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Existence of strong solutions for a compressible fluid-solid
interaction system with Navier slip boundary conditions

Imene Aicha Djebour *!

"Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

March 25, 2024

Abstract

We consider a fluid-structure interaction system coupling a viscous fluid governed by the compressible
Navier-Stokes equations and a rigid body immersed in the fluid and modeled by the Newton’s law. In this
work, we consider the Navier slip boundary conditions. Our aim is to show the local in time existence and
uniqueness of the strong solution to the corresponding problem. The main step of this work is that we
use Lagrangian change of variables in order to handle the transport equation and to reduce the problem in
the initial domain. However, the specificity here is that the Lagrangian coordinates do not coincide with
the Eulerian coordinates at the boundaries since we consider slip boundary conditions. Therefore, it brings
some extra nonlinear terms in the boundary conditions. The strategy is based on the study of the linearized
system with nonhomogeneous boundary conditions and on the Banach fixed point theorem.

Keywords: Compressible Navier-Stokes system; Rigid body motion; Strong solutions.
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Local strong solutions for a compressible fluid-solid system

[A_Useful Estimates| 26

1 Introduction and main result

Let Q be a bounded domain of R*. At each time ¢, the fluid domain is denoted by F(¢) and we consider a rigid

body S(t) immersed in the fluid region such that F(t) = Q\S(¢). We assume that F(t) is a connected set with
a smooth enough boundary. The problem is described by the following fluid structure interaction system

Op+V-(pv)=0 in F(t), t>0,
P00+ (V- V)0) = V- (c(v,p)) =0 in F(t), t>0,
ml'(t) = — /asa) o(v,p)n dU t>0, (1.1)
Juw'(t) = Jw(t) x w(t) — /asu) (x — h(t)) x o(v,p)n dT t>0,

with the slip boundary conditions

vz =0, [QM]D(@)ﬁ + ﬁoﬂ; =0 on 02, t>0, (1.2)
(U—="s)7 =0, [2uD@)n+ L1(v— 173)}; =0 ondS(t), t>0, ’
and the initial conditions
p(0,-) =75 v(0,-)=3" in F(0), (13)
h(0) =0, £0)=¢, Q) =Is, w(0)=u". '

The function p represents the density of the fluid while v denotes the fluid velocity and p is the fluid pressure.
The Cauchy stress tensor is defined by

o(v,p) =S(v) — pls,
with 1
S(@) = 2uD(@) + AV - D)3, D(@) = 3 (Vo+(Vo)T),

where p > 0 and A+ u > 0 are constants and represent respectively the dynamic and the bulk viscosities of the
fluid. The pressure p = p(p) is given by the following constitutive law:

p(ﬁ):a,ﬂﬁyﬂ ap>07,‘/>1'

The vector h(t) and the matrix Q(t) represent the translation of the center of mass and the rotation of the rigid
body. Note that we assume without loss of generality that h(0) = 0 and Q(0) = I3. Then, at time ¢, the domain
S(t) occupied by the structure is described as follows

S(t) = h(t) + Q(1)S,
and we denote the associated region occupied by the fluid F(t) = Q\S(t). Then, the domain of the rigid body
and the fluid are given as follows at initial time
S(0)=S8, F(0)=00\S=rF.
In the sequel, n stands for the unit normal vector at the boundary 0F. Since @ is an orthogonal matrix, we get
Q') =AMQ®), Alt)z=w(t)x z, z€R3, (1.4)

where w is the angular velocity of the rigid body. Hence, the velocity of the structure is given by

st ) = 6(t) +w(t) x (x — h(t)), ) =H(t), t>0, zcdS(t). (1.5)
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The constant m and the tensor J represent the mass and the moment of inertia of the rigid body such that
J(t) = /( s (lz = h(t)]L; — (= — h(t)) @ (z — h(t))) da,
S(t

where pg is the structure density. The constants By and ; are the friction coefficients verifying Sy + 51 > 0.
The vector 7 is the outer unit normal vector on dF(t). For any vector z € R3, we define the normal and the
tangential components of z as follows

zﬁ:(z~ﬁ)~ﬁ, Z;Z(Hg*ﬁ@ﬁ)z-

We furnish the initial data (p°,v°, £°,w°) that satisfy the following conditions

dist(S,09Q) > 0, (1.6)
P’ =a,(p°), e [HYF)P, p"eH(F), minp®>0, (1.7)
F
0 0 0
0_ 40, 0 vp =0, [2uD(@°)n + Bov°] = on 012,
’US—E +w” Xy, { (UO_Ug)n:O7 [Q,UD('UO)TL-Fﬁl(UO—Ug)]T:O on 88, (18)

(plov . a(vo,p0)> n=—0" (V) on 99,

1
(pov-o(vo,po)) n=w’x (@ =) n+ (g —0°) (W xn+Vn@ —0g))

+ (—m_l/ o(°,p%)n dr' + J71(0) (J(O)wo x w° —/ y x o(v°,p°)n dF) X y) -n on JS.
85(0) 85(0)
(1.9)

Remark 1.1. In order to state the main result, we consider X a C'-diffeomorphism that transforms F0)=F
into F(t) that is defined more precisely in Section@ and we denote by v and p the corresponding functions to v
and p using the change of variables X

U(tv') :5(t’X(tv'))v p(t,-) Zﬁ(t,X(t,~)).
The main theorem of this paper is stated as follows

Theorem 1.2. Let p°, v°, 1°, W° the initial data that satisfy (1.6), (T.7), (I.8) and (1.9). Then, there eists
T > 0 such that the system (1.1), (1.2), (1.3) admits a unique strong solution with

p€ HY0,T; H¥(F))nCH0,T; H*(F)) N H*(0,T; H'(F)),

v e L*(0,T; [H*(F)I?) N H?(0, T; [L*(F))*) N C(0, T; [H*(F)*) N H (0, T; [H?*(F)*) n C (0, T; [H' (F)]?),
e [H*(0,1))®, we[H*0,T)].

Remark 1.3. The friction coefficients can be non negative functions such that By + 51 = « > 0 and reqular
enough to be estimated in the fized point procedure. In [1], the authors consider the incompressible Navier-Stokes
system and proved asymptotic results when the friction coefficient tends to 0 or oo and this is an interesting
open problem that could be investigated in the case of fluid-structure interaction system.

Remark 1.4. We prove the ezistence and the uniqueness of the solution provided that T is small enough to
ensure that the Change of variables X is a C* diffeomorphism mapping such that

det(VX) >k > 0,

where the constant x depends on d(S,0). Moreover, we need to fix T small enough to get the contraction
mapping in Section [
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Local strong solutions for a compressible fluid-solid system

Remark 1.5. To get (1.9), we use the Lagrangian change of variables X that is described with details in
Section[4 Note that the normal vector i is given by

_ n(X(t.)) on 99,
n(t, X(t,-)) = { QN(QE) T (X (t,-) —h(t)) ondS.

All this ingredients allow us to take the time derivative of the impermeability conditions in (1.2) and deduce

[L9).

