proposed the first idea of using the extra information from
the road lane markers to reconstruct the road curvature,
vehicle’s lateral offset, and relative heading using vision.
After that, several algorithms have been developed using
monocular cameras Pomerleau (1995) or stereo vision
systems Bertozzi and Broggi (1998), region-based Alvarez
and Lopez (2008), feature-based Liu et al. (2008), and
spline fitting Wang et al. (2000) and Kim (2006). However,
since all these methods were developed with a P4WV in
mind, they relied on IPM to achieve a bird’s eye view
(BEV) of the road and then recover the lanes under the
assumption of negligible roll dynamics.

However, these methods suffer from some problems. The
limitation on the vehicle speed and the need for a road
model, which are mostly assumed circular ignoring the
change in curvature. Which sometimes could be signifi-
cant. In addition, most of these approaches also rely on the
assumption of a negligible roll angle. This assumption does
not hold for P2WV as the rolling dynamics are significant,
and thus making the IPM requires extra information about
the roll angle based on inertial measurements. Estimating
angles using an IMU sensor is vulnerable to drift errors.



Regarding curvature estimation, only a few studies have
been done using a motorcycle. However, in a recent work,
Damon et al. (2018) built on Dickmanns findings and
extended to motorcycles to estimate the lateral offset,
relative heading, and road curvature, taking into account
the roll motion of the vehicle. However, the results for the
curvature had large errors, despite assuming that the IMU
provides a perfect angular position.

To solve this problem, a model-free, real-time, vision-based
technique is proposed using a monocular camera aided
with angular rates reading from the IMU to accurately
estimate the curvature without needing a road model.
First, the lane markers are detected, each fitted to a line,
then the vanishing point of these lines is calculated, then
the relative heading is estimated. After that, the relative
heading rate is combined with the vehicle yaw rate to
estimate the road’s curvature more precisely.

2. DEFINITION AND OVERVIEW

Consider the case of a P2WV with a monocular camera
traveling on a curved planar road under the assumption of
visible lane markers. Let Rw the world inertial frame. Ro

is the ground reference frame, where the x, y axes are in
the plane of the road and its z-axis is upwards. This frame
follows the road lane marker as its x-axis is always tangent
to the lane marker. Rv is the vehicle body frame, defined
at the front wheel contact point when there is no steering.
Rcs is the camera frame which results from rotating Rv

around it y-axis with a known fixed angle µ. Let Rcp

be another camera frame that follows the pinhole camera
frame definition, where its origin is the optical point, its
z-axis is the optical axis. Its x and y axes are the same
orientation of the image’s plane x and y directions, and
finally, let Rocp be a local reference frame where its z-axis
is always a tangent to the road lane marker, its x-axis it
perpendicular to the lane marker to the inside of the road,
and its y-axis is pointing downwards. It can be seen easily
that the rotation matrix from Rocp to Ro and from Rcp

to Rcs are given by:

oRocp =
csRcp =

[
0 0 1
−1 0 0
0 −1 0

]
(1)

The last two reference frames are defined in this way to
facilitate the estimation of the yaw angle. ψk is the relative
heading angle between the vehicle heading and the x−axis
of Ro. v is the vehicle velocity at C. ψtan is the angle
between xo and xw, and ψv is the vehicle’s yaw angle. v
is the velocity value, and vx is the longitudinal velocity.
Figures 1 and 2 illustrate the frames.

Fig. 1. P2WV on a curved road, frames definition-Top view

Fig. 2. P2WV on a curved road, with frames definition

Based on that definition, it can be shown that:

ψk = ψtan − ψv (2)

Taking the derivative of equation (2) and dividing by vx:

ψ̇k
vx

=
ψ̇tan
vx

− ψ̇v
vx

(3)

Under the assumption of near steady turning, one can
estimate the curvature of the road as:

ρ =
ψ̇tan
vx

(4)

Substituting equation (4) in (3) and isolating ρ gives:

ρ =
ψ̇k + ψ̇v
vx

(5)

By approximating the value of vx by v:

ρ =
ψ̇k + ψ̇v

v
(6)

Assuming the knowledge of v and ψ̇v, which is outputted
by the IMU, ψ̇k is the only one left to recover the
curvature. The latter actually can be estimated using
vision.