The slip boundary conditions were introduced first by Navier in [61] and they are generally used to model the
motion of the fluid at the boundaries eventually for collision problems, see [44] [34] (74 [45]. We mention [51] where
the authors give an interesting investigation about the slip and no slip boundary conditions. In the mathematical
literature, the survey of this type of coupling problems is tackled. In the case of an incompressible fluid-rigid
body systems, there are many interesting works in the literature considering no slip boundary conditions, see
for example [I7, 67, 22], 23] 24] 311 B2, 41} [71], 46| 72| [73]. In the case of slip boundary conditions, we have
[33, 63, 15 [15],20]. The controllability of the fluid-rigid body problem is studied in [14], [65] [12], 48] considering no
slip boundary conditions whereas in the case of Navier boundary conditions, we mention [26]. The stabilization
problem is discussed in 3] 2]. In the case of a compressible fluid-solid interaction system with no slip conditions,
the global existence of weak solutions are investigated in [25] 29] and in [II] for strong solutions stated in
the Hilbert space framework. In the LP — LY setting, the study of the interaction fluid-rigid body problem
is investigated in [43] 42] assuming no slip boundary conditions. Furthermore, the analysis of the motion of a
piston in a viscous gaz modeled by the 1D compressible Navier-Stokes system is studied in [57]. The stabilization
problem is investigated in [66] in the Hilbert setting and a global result on stabilization in L” — L? framework
is done in [55]. Concerning compressible Navier-Stokes equations without structure involving slip boundary
conditions, existence of local strong solutions in the LP — LY framework is tackled in [60], whereas the existence
of global strong solutions is obtained in [68]. In the case of the compressible Navier-Stokes equations set in
a moving domain, weak and strong solutions are studied in [49] under slip or no slip boundary conditions.
Moreover, in the LP — L7 setting, the compressible problem in a moving domain is studied in [50]. In [62], the
existence of a weak solution to fluid-solid interaction problem is proved considering slip boundary conditions.

Let us mention some works that are devoted to the case of an elastic structure. In the case of an incom-
pressible fluid-beam interaction system with Dirichlet boundary conditions, the existence of weak solutions was
investigated in [19] considering a damping in the structure equation and [35] in the case where the structure
satisfies the plate equation without any damping. The existence of strong solutions for the fluid-damped beam
system was established in [8] [52]. For global in time solutions, we mention [36] where the authors proved no
contact between the beam and the domain cavity. In [37], the existence of strong solutions is proved when-
ever the structure satisfies either a damped beam equation, a linear wave equation or a linear beam equation
with inertia of rotation. In [7], the authors considered the incompressible fluid-wave interaction system and
showed maximal regularity for the solutions, they proved in particular that the corresponding semigroup of the
linearized system is analytic. In [5][6], the authors obtained Gevrey regularity for a system coupling incompress-
ible Navier Stokes system with a beam equation. For the stabilization problem, we refer to [64, 4]. In the case of
boundary conditions involving pressure, regularity results are obtained in [I8]. In the case of an incompressible
fluid-beam interaction system with Navier boundary conditions, the existence of weak solutions is investigated
in [40, 39, [59] whereas the existence of strong solutions is discussed in [27]. In the case of a compressible fluid
and an elastic structure, weak solutions are obtained in [I0], local existence of strong solutions is obtained in
[58] for the coupled system considering a damped beam equation and assuming that the initial displacement of
the structure is 0. Maximal-regularity in LP — L9 framework is obtained in [56] where the structure is modeled
by the damped beam equation and in the case where the structure verifies the wave equation, the existence and
uniqueness of the strong solution are proved in [54] in the L? approach.

The objective of this paper is to provide local existence and uniqueness of the strong solution to the system
, , in the Hilbert space framework. In our knowledge this is the first work of strong solutions
of a compressible fluid structure system involving slip boundary conditions in the Hilbert setting. Note that it
could be very interesting to study the maximal regularity of the system by following [60] and [43] and in that
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case, no compatibility condition is required. In section [2] we write the system in a fixed configuration by using
the Lagrangian change of variables. Since the system considered here is compressible, the change of variables
that is commonly used is the Lagrangian flow to transform the domain F(¢) into F. In order to obtain a local
solution, it is crucial to go back in the initial domain so that we can use the classical Banach fixed point theorem.
However, in the Dirichlet case (see [66], [42]), we have the following correspondence on the boundary

that is not true considering slip boundary conditions. Due to this change of variables, nonlinear terms appear
in the whole system even in the boundary conditions that cannot be avoided even in the case without structure
(see [68, [60]). In Section |3 we study the linearized system. We first make a suitable lifting at the boundary
conditions to handle the nonlinearities coming from the change of variables and we establish a first regularity
result for the Linearized system with nonhomogeneous boundary conditions. An important step in this section
is to elaborate elliptic estimates for the associated Lamé system. In section [ we use a Banach fixed point
argument and prove Theorem [I.2]

2 Change of variables
Let define X (¢, -) as the Lagrangian change of variables associated with the fluid velocity v that reduces F(0) = F
into F(t)

{ 8tX(tvy) = 5(t?X(t7y)) Yy € ]:a i> 07

X(0,y) =y yeF. (21)

Let recall that p and v are the new corresponding functions to p and v after the change of variables
pt,-) = p(t, X (¢,-),  o(t,) = v(t, X(,)).
We introduce the following notations
bx = Cof VX, dx =detVX.

After some standard calculations, we have

D(@) = D¥(v) = % (Voby + (Vobx)T), S@) =S (v) = 2uD™ (v) + Aéibx : Vo,
X X
and 1
o*(v) =S (v)bx, V-(S@)) = V- (cX(v)).
X
From |21, Theorem 1.1-1, p.13], we get the following relation
1
fix(t, ) =nt, X)) = ——bx(t,)n, 2.2
() = (X (1) = b (1) (22)

where n is the unitary exterior normal to 0F. We deduce
Ti(t,) =7 (6, X(t,-) = [bx (¢, )nlby " (t,-)7, i=1,2,

with (7%);=12 (resp. (7");=12) designates a basis of the tangent subspace on each point of dF(t) (resp. OF).
The transport equation (1.1); gives

O+ LV by =0. (2.3)
Ox
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Then, the system (1.1)), (1.2) and (1.3]) is rewritten in the Lagrangian coordinates as follows

Oip+ p°V -v = T(p,v) in (0,7) x F,
20w — V- (S(v)) = V - (F1(p,v)) + Fa(p,v) in (0,7) x F,
vs(y) =l+wxy in (0,7), (2.4)
ml’ = Fs(p,v, l,w) in (0,7),
J(0)w' =TFy(p,v,4,w) in (0,7),
with the boundary conditions
{ v-n=Baa(p,v,lw), [2uD@)n+ Bov)] 7" = (Goal(p,v,t,w)); on (0,T) x 99, (2.5)
(v—vs)-n=DBss(p,v,l,w), [2uD(v)n+ pi(v—us))] 7 = (Gss(p,v,l,w)); on(0,T) x IS, '
where ¢ = 1,2 and the initial conditions
p(0,)=p"in F, 0(0,)=2"in F, £0)=¢", w(0)=uw’ (2.6)
The functions T, Fq, Fo, F3, F4, B and G are given as follows
T(p,v) = p’Vov : I3 — %Vu :bx on F, (2.7)
X
Fi(p,v) = 0™ (v) = S(v) — a,pbx, TFa(p,v) = (p° — pdx)0w on F, (2.8)
Falp.v.bw) = = | (¥ () = apbx)n T, (2.9)
as
Falp, v, 6,w) = (J(0) — J)o + Jw x w — / (X — ) x (0 (v) = app"bx)n dT, (2.10)
oS
Boq(v,l,w) =v-(n—nx) on 0L, (2.11)
Bos(v,l,w) = (v—wvs) - (n—nx)+ (wx (X —1Id)) -nx —wxh-nx ondS, (2.12)
[Goa(v,£,w)]; = 2uD(v)n - 78 — 2uDX (v)7x - To + Pov - (78 = T%), i = 1,2 on 09, (2.13)

[Gos(v,€,w)]; = 2uD(v)n - 78 — 2uDX (V)71 - T4 + f1(v —vs) - (78 = T%)
+Biwx (X —1d) - T —fw x h-Te, i=1,20n dS. (2.14)
As in [60], we show that X is C*-diffeomorphism.

Proposition 2.1. Under the boundary conditions (2.5), if v is reqular and T is small enough, the application
X defined in (2.1) is a C*-diffeomorphism and transforms F(0) = F into F(t).

Proof. From (12.1), we see that
t
VX(t,-)=1I; +/ Vu(s,-) ds, te(0,T).
0

If T is small enough and v regular enough, we see that VX is invertible with dx > 0 in such a way the
transformation X preserves the orientation. Hence X is a one to one mapping. Since 0S is smooth, there
exists ns a smooth function such that ns = 0 in a part of S. Then, the corresponding part in 9S(t) is locally
expressed as £(t, ) = ns(Q(t) " (x — h(t))) = 0. Let prove that X (¢,0S) C 9S(t). Let y be in the neighborhood
of JS satisfying ns(y) = 0, we obtain

OE(t, X (8, )] = VE(X(,y)) - (v(t, X (¢, y)) — vs(t, X(E,9)))-
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Since VE(X(t,+)) is collinear to nx (¢, ), therefore from the impermeability boundary condition given in (2.5)),
we obtain that 9;[£(¢, X (¢,y))] = 0. Thus

£t X(t.y)) = £(0,X(0,y)) =ns(y) =0.

Hence, we get X (t,08) C 0S(t) for t > 0. The same approach can be used to prove that X (t,9Q) C 9Q. We
obtain X (t,0F) C 0F(t). Moreover, using the classical local inversion theorem, we see that X (¢,0F) is an
open and a closed subset of 0F(t). Since, OF(t) is a connected set, it follows that X (¢, F) = 0F(t). Finally,
the injectivity of the mapping X and the connectedness of F(t) yield that X (¢, F) = F(t). O

3 Linearized system

The linearized system is given by

op+p°V-v="h in (0,T) x F, (3.1)
p(0,-) = p° in F, '
0w —V - (S()) =V - fi+fo in(0,T)x F,
’US(;I/)ZE—"UJXy in (O7T)7 (32)
ml = fy in (0,7), '
JO)' = f4 in (0,7),
with the boundary conditions
veon=a, [(2uD(v)n+ Bov)] T = gi, i=1,2 on(0,T) x 09, (3.3)
(v—uvs)-n=aqa, [CuDn+/p(v—uvs))l 7=g,i=1,2 on(0,T) xS, '
and the initial conditions
p(0,)=p"in F, v(0,)=2"in F, £0)=¢" w(0)=u" (3.4)
such that the following compatibility condition is satisfied
v -n=a(0,-) ondQ, (v°—v%)-n=a(0,:) ondS. (3.5)

The aim of this section is to establish a regularity result for (3.2), (3.3) and (3.4). First, we need to give some
regularity properties for the elliptic problem (3.6)) associated to the Lamé operator.

3.1 Elliptic problem

Let consider the stationary system

—VS(U):f in.7:,
veon=a on OF, (3.6)
2uD(v)n+ Bv] - T =g, on OF.

Theorem 3.1. Let 3 > 0 and assume that OF is C* boundary. Let
felL?(F)®, aeHY*OF), g€ H/?0OF), i=1,2.
Then, the system admits a unique strong solution v € [H*(F)]* such that
[l e < C (Ifliz2cmye + llallwsrzor) + lg1llazor) + lg2llaieor)) - (3.7)
Moreover, if OF is C™2 boundary and
feH™F)?, ae H™P20F), gie H™/20F), i=1,2,
the system admits a unique strong solution v € [H™*(F)]* such that

[0llgrmszrye < C (1 llgrm (e + Nall gmssrz o) + 191l gmer2 o) + 192l gmerrzor)) - (3.8)
The rest of this subsection is devoted to the proof of Theorem [3.1]
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Step 1: Weak solutions. First, we study the existence of week solutions for the system (3.6). Let define the
following space
V={ve[HF)? v-n=0o0ndF}.

Let f €V, ae HY?(OF) and g € H '/?(8F). We multiply the first equation of (3.6) by w € V to obtain
/ S(v) : Vw dy + Bv - w dl = (f,w)yv v + (g, w) g-1/2 pg1/2, (3.9)
F oF

such that g is a vector satisfying g-n = 0 and g-7° = g; for i = 1,2. We consider a lifting w, € [H'(F)]?
satisfying
we-n=a ondF, (3.10)
and the estimate
Jwellzs ey < C llallzoragore - (3.11)

We set v = u 4+ wy. Then, we have the following definition.

Definition 3.2. The function v is a weak solution of the system (3.6) if and only if u = v — wy verifies the
following variational formulation

/ S(u) : Vw dy + Bu-w dl' = —/ S(we) : Vw dy + (f, w)yr v
F F

OF

- Bwe - w dl' + <g, w>H—1/27H1/23 (312)
OF

for all w € V, where wy satisfies (3.10) and (3.11).
We notice that
/ S(u) : Vu dy:/ 2 |D(u)[? dy—!—/ MV -ul® dy.
F F F

Using Lemma [A7] we get for all u € V

F oOF

Hence, we can apply the Lax-Milgram theorem and using (3.11)), we deduce the existence of a unique solution
v of (3.6) which verifies the estimates

Wl e < C (1w + llall sz gom) + Igll-12(05)2) - (3.14)

Step 2: Strong solutions in H?. Without loss of generality, we take a = 0 in since we can always find
a suitable lifting of the impermeability condition, see for example [38, p.128, Theorem 2.5.1.1]. The interior
regularity can be done as the Dirichlet boundary condition, then we skip the proof.

First, let consider the case, where F is the half ball B(0,1) N Ri. The proof is standard and it is done by
using the method of difference quotient as in [28]. Let f € [L*(Q)]3, g € [HY/?(0F)]® and consider v the solution
of the variational formulation . Let define the difference quotient

h _
Dhu(y) = 2+ 6}’2) U0) 1923 her

We select ¢, a cut off function such that

¢(=1inB(0,1/2)NR3, (=0in R*\B(0,1),
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so that ¢ vanishes on the curved boundary of B(0,1) NR?%. We take the test function w = ~D;"(¢*Dpv) € V
and replace it in (3.9). We obtain for h small enough

[ ¢ DLl dy+ [ A9 Dl dy+ [ 5¢|Dof? dr+ 2 [ D) s 26VCD}o dy
F F oF F
A / 20(V¢ - DIo)(V - Dhv) dy = — / f - DM(EDp) dy / g- Dy"((Dlw) dr.
F F oF

1 Since
D" (Do)l r2rye < C (1CPV(DR)lp2eye + (Do) lize o) (3.15)

we get
f- DM D) dy < ||V (D) |IFe e + Ce (||f||[2L2(]:)]3 + ||g||[2H1/2(8J-')]3) :
F

In the other hand, let extend the unit normal n over F and g by a function also denoted by g € [H'(F)]® . We
have

3
- /8 _9- D" (¢*Dlo) d = ;(— /f di((n)ig) - Dy "(¢* Dv) dy + /f Di((m)ig) - *(Dfrw) dy
~2 [ (i) cO<(DL) dy). 16)
> Using (3.15), we get
/8 _9- D (CD}w) dr < el VD) iy + Ce (I e + 19l siomys)- (3.17)
Hence gathering all these estimates, we obtain
DRy < C (1f L2y + Mgl e o) »

for k = 1,2. Taking h to zero, it yields

1070l w2mys < C (I liz2cmye + gllmzerye) » 7 € {1,2,3}, k=1,2.