3. ESTIMATING RELATIVE HEADING AND ITS
DERIVATIVE

3.1 Estimating pan angle from a vanishing point

Vanishing point detection is widely used in the literature to
calibrate or recover the camera’s pose. A vanishing point is
where the perspective projections of parallel lines intersect,
defining a point at infinity at real-world coordinates.

For a pinhole camera, the equation of perspective projec-
tion in the homogeneous coordinates is as follows:

s ·

[
u
v
1

]
= K× [cpRocp|t]×

XYZ
1

 (7)

Where u, v are the pixel coordinates, and X,Y, Z are
the coordinates in camera frame in meters, K is the 3x3
calibration matrix, cpRocp is the 3x3 rotation matrix, t is
the translation vector between Rcp and Rocp.

The interest is to find the vanishing point where the two
road lanes intersect, which is in the z direction in the
road frame Rocp. This vanishing point is expressed in the
homogeneous coordinate system as

Vz = [0 0 1 0]
T

(8)



The zero at the last component indicates that the point
lies at infinity. Assuming that vpix is the coordinates in
pixel of the vanishing point in the image plane:

vpix = K× [cpRocp|t]× [0 0 1 0]
T

(9)

which leads to
vpix = K× r3. (10)

Where r3 is the 3rd column of the rotation matrix cpRocp,
knowing that r3 should have a unit length:

r3 =
K−1 × vpix∥∥K−1 × vpix

∥∥ (11)

However, r3 can be expressed using pan and tilt angles
only (α, β respectively) as:[

sinα · cosβ
− sinβ

cosα · cosβ

]
=

K−1 × vpix∥∥K−1 × vpix

∥∥ (12)

Because of the way the camera is defined, it is only possible
to get the last row of the rotation matrix cpRocp from
the vanishing point. In order to estimate pan and tilt, a
representation that enables to calculate the two angles just
from the last column has to be chosen. Thus the use of
the Y XZ Euler representation, where the rotation matrix
takes the following form:

cpRocp =

[
cαcγ + sαsβsγ cγsαsβ − cαsγ sαcβ

cβsγ cβcγ −sβ
−cγsα + cαsβsγ cαcγsβ + sαsγ cαcβ

]
(13)

Where sθ is sin θ, and cθ is cos θ. It can be seen that the last
column is just composed of the pan and tilt angles. From
this, the connection between the vanishing point and the
pan and tilt angles can be concluded:

r3 =

[
sinα · cosβ
− sinβ

cosα · cosβ

]
(14)

Which gives the equations of both α and β as follows:

α = atan2(r3(1), r3(3)), β = −asin(r3(2)) (15)

where r3(1), r3(2), r3(3) are the components of r3. How-
ever, these pan and tilt angles are represented in Y ZX
Euler representation as seen in the next section, not the
standard ZY X representation of interest.

3.2 From Y ZX to XY Z Euler representation

It can be shown that α is exactly the yaw angle ofRcs from
Ro, and β is the pitch angle of the frame Rcs from Ro

following an XY Z Euler angles representation. In order
to prove that α and β are the yaw and pitch angles in
XY Z representation, oRcs need to be written in terms of
α and β and compare it with the rotation matrix in the
XY Z convention. Starting from cpRocp as illustrated in
equation (13), it can be found that:

oRcs =
oRocp × ocpRcp × cpRcs (16)

Where oRocp is available from equation (14). Moreover, it
is known that:

ocpRcp =
cpRT

ocp (17)

Substituting (14) and (17) in (16) results in:
oRcs =

cpRT
cs ×

cpRT
ocp ×

cpRcs (18)

Furthermore, from (13) by substituting by values:

cpRocp =

[
cαcβ −sαcβ sβ

cγsα − cαsβsγ cαcγ + sαsβsγ cβsγ
−cαsβcγ − sαsγ sαsβcγ − cαsγ cβcγ

]
(19)

On the other hand, the rotation matrix constructed from
the XYZ Euler convention can be given by:

oRcs = Rx(−ϕ)×Ry(θ)×Rz(ψ) (20)

By doing the matrices product, it can be shown that:

cpRocp =

[
cψcθ −sψcθ sθ

cϕsψ − cψsθsϕ cψcϕ + sψsθsϕ cθsϕ
−cψsθcϕ − sψsϕ sψsθcϕ − cψsϕ cθcϕ

]
(21)

Since −π
2 < α, β, γ < π

2 the rotation is unique, that
means there is only one set of (α, β, γ) that constructs
this rotation, thus ψ = α, θ = β, ϕ = γ. This proves that
α is indeed the yaw angle and β is the pitch angle of the
camera in the XY Z Euler convention.