Using the first equation in (3.6), we get finally

2
120+ N0350ll 2y < CY NOwvllizn e < C (1 lizeme + Ngllinrzeye) -
k=1

Now we consider the case when F is arbitrary. Let yo € OF, since F is C2, then there exist 7 > 0 and
n:R* — R of class C? such that

FNOByo,r)={y €R? ys >n(y1,y2)}, OF N Blyo,r) = {y € R? ys =n(y1,92)}.

Let Y, : B— F N B(yo,r) and Yn*1 : FNB(yo,r) — B, where B = B(0,s) N {z3 = 0} with s small enough.
We define

Z1 . Y1
YW(Z) = %) 5 Yn7 (y) = Y2
z3 +n(z1, 22) ys — (Y1, y2)

s Let define v, = v(Y;(-)) on B. Then, the formulation in (3.9) gives

/ on(vy) : Vw, dz +/ Buy - wy, dI' = / Onfn - wy dz +/ Gy - wy dT, (3.18)
B oB B oB
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where

1

bn = Cof VYn, Dn(vn) = f
n

(an(bn)T + (vvn(bn)T)T) )

A
Sp(v) = 2uDy (v) + ?(bn Vo), on(vy) = Sy(vy)by.
n

We emphasize here that for any w € V, we have w, - n,, = 0 on BN {23 = 0}. Note that (3.18) is coercive, in
fact

1 2
/ on(vy) : Vo dz = / 2 |an(bn)T + (vvn(bn)T)T| dz
B B n

1
+/ 5—)\|bn:Vv,,|2 dz:/ (2u|]D vp)| dy+/ 5, Vo, dy
B 0y B

:/ 2 [D(v)[* dy+/ AV -o]? dy. (3.19)
FNB(yo,r) FNB(yo,r)

Using Lemma we get for all v, € [H'(B)]? satisfying v, - n,, = 0 on BN {z3 = 0}
ontn s Tog dus [ gl dr > Clogl (3.20)

As the half ball case, we take w, = (C Dkv,,) for h small enough where ( is a cut off function such that
¢=11in B(0,s/2) "R} and vanishes out81de B. Note that we have w, - n, =0 on BN {z3 =0}. We get

/ Dl ((vy)) : (*V DL, d= + / B3| Dlvy? dT
B 6Bﬁ{z3 O}

= Jy b DRHEDR) 2= [ oy DD . (320

Repeating the previous steps as in the half ball case and using the coercivity of the operator V - o, in B and
the fact that Dj(b,) is bounded, we get

| DRl sy < C (Ifallizzye + Ngnllizresye) - (3.22)
We take h to zero and thus we obtain
10%; (wa)lliz2sys < C (I fullizzcsys + lgnllimzosye) » 4 € {1,2,3}, k=1,2.
Now, we go back to the equation of the system (3.6) that can be written under the change of variables Y,
=V - (oy(vy)) =6y fy, onB.
After some calculation, we obtain that
[(a3ls + M) 9350|1253 CZ 10% )l sy < C (1 fallizzye + Ngnllimrzomye)
k=1

where a3z = (ﬁ

O

b;bn)gg > 0 and M, is a non negative symmetric matrix

A+
= (A B0 8= [0 () Gl
We deduce that assllz 4+ M, is invertible and bounded in B, then we get

10350l iL2sys < C (I fnllizzasys + lgnllimrzomys) -

Since OF is a compact set, we can use a finite partition to cover the boundary 0F by many balls B(y;, r;) and
we combine all the estimates to get (3.7). We deduce (3.8) by induction and the proof can be performed as [28]
Theorem 5].
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3.2 Lifting
Lifting of the impermeability condition

Lemma 3.3. Let a € L*(0,T; H3?(8F)) N H>*(0,T; L*(OF)) such that
a(0,-) € H¥*(OF) on OF.

Then there exists w € L*(0,T; [H*(F)]*) N H*(0,T; [L*(F)]*) such that w-n = a on OF and

0ll 20,112y s o s 22 ) < c(na||Lz(O,T;stzwmeaM(o,T;Lz(af)) £ Jla(0, ->||H3/z<af>>, (3.23)

with C' a constant independent of T'.

Proof. From [53, Vol II, chap.4, Theorem 2.3], there exists w € L*(0,T;[H?(F)]*) N H*(0,T;[L?*(F)]*) such
that w-n = a on OF and

”w||L2(0,T;[H2(f)]3)ﬁH1(O,T;[LQ(J-‘)]S) < CT||a||L2(0,T;H3/2(0]-'))OH3/4(O,T;Lz((’)]-'))' (3.24)

However, the constant Cr in may depend on 7', then, we extend data over (0,7*) with T > 2T as
follows:
ezt (t) = alt) te(0,7T),
Uert(t) = aert(t) = a(2T —t) t e (T,2T),
aert(t) = a(0,)  te (2T,T%).

Since a(0,-) € H32(3F), then acy € L2(0,T*; H¥2(0F)) N H3*(0,T*; L*(0F)). Then, we obtain

[wll 20,7582 (F)2)nE 0,132 (F)2) < Ol @eat|| 20,0+ 53/2(07))nH3 /4 (0,772 (0F)) 1 (3.25)
such that C7+ depends on T™. We notice
lacat |l 3/1 0,7+ 0207)) < leat — a0, )| grsra0 2120y + (T)21a(0, )| 2(07)- (3.26)

From Lemma

laext — a0, ) gs/a0,1+;207)) < Clla — a0, ) gs/a (0,502 07))
< Cllallgs/ao,rp207)) + 1100, )l L20,7522007)) - (3-27)
with C independent of T'. In the other hand,
1a(0, )l z2(0,7522(07)) < T2|lall Lo 0,7522(07)) = T 2l|a* | L (0,122 07y < CTY2[la* | rs/40,1:12(07))
where a*(t*) = a(t*T), t* € (0,1). In particular, using the estimate [I3, (A.11), p. 36] we get
la* |l zrs/a(0.1:22(07y) < CT™2|lall gs/a(o.1:02(07))-

Then, (3.27)) gives

llaext — a0, M ms/a0,0+;207)) < Cllall gsrao, ;02 07))- (3.28)

We get also
leatllz2 0.0+ m3/207)) < CllallL2om:m3/207)) + (T*)2[1a(0, ) ga/2(0.7) - (3.29)
Combining (3.29)), (3.28) and (3.26)), we get the estimate (3.23). O

11
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Lifting of the slip boundary condition
Lemma 3.4. Let g, € L*(0,T; H/?*(0F)) N HY4(0,T; L*(8F)), i = 1,2. The non stationary Stokes system

o —V - (S(¢)=0 in (0,00) x F,
¢-n=0 on (0,00) x OF, (3.30)
2uD(d)n + 5] v =g, i=1,2  on (0,00) x OF, :
$(0,) =0 in F,

admits a unique strong solution in L*(0,00; [H?(F)]*) N H(0,00; [L*(F)]*) and

Il 220,005 112 (F)12) 11 (0,005 L2 (F)12) L= (0,00:0 (F)2)
<C <||§1HL2(o,oo;Hl/2(af))mH1/4(o,oo;L2(af)) + H§2||L2(o,oo;H1/2(af))nH1/4(o,oo;L2(af))) . (331)

Proof. The proof is based on the transposition method and it is similar to the incompressible case see [70,[69]. Let
G € C5°(0,00; HY?(9F)) and to simplify the calculations, let § € C5°(0, oo; [HY/?(9F))?) such that - 7° = g,,
i=1,2and g-n = 0. Let ¢, the solution of the stationary system with with @ = 0 and g; = g,. Setting
¢ = ¢ — ¢4, we see that ¢ verifies the system

06—V - (S() = 0y in (0,00) x F,

o-n=0 on (0,00) X OF,
[2uD(¢)n + Bg] -7° =0  on (0,00) x OF,
¢(0,:) =0 in F.

From Theorem the associated Lamé operator of the above system is analytic with negative type. Then,
there exists a unique strong solution ¢ that is in C5°(0, co; [H?(F)]*) and thus the system admits a unique
solution ¢ € C°(0, o0; [H?(F)]3).

Let show (3:31). Let f € L*(R;[L*(F)]®) and Ts > 0 such that f = 0 on (Tx,00) the solution of the
backward system

O+ V- (SW)=Ff  in(—00,Tx)x F,

Y-n=0 on (—00,Tw) X OF,
2uD(¢)n + B] -7"=0 on (—00,Ts) X OF,
Y(To,) =0 in F.

We extend 9 (resp. ¢ and g) by zero on (T, 00) (resp. on (—00,0)). The function 1 satisfies the estimate

19N 22 gy a2 gy i i yyn Lo @ () < Ol Iz @sgze s (3:32)

After standard calculations and integration by parts, we get
//8t¢-fdydt:—/ 8, - dT dt.
RJF R Jor
From the trace theorem, we have that ¢ € H*/*(R; [L?(0F)]*). Hence, we obtain
/]R/faﬂb - f dy dt < Cgllgr/awsizeoFy») 1V H3/1wi L2 07)3)- (3.33)

Combining (3.33)) and (3.32)), we get

[10:8| L2 (0,00:122(F)1?) < ClTIE1/2(0,00:[L2(07))2)- (3.34)
Finally, using Theorem 3.1} we obtain (3.31). O
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Finally, we consider the following non stationary and nonhomogeneous Lamé system

P20 — V- (S(v)) = 0 in (0,7) x F,
veen=a on (0,T) x OF, (3.35)
2uD(ve)n + g -7 =¢gi, i =1,2 on (0,T) x OF, ’
v¢(0,+) = w(0) in F,

where w is obtained in Lemma with S(y) = fo if y € S and B(y) = By if y € OF. We suppose that
Bo + p1 > 0.

Proposition 3.5. Let
a e L*0,T; H¥*(0F)) N H¥*(0,T; L*(0F)), g; € L*(0,T; H'/2(dF)) n HY*(0,T; L*(dF)).

The system (3.35) admits a unique strong solution v, of the system (3.35)) and there exists a constant C non
decreasing with respect to T such that we have the estimate

[ell 20,752 ()9 0,322 F)p8) S C( lall L2 (0,; 151207y e 0,522 (07)

a0, )M asr207) + 91l rim 207 nm s mse2 o) T 1920 L2022 nmsomise o)) ) (350)

Proof. We consider the lifting v = v, — w — ¢ where w is obtained in Lemma and ¢ is the solution of ([3.30)
with

G, = g9i — 2uD(w)n + pw] - 74, i =1,2 t € (0,T),
extended by 0 on (T, 00). The system (3.35)) is reduced to

P 0 — ( (©) = f(w,¢) in (0,7) x
v - 0 on (0,7) x 8.7-'
2uD(®)n + v ] '=0,i=1,2 on (0, T) x OF,
0(0,-) = 0

Using the elliptic results elaborated in Theorem and [9, Theorem 3.1, p.143], we obtain that v satisfies

(3.37)

191l 20 1y om0, 1122 s o e () < CeT (W, D)l 2o rypr o) - (3.38)
Then, using (3.38)), (3.31) and (3.23) combined with [I3] Lemma A.8] we deduce finally (3.36). O

3.3 Linearized system
3.3.1 H? Regularity

We consider the lifting v, that satisfies (2.4). Let u = v — vy, the linearized system (3.1), (3.2), (3.3) and (3.4)
is reduced as follows

op+p°V-u=h in (0,T) x F,
PO~V - (S(u)=V-fi+f, in(0,T)xF,

vs(y) = £ +w x y in (0,),
mt’ = fy in (0,), (3.40)

J(0)w' = fa in (0,7),

with the boundary conditions
u-n=0, [(2uD(u)n+ Bou)] -7 =0 4 on(0,T) x 09, (3.41)
(u—vs) - n=0, [2uDu)n+ Bi(u—vs))]-7"=0 on(0,T) %3S, '

13
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and the initial conditions
p(0,)=p"in F, u(0,")=u"in F, £(0)=£, w(0)=ud", (3.42)
with the following compatibility condition
V3 =04+ xy, u’-n=0 ondQ, (u®—-v%)-n=0 ondSs. (3.43)
We introduce the spaces

Xp = (Wh>°(0,T; L*(F)) N H'(0, T; H'(F)))
x (L2(0, T5 [H*(F)]*) N HY(0,T; [L*(F)’) N C(0, T; [HY(F)]*)) x [H'(0,T)]* x [H(0,T)]?,
where
(0, u, €,0) || 2 = [l pllwr.e 0,m502(F) + oz 0,787 (7)) + w22 0,13 82 (F))3)
+ ull o, 752202y + ull oo 0,75 (2)2) + 20,7y + lwll 10,75

and
Ty = {(u®,£°,°) € [H(F)]® x R® x R? satisfying (3.43) }.

Proposition 3.6. For any

(u’,£°,0% €Ty, heL*0,T;H(F))NL®0,T;L*(F)), [f,eL*0,T;[H(F)),
fo € L0, T [LA(F)P),  f3 € [L*(0, 1), fse[L*(0,T)7,

there exists a unique solution of the system (3.39), (3.40), (3.41) and (3.42)) such that

[(p, u, €, w) [ 27 < CBCT(HMLQ(O,T;Hl(]—'))OL°°(07T;L2(]-')) + 1F1ll 2o,z 72y + [ Fall L2 0.7s022 (2)19)
+ [1fsllizzo,mye + Lfall 2o,z + |(U’07£0’w0)||10>' (3.44)

Proof. For £, w € R3, we define N(¢,w) as the solution of the system (3.6) with a = vs -n, g; = vs - 7° and
f =0. From Theorem we see that N € £(R? x R*, [H?(F)]?). We introduce the operator

Ap = —%V 'S, D(Ap)={ue[H*(F)* u-n=0, 2uD(u)n+ Bu]- 7" =0 on OF},

that is self adjoint and by Korn inequality (see Lemma, we deduce that this operator is also coercive, then
Ar is the generator of an analytic semigroup on [L?(F)]® (see [9, Theorem 2.12, p.115]). Taking u = u—N(/,w),
the fluid system is reduced to

p°0i — V- (S(@) = f in (0,T) x F,
u-n=0, [2uD@)n+pu) -7°=0 on (0,T)x dF, (3.45)
u(0,-) = u® = N(£°,w°) in F.

From [9, Theorem 3.1, p.143], we obtain that @ satisfies

~ C
0 L2 o g () 0. ms(2 Py L . @) < C€T IF e oy 0my9)

< CeT <||f1||L2(o,T;[H1(f)]9) +1f2llzz0miz2mpe) + 1 sllimzo,mye + 1 fallizeo,rye + |(U07£07w0)||zo)~ (3.46)

14
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Thus, we get

ll L2 (0,702 )2y Er (0,13 £2 (R )y (o s () S CeCT <||f1|L2(o,T;[H1(f)]9) + 12l 20,3102 (7))
+ 1 f3lliz2c0,m2 + Il falliz20,m))2 + |(U07€07w0)||10)~ (3.47)

From (3.39)), we get that
p € WH(0,T; L*(F)) N H*(0,T; H' (F)).