That proves that α, β are the yaw and pitch of the camera
in the XY Z representation. However, the interest is in the
vehicle’s relative yaw angle in ZY X representation.

3.3 From camera’s yaw angle to vehicle’s yaw angle

Writing the camera’s rotation matrix starting from the
vehicle’s transformation matrix in ZY X representation:

oRcs =
oRv × vRcp (22)

Which is equal to:
oRcs = Rz(ψv)×Ry(θv)×Rx(ϕv)×Ry(µ) (23)

On the other hand, writing the rotation matrix of the
camera in XY Z representation gives the following:

oRcs = Rx(ϕc)×Ry(θc)×Rz(ψc) (24)

Since the rotation matrix is the same regardless of the
representation, the following can be written:

Rz(ψv)×Ry(θv)×Rx(ϕv)×Ry(µ) = Rx(ϕc)×Ry(θc)×Rz(ψc)
(25)

The aim is to express ψv by only terms of ψc, θc, µ.
However, this is not directly available from equation (25).
Luckily, by utilizing a simple approximation of θv ≈ 0
which translates to cos θ ≈ 1, sin θ ≈ 0, the matrix on the
left side of (25) can be simplified. By taking the second
column of both sides, it can be shown that:[

cθccψc

−cθcsψc

sθc

]
=

[
cµcψv − sµsϕvsψv

−cϕvsψv

cψvsµ + cµsϕvsψv

]
(26)

Which leads to:[
cθccψc − cµcψv

cθcsψc

sθc − cψvsµ

]
=

[−sµsϕvsψv

cϕvsψv

cµsϕvsψv

]
(27)

By dividing the first row by the third in equation (27):
cθccψc

− cµcψv

sθc − cψvsµ
=

−sµ
cµ

(28)

Which leads to the following equation:

cosψv =
cos θc cosψc + tanµ sin θc

tanµ sinµ+ cosµ
(29)

Using equation (29) it is possible to recover the value of
the required angle. However, it is known that arccos does
not recover the sign. To recover the sign of the angle, the
second row from equation (27) can be used:

sign(sinψv cosϕv) = sign(cos θc sinψc) (30)



since −π
2 < ϕv, θc <

π
2 that means that cosϕv, cos θc > 0.

Which translates to:

sign(sinψv) = sign(sinψc) (31)

Which gives:
sign(ψv) = sign(ψc) (32)

From (32) and (29), it can be concluded that:

ψk = ψv = sign(ψc) arccos (
cos θc cosψc + tanµ sin θc

tanµ sinµ+ cosµ
)

(33)

Before estimating the ψk rate, one should consider filtering
ψk to remove the noise and smooth the function. A
Gaussian average filter with a window size of the number
of samples in a second is applied. After filtering, the
derivative at sample n is estimated using the following:

ψ̇k,n =
ψk,n − ψk,n−1

tn − tn−1
(34)

Where ψk,n is the estimated filtered relative heading at
sample n, and tn is the time at sample n.

3.4 Detecting the vanishing point

For detecting the pixel coordinates of the vanishing point,
many methods exist in the literature Dixon et al. (2000)
and Huang et al. (2014) but basically, they all rely on the
same principle, detecting the lane edges (and other parallel
lines) remove the outliers and find the intersecting point of
these lines. The same basic idea is used assuming that the
two edge lane markers are always visible to the camera,
empty road, clear sky, and no strange objects nearby.
First, the image is converted to a binary image through
thresholding, then detecting connected components and
filtering them out according to their size, then picking the
left and right lanes, extracting one edge of each lane for the
first few meters in front of the camera, fit each edge points
with a line, then intersecting these two lines to detect the
tangent point. Figure 3 illustrates these steps.