Hence, we deduce that the system (3.40)),(3.41)), (3.42)) admits a unique strong solution that satisfies the energy
estimate (3.44)). O

Let
Vr =A{(h, f1. f2. f3, fa:0, 91, 92) € (L*(0,T; H'(F)) N L>(0,T; L*(F))) x L*(0,T; [H(F)]%)
x L2(0, T3 [LA(F)P) x [L2(0,T) x [L2(0,T)* x (L3(0,T5 HY2(0F)) 1 HY/(0, T L*(9F)))
X (LQ(O,T;Hl/Q(a}')) N HY4(0,T; L2(6]-“)))2, a(0,-) € H¥*(0F)},

and

(hs f1, f25 f3, f15 a5 915 92) lvr = 1Rl 20,750 (7))L 0,7502(F)) + I fill 2o,y (7)) + 1f2llL20,13022 ()2
+ 1 f3lliz2 0,72 + 1 falliz2 o,y + 11000, M L2 (0,m5m3/20 7)) nm/4 0,122 7)) + 1000, )l F13/2007)

+ g1l 20,7120 ) nmr /40,7502 (0F)) T+ 1920 L2 (0,751 20 ) nEY 40,312 (0 F ) -

Then using (3.36), we deduce a regularity results for (3.1), (3.2), (3.3) and (3.4).

Corollary 3.7. Let
(h7f1af27f3af47avglvg2)eyTa poeHl(f)7 UOE[Hl(f)]Bv 607 WOER37

such that (3.5 is verified. Then, the system (3.1), (3.2), (3.3) and (3.4) admits a unique strong solution
(p,v,4,w) € Xr such that

100, v, €, )|, < CeCT< 1(hs f1, F2: fso fa 091, 92) s, + 1% e ) + 1€°] + 10°] + ||v°||[H1<f>13>- (3.48)

3.3.2 H* Regularity
Let (v°,0°,W%) € [H3(F)]® x R® x R? such that

B v’ -n=a(0,-), [2uD(°)n+ Bv } =g;(0,-), t=1,2 on 09,
v =00+’ xy, { (vo — Ug) -n = a(0,-), [Q,u]D)(v n 4 B (v — v ] =g;(0,), t=1,2 on dS, (3.49)
and
(578054 7 (10.9) + £2(0.9) 1 = Ba(0. on 90,
(5950049 (30, 4 0.9 = (0™ 550) + 77 O£0) x5) | -n = 0100, on 5.
(3.50)
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Let introduce the spaces

Xp = Wh(0,T; H*(F)) N H'(0, T; H*(F)) N H2(0, T; H(F))
x (L2(0,T; [H*(F)]*) 0 H?(0, T; [L*(F))*) N C(0, T; [H*(F)*)) x [H*(0,T)]* x [H*(0,T)],
Zo = {(0°,£°, %) € [H?(F)]® x R® x R? satisfying and I

where

1(p; v, &, W)l 5, = lpllwre 0,752y + ol 0, 7502 7)) + ol 20,7500 (7)) + 101 20,7313 ())2)
+ vllzoe o, a2 (F)2) + 10l 20,1322 (7)) + [Vllwroe 0,752 )) + 10l 00,7512 ()1

+ 1l &20,1) + 1llwr.e0,7) + lwll 20,7y + lwllwr. 0,7,
and
Vr = A{(h fr, for f3. fana,91.92) € (L0, T3 HY(F)) 0 L=(0, 75 HY(F)) 0 H'(0,T; H' (F)))
x (L*(0, T [H*(F))°) n H'(0,T; [H'(F)]°)) x (L*(0, T [H*(F)]*) n H(0, T3 [L*(F)]*))
x [H(0,T)]* x [H*(0,T)]* x (L2(0,T;H7/2(af)) NH"*0,T; LQ(af)))
< (L200,7: B2 0F) 0 B0, T 120F))) + hi0,) € HA(F), 71(0,) € [H(F)P,
f2(0,) € [HY(F)?, a(0,-) € H2(dF), 8,a(0,-) € H>*(DF), ¢1(0,-), g2(0,-) € H¥?(9F)},

where

(R, f1, f2, f3, f1, 0,91, 92) |55, = Pl L2(0,7:m3 (F))nLee 0,112 (F))nm 0,110 (7)) + [R(O, ) |2 ()
+ [1f1ll 20,7502 (Fyo)nm o, im0y + 110, Mz @ne + 1f2llLzo,mi1m2)2)0m 0,712 (7))
+ 1 £200, Mz Fys + M fsllmrorye + [ fallizo.mye + 1£50)] + [ £40)] + lall 20,75 57/2 (07 ) nE7/4 0,132 (0 7))
+ 11a(0, ) gsr207) + 10:a(0, ) gsr2o7) + 11911 20,15 5572 (0F7))nE5 /40,7302 (0F))
+ 921l 220,715/ 2 (070 H5 74 0,752 07)) T+ 1191(0, )3 /207) + 11920, ) 372 (0.7 -

Theorem 3.8. Let
(hvflaf27f3af4aa7gl792) € j}\Ta (pO,UO’KO,wO) € HB(]:) X f@;

1 such that a(0,-) =0 and ¢;(0,-) =0, i = 1,2. Then, the system (3.1)), (3.2), (3.3) and (3.4) admits a unique

~

> strong solution in X7 such that

HW%M%%<@W0Wh&hﬂ%mw%pWWﬁﬁwmmm@> (3.51)

Proof. Let

vl = piov S0 + V- (£1(0,)) + f2(0,-) in F, 2 =m71f3(0), w'=J"10)£4(0).

We differentiate the system (3.2), (3.3 and (3.4) with respect to ¢, then (d;v,£’',w’) is the solution of the system

poattv -V (S(aﬂ))) =V 8tf1 + 8tf2 in (O,T) X .7:,

dus(y) =0 +w' xy in (0,7),
ml" = 0, fs in (0,7),
J(0)w" = O f4 in (0,7),
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with the boundary conditions

O -n =0, [(2uD(dw)n + Bodw)] - " = Drgs, =12 on(0,T) x 09,
(O — Orvg) - m = Ora,  [(2uD(0rv)n + S1(0rv — Opvs))] - T8 = Oegi, 1 =1,2 on(0,T) x S,

and the initial conditions
Ow(0,-) =v'in F, £0)=¢, J(0)=uw' (3.52)

By interpolation, a € H(0,T; H*/?(0F))NH"/*(0,T; L*>(0F)) and g € H*(0,T; H?(0F))NH/*(0,T; L*(9.F)).
Using Corollary [3.7] we obtain that
1B, £, ") 20,7507 (F))9)nH (0.T3L2 ()P x (12 (0,73 x 11 (0, < CeCT <|€1| + ||

+ I iz @z + L fillm o, ey + Lf2llmo.mipe e + 1 sl e omye + 1 fall o,y

+lall g 0,132 07 1771 0,120 7)) T 100005 ) 2207) + 1911113 (0,111 72 07) ) 11574 (0. 7:12 (0.7
+ 920l i1 0,75 111720 7)) B33 (0,752 (07 ) (3.53)

Let now estimate ||a|| g1 (0,7, 3/2(0)) taking care of the constants that should not depend on 7'. Since a(0, -) = 0,
we extend a by a@eq¢ over (0,77) with T* > 2T as the following

a(t) t € (0,7,
oot = { a(2T —t) te€ [T,2T],
0 t e 2T, T

Then, using interpolation argument in (0,7%), we obtain

||a||§-11(0,T;H3/2(6]-')) < Haext Hill(O,T*;H3/2(6]-'))