(a) Raw image (b) Thresholding

(c) Extracting lanes after filtering (d) Fitting

Fig. 3. Estimating relative heading- algorithm steps

4. SIMULATION RESULTS

The growth of computational power allowed to build,
calculate, and simulate complex vehicle models. Advanced

simulator software that help simulate different scenarios
are available cheaply, more conveniently, and accurately
enough without experimenting on actual vehicles and with
the ability to measure different variables by installing
cameras and IMUs on a specific point. One of the most
popular software to simulate P2WV is BikeSim, which
is used here to create different driving scenarios. Several
roads were constructed with known curvatures at each
point and tested several scenarios with sections of low cur-
vature, changing curvature, fixed curvature, and straight
road. It is important to mention that the roads are planar,
empty with a well-lit environment, and no strange objects
in the scene. The camera was installed at the height of
h = 1.1m and tilted µ = 15◦ in the virtual environment.
The camera’s resolution was (1080x720) at 60 FPS with
a horizontal field of view of 80◦. All these tests were
carried out on a Matlab R2020b environment, installed on
Windows 10, on a mid-range laptop with an AMD Ryzen
3750H chip.

4.1 Clothoid track

The clothoid track has varying curvature, so it is consid-
ered hard to estimate, especially at high speeds. Which
is defined by C(l) = C0 + C1.l where C0 is the initial
curvature, C1 is the curvature rate, and l is the curve
length.

This part has been simulated at 80km/h. The estimation
of curvature for the clothoid is very good and accurate, as
in figure 4.a, with an RMS value of 1.1 ∗ 10−4[m−1]. One
important thing to note is that the estimation preserved
the linearity of curvature change despite being very small.

4.2 Circular track

In this scenario, the circular track is a road with fixed
curvature. Usually, it is not hard to estimate, but this
becomes more difficult to estimate the lower the curvature
and the higher the speed. Thus, estimating such a slight
curvature of 10−3[m−1] at high speed 120km/h is very
interesting because it asses the algorithm’s performance.
The estimation of the slight curvature is also very good
and accurate, as in figure 4.b, with an RMS value of
2.3 ∗ 10−5[m−1].

4.3 Straight road

The straight line is technically the easiest for the algorithm
and has a curvature of zero (infinite radius). The estima-
tion of curvature for the clothoid is also very good, as in
figure 4.c, with an RMS value of 3.2 ∗ 10−5.

4.4 Complex track with multiple sections

This track represents a challenging scenario where the
track is changing shape. It is constructed from several
connected sections. Each section is a straight line, a
circle, or a clothoid. The curvatures are high; this is why
this scenario is done at a low speed of 50km/h, which
took approximately 144 sec to achieve. In figure 4.d,
the approximation is very accurate, with more significant
errors on the points of discontinuity.
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Fig. 4. Estimating curvature in various scenarios
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Fig. 5. Curvature estimation comparison using different
methods and curvature discontinuity problem

4.5 Comparision with the state of art

The most popular methods for curvature estimation are
the ones that utilize the IPM technique. After doing the
IPM, the lanes are fitted to a 3rd degree polynomial or
a circle. A comparison between the proposed method,
the 3rd degree polynomial fitting using IPM presented
by Damon et al. (2018), and circle fitting presented by
Pratt (1987), which also uses the least squared method to
optimize for the curvature is presented in figure 5.a, and a
comparison of errors of estimation, is provided in figure
6.d for the long multi-section track. The same dataset
was fed to the three different algorithms to compare their
accuracy. Table 1 demonstrates the RMSE of each method
for all types of roads mentioned earlier. It is seen that
the proposed method has orders of magnitude less error
on clothoid and straight roads compared to the other
methods. Figure 6.d illustrate the estimation error in each
case.

In figure 5.a, the 3rd degree polynomial fitting is the least
accurate. It suffers significantly on section change, clothoid
section, and even on a circular section with fixed curvature.
The circle fitting method performs better in general but
also fails on the clothoid section and overshoots for circular
sections. It can be clearly seen that the proposed method
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Fig. 6. Curvature error estimation in different scenarios

outperforms the other techniques significantly, plus it con-
serves the linear change of curvature for clothoid sections.