9 3/7 9 4/7
< C (Haezt||L2(0’T*;H7/2(3]:))) (||a’€93t||H7/4(0,T*;L2(8]:))) . (354)
We notice that
lacatl 7201772 o)) = 2lalZ20 7,772 07 (3.55)
and
”aeﬂft”?{7/4(0,T*;L2(6}‘)) = HaextH%ﬂ(o,T*;LQ(B]—')) + LataextJ§/4,2,(0,T*)

= 2||a|‘§{1(0,T;L2(0}‘)) + Or@eat — Orext (0, ')J§/4,2,(0,T*)' (3.56)
We estimate |0;aezt — Oraeqrt(0, -)J§/4)2’(07T*) as it is done in Lemma to get
[Otaert — Oraeat (0, ')J§/4,2,(0,T*) < ClOra — 94a(0, ')J§/4,2,(O,T) = CLatajg/m,(o,T)- (3.57)

Using (3.54)), (3.59), (3.56) and (3.57), we obtain

lall s o,7;m2r207)) < C (HaHi?(O,T;HWQ(é)]—')) + Ha||§{7/4(O,T;L2(8]-'))) : (3.58)

Using the same arguments, we also have

||giHi[1(o7T;Hl/2(a]:)) < c (”giHQL?(QT;HS/?(BF)) + Hgi||2H5/4(07T;L2(8]:))) ) 1= 17 2. (3'59)
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In the other hand from Theorem [3.I] we have that

loll 2o,y () < O(||f1L2(O,T;[H3(]-')]9) + [1f2llz20,ms1m27012) + 100l 20 7,12 (7))
+ 1 f3llizz0,y8 + N fallizz o,z + llall Lz, 57720 7))

+llg1llz2c0,m;m52(07)) + 1920 20,7152 07)) + 1€l (220,718 + ||W||[L2(0,T)]3>' (3.60)
Gathering (3.53) and (3.60), we obtain (3.51). O

4 Fixed-Point and proof of Theorem

Let us fix T'> 0 and R > 0 and let define

BR,T:{(h7f17f27f37f4ua791792) ejT 3 h(07):07 f1(07'):_ap(p0)’yﬂ3u f2(07):0
fom [ 600 =@, fi=— [ yx 6% - @) )n
S a8
a(Oa') :07 ata(07') :aa gi(oa') :0’ H(ha f17f23f37f47a391392)”37T gR}a
such that
S —0? - (Vn?) on 09,
T W x (0 =) n+ (v =) - (W x n+ Vn(e” —v%)) on dS.

Let consider the mapping Z : B+ — )7T such that

Z(h7f17f25f37f4aa7glag2)
= (T([LU), F1(p,1}), FQ(IO?U)’ F3(pava€7w)7 F4(p7’uvz7w)a B(Ua€7w)7 Gl(’U,Z,W), GQ(U7£aw))a

where (p,v,{,w) is the solution for the linearized system (3.1), (32), (3.3) and 1.} associated to h, fi, fa, a,

g1, and go. We recall that the nonlinearities T, Fy, Fy, Fs, ]F4 are given in . §), 2-9), (2-10) and
| Bsa(v,f,w) on 0N A | (Goa(v,l,w)); ondQ .
B(v, 6, w) = { Bos(v.t.w) onds @ CiU9) =1 (Gos(ofw)) onds -
where Baq, Bas, Goq, Gos are given in (2.11)), (2.12) and (2.13)), ( b respectlvely For R > 0 large enough,
we have that Bg r is not empty. Indeed, let v* be a function in L ) N H?(0,T;[L*(F)]*) such

that v*(0) = v°. Let h* =0, fi(t,") = —a,(p°)"13, g; = 0 and define for all t > O

¢
7/ v* - (Vno*) ds on 011,
0

a*(t) = ¢
/ wW? x (v =) n+ (v —v*) - (W x n+ Vo —oY)) ds on IS,
0

and
f5(t) =~ /&S(S(UO) —a,(p°))n dl,  fi(t) = — /88 y % (S(v°) = a,(p°)")n dr.
Then, from (1.7) there exists R such that
1 2 ne + 151+ 131+ 10:a™(0, )l a2 o) < /2.

Thus, for T small enough, we get that (h*, 7, f3, f3, fi,a*,g*) belongs to Br r. Then, Br r is non empty. We
assume also that

||<p07U07€O7w0>||H3(]-‘)><f0 g R (41)
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In this section, we prove that Z(Bgrr) C Bgrr for T small enough and that the mapping Z|s,, defines a
contraction. In the sequel, C' > 0 is a generic constant that can change from a line to another and may depend
on R but not on 7. From (3.51)), we have the following estimate:

1(p 0, 6w, < C (R+ 1R fus for for fusasgr g2l ) -
Let (h, f1, f2, f3, fa,a,01,92) € Br,r, we need to show that Z(h, f1, f2, fs, f1,a,91,92) € Brr. We have
(o, v, 6,0l 5, < C. (4.2)
From , we have )
X(t,y) = y+/0 o(t',y) dt’, te€(0,T), yeF.
Since the regularity of X depends on the fluid flow, we have
X € H'0,T; [HY(F)PP) 0 H?(0, T3 [H*(F)I°) n CH([0, T); [H? (F)]*) N H?(0, T3 [L*(F)]).

It follows that

1X = 1d ||z o, rypme () < O, 106X || 2o s (rypey < CTH?, (4.3)
16 llw1.00 0,72 (Fyyn 2 0,71 Py 053 (7)) < o 10x = Tsll oo o sy < CTY2, (4.4)
1 lly.00 (0.7 12 (Fyyn s (0. Py s 7y < Cs - 16x = Ul oo (0 1mrs iy < CTH2. (4.5)

Since p satisfies (3.1)), and Vo € L*(0,T; [H?(F)]?), we deduce

0 1/2
lo—»p ||L°°(0,T;H3(}')) <cr'? (4.6)
From (4.1f), we also have
10x M| o< 0,712 (7)) < Cs 10X | oo 0,7 182 (7)) < C- (4.7)

At the boundary, we have by interpolation

10 [ r1/4(0, 712 079 773 (0,752 ()10 ) L= (0,3 2 (97 )2) S C
||5X||H1/4(0,T;Loo(af))mHNS(o,T;Loo(af))mLoo(o,T;Loo(af)) <O, (48)

and
||bX||H5/4(07T;[H2(a]:)}9) <0, ||5X||H5/4(07T;H2(a}-)) <C, (4.9)

”ath||H7/8(0,T;[H3/4(8]-')]9) g Oa ||at5X||H7/8(07T;H3/4(3]:)) < C. (410)

Remark 4.1. In [13, Lemma A.5], we can use interpolation arguments and we infer that the constants in the
estimates do not depend on T.