In addition, there is also a difference in performance. The
proposed method can do a stable 120fps on the resolution
of (1080x720), while the other two methods can only do a
stable 60fps on the exact image resolution. This is because
the IPM step is computationally expensive. Table 2 shows
the maximum FPS that each method can perform.

Table 1. RMSE of curvature estimation in
different scenarios for different methods

Scenario IPM 3rd deg
poly fit [m−1]

IPM circle fit
[m−1]

Proposed
method[m−1]

Straight road 0.0011 7.70E-05 3.25E-05

Circular road 0.0014 1.04E-04 5.40E-05

Clothoid
road

0.0438 0.0144 3.80E-04

Combined
sections

0.0038 0.0025 0.0012

Table 2. FPS values for different methods

Method IPM 3rd deg
poly fit

IPM circle fit Proposed
method

FPS (Hz) 77.4 78.5 135.3

5. DISCUSSION

As stated in the simulation section, the estimation is very
close in all scenarios and performs better than the state
of art that utilize IPM techniques in terms of accuracy
and computation time. However, the approximation for
the points of discontinuity for curvature is less accurate,
as illustrated in figure 5.b, and as represented in sharp
pulses of error in figure 6.d. The reason for this lies in the
visual approach itself because the fitted lane markers are
parts of the foreseen curvature, not the actual curvature
at the motorcycle position, but the difference is very small



depending on how much distance ahead is captured by the
camera. More precisely, the approximation of ψk from the
vanishing point approach using vision relies on fitting the
lane marker visible in the image, which is always a little
ahead of the actual curve point assumed to be calculated.
This effect can be dramatically reduced by using a large
field of view camera.

As seen in table 1, the algorithm proves to be very accurate
in all scenarios with very low RMSE values. It has orders
of magnitude less error than the compared methods in
clothoid and straight roads and half the error in the others.
In addition, it preserves the linear change in curvature
for a clothoid road. As seen from figure 5.a and 6.d, the
proposed method performs significantly better than the
other compared methods, At (1080x720), and as seen in
table 2, the proposed method can perform twice as fast. It
can do 135fps compared to the 78fps in IPM with circle fit
and 77fps in IPM with 3rd degree polynomial. The main
reason for the time complexity difference is the utilization
of the computationally expensive IPM technique.

While increasing the image’s resolution will significantly
improve the IPM-based methods, it has little to no effect
on the proposed method because it relies on the calculation
of the tangent point, which is done by intersecting the
fitted lines to have sub-pixel coordinates of the intersection
point. Increasing the resolution after a threshold will not
change the equations for the fitted lines, thus the intersec-
tion point does not change. A primary disadvantage of the
IPM-based techniques is the utilization of the roll angle,
which suffers from drift due to the integration of the IMU
roll rate. In comparison, the proposed method utilizes the
yaw rate directly measured by the IMU, leading to no drift
error.

6. CONCLUSION

Road curvature is a very important parameter for P2WV,
as it can set the maximum safe speed and help predict
lane departure and crossing. This work introduces a visual-
inertial approach to estimate road curvature in real time.
The advantage of this method is that it does not assume
a road model, works on P2WV with significant rolling
dynamics, and is faster than other IPM-based techniques.

Under the assumptions of a planar road, lane marks
that are visible at all times, empty roads, and good
lighting conditions, the proposed method can accurately
estimate the instantaneous curvature of the road. For each
image taken, the relative heading is estimated using the
vanishing point approach by extracting the lane markers
in the near vicinity and fitting them into straight lines,
then intersecting these lines to have the vanishing point
coordinates, which will give the relative heading. After
that, the derivative of the relative heading is estimated and
added to the yaw rate measured from the IMU. Combined
with the velocity, the latter sum estimates the curvature.

The proposed method was tested on several simulated
driving scenarios on different tracks, varying in difficulty
and speed. It was able to estimate the curvature accu-
rately. It was also compared using a long track with several
sections of different curvatures to IPM-based techniques
that use 3rd degree polynomial fit and circle fit to esti-

mate the lane markers curve in the image. The proposed
method performed better than the others in every scenario,
especially scenarios where the curvature is changing.
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