4.1 Estimation on T, F; and F,
First, we show that T € L(0,T; H*(F)) N L>(0,T; H*(F)), from (&.6), (&.5)

p
IT (v, m, Pl 20,312 () < ||§ = P2l 0,13 (7)) IV L2 0 uars (2yp0)

p
+ ||§HL°°(0$T;H3(JE)) IVl 20, roprs ey 1% = Tsll Lo 0, 1prrs ey < CTH2,
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p
IT(v,m, p)l| Lo 0,752 (F)) < ||g = 2%l 0.7 (7)) IVl oo (0,122 (099
p
+ ||§|\L°°(0,T;H3(f)) ||VU||Loo(o,T;[H2(f)]9) llbx — ]I3||L°°(O,T;[H3(]-')]9) <oT'?,

and since Vv € L>(0,T; [H?*(F)]?), we get

p
||atT(va777p)HL2(O,T;H1(]:)) < <||6X - PO||LD<>(07T;H3(]:))
p
+ HgHL"O(O,T;Hf’(]-'))HbX - H3||L°o(o,T;[H3(f)]9)) VOl L2 0, 75001 (719
10 (Lox )| . Vo < OTV?
t ox X ) L (0,T5[H2(F)]°) L2(0,T;[H2(F))?) X :

Let prove that Ty € L2(0,T; [H3(F)]°) N H* (0, T; [H*(F)]°). Let estimate for example

1
||§V’U(bX)TbX = Vol L2 (0,715 (7 ))9)

1
< II§ = Ulzoe 0,13 (7)) IVV 20,7300 (7)) Hb;bXHLN(O,T;[H?’(]—')]g)

+ ||$HL°°(O,T;H3(}')) 10l 20,0 ey 1% =Tl e 0,10 ooy 1P s .72 ey
+ H$||L°°(O,T;H3(J:)) V0l o2y oy N0 e o015 ooy N = Ball oo 7y oy -
: Using ([&3), @6), (£2), @3), and the fact that H*(F) x H*(F) — H?(F). We obtain that
||$Vv(bx)TbX — Vol 2.1 () < CTH2. (4.11)

> In the other hand, the pressure term is estimated as follows

”p(p)bX||L2(0,T;[H3(]~')]9) <TY? ||P(P)bX||Loo(o,T;[H3(f)]9) <CTV?. (4.12)
We obtain also
1 T
e ng(bx) bx | = 0:VollLzo,mi1m (7))
(bx)"bx
< C( 10eV 0l L2 0, 1y (7)) ”T = Is|| o 0,3 ()

bx)bx
ST 190 o o 100 (P55 ) Lo ) < OTY. - (413)

We also have
10, (p(P)bX)\|L2(0,T;[H1(f)]9) <TY? ( Hatp(P)HLoc(o,T;m(f)) HbX||L°<>(0,T;[H3(]-‘)]9)

+ ||p(p)HL°°(O,T;H3(]:)) Iath||LOO(0)T;[H2(]:)]9)> < CTl/Q. (414)

Then, from (#11), (@ 14) and [@.13) we deduce that Fy € L*(0,T; [H*(F)]°) N H' (0, T;[H"(F)]°) and

”IFl HL2(0,T;[H3(]-')]9)OH1(O,T;[Hl(]-')]g) < CT1/2~
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Now, we deal with Fy, we have
||F2||L2(O,T;[H2(]-')]9) < lpdx — PO||L°°(0,T;H2(f))||3tv||L2(0,T;[H2(f)]3) < CTl/Z’
and
10:F 2l 220, 7s1L2(7)2) < IpSx — %1l Lo (0,102 (7)) 1060 | L2 0, 75122 (7p2)

+10epl Loo (0,712 (F) 10 || oo (0,75 183 (7)) 11060 || oo (0,751 11 ()12

+ ol o 0,713 (7)) 1060 x || oo (0,712 () | Oev || Lo (0,111 (7)2) < CT'Y?. (4.15)
4.2 Estimation on F; and F,
From and since Vv, bx € L>(0,T;[L>*(dF)]%), we have
I3l 0.y < CTY?. (4.16)
In the other hand, 0;F3 contains mainly terms of the kind
Vowbibx, ObxVubibx, p' lopbx, pTObxbx, (4.17)

that need to be estimated in L?(0, T;[L'(9S)]).
For the first term, since Vo,v € L>(0,T; [L*(F))°) N L2(0,T; [H*(F)]°), we get by interpolation that

||Vat'UHLS/B(O’T;[HI/4(83)]9) < C. (418)

Then
[VOwb X bx||r2 (0,711 (05y)2) < CTY. (4.19)

Concerning the other terms in (£.17), from (4.4), they all can be estimated in L>(0,7;[L>(9S)]°). Thus
combining this fact with (4.16) we obtain that

IFs 1 0.7y < CT. (4.20)
Similarly we deal with Fy, since Vo, bx € L>(0,T;[L>(0F)]°), X € L*°(0,T; L>°(0F)) and the fact that
7llzoe 0. mys < T2 |1l 0,7y < C. (4.21)
In the other hand, we have
w(t) =’ + /Ot W'(s) ds.
since w’ € L?(0,T), it implies
[wll{ze (0,3 < C- (4.22)

Then,
llwllz20,ry2 < CT'2. (4.23)

Hence, using (4.22)) and (4.23]), we obtain

Jw X w L2(0.T 3<CT1/2.
[L2(0,T)]

Finally using (4.21) and (4.3), we get
1 = JO) iz < 1T = TOlimoiryellel 20 CTV2.
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Thus
[Fallz20,mys < CTY2. (4.24)

In the other hand, 0;F, involves terms as (#.17) multiplied by (X — k) that is in L>(0,T;[L>(S)]®) and
additionally we have the terms
Vubxbx(v—1£€), p'bx(v—1).

The above terms can also be estimated in L°°(0, T; [L°°(9S)]?) since
1€/l 2o 0.2 < €]+ T2 (10l a2 0,7y
We have also the term Jw’ x w that can be estimated using (#.23)) and the fact that w € W'>°(0,T) as follows
||JOJ/ X w||[L2(07T)]3 < CT1/2.
Also from (4.23)), , (4.3), (4.5) we obtain
||J’w X WH[L"’(O,T)]?’ < CTl/Q.

We have also
1 (J = J(0)) w”llz2(0.1y5 < 1T = T(O)llzo 0,10 |l L2 (0,735 < CTH2,

and since J' € [L>(0,T)]%, we get
170 N2 0.y < I llz20,mype 1o o o,y < CTH2.
Thus, from and the arguments above, we deduce finally
|Falrr2 0,7y < CTHE. (4.25)
4.3 Estimation on By and Bys
Now let us estimate the boundary terms By, and Bys defined in and . It suffices to estimate
(nx —n)-v, wx(X-1d)- nx.

We notice that nx (t,-) = Q(t)n(Q(t) " (X (t,-) — h(t))). We get

fix(ty) —nly) = At X (ty) —ny) = Q) = I)n(Q) " (X(t.y) — h(t)) +n(QT (X(t,y) — h(t))) — n(y).
Using Taylor-Lagrange formula, we get

x(t,y) —n(y) = Q) — L)n(Q(t) " (X(t,y) — (1))

+ /01 Valy +60(Q() T (X (t,y) — h) —y)) db (Q(t) " (X(t,y) — h(t)) —y) -
Since Q € [H?(0,T)]°, h € [H3(0,T)]?, we get that
1Q = Lsll{r=(o,rye < CT, Al (0,2 < CT,

and from (4.3), we get that

1QT(X — h) = 1d || poe 0.1 (72 08y < NQT (X = 1d)|| oo (0,7 (mr7/2 052
+ QT = Is)lz=(o,ryo + IQ T hll Lo o,y < CTH2.  (4.26)
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Since ns is smooth enough, from and [I6, Theorem 1.1’] we get that
1(QT (X = W)l oo 0,772 08y + V(Y + 0(QT (X — h) = 1)) || oo (0,772 (05 ))2) < C.
Then, using the same argument on the fixed boundary 052, we obtain that
17ix = nll oo (0,172 (07y2) < CT2. (4.27)
Since H/2(0F) x H/?(dF) — H"/?(3F), we get
[(nx —n)- UHL?(o ror2ory) < Clix = nll peo,rymerz@mm) 10 2. 1772 072 < CTY?. (4.28)
We get also from and [16, Theorem 1.1°]
lwx (X —1d) - nx || 2 0,7,17/2(85))
< @l 2o 1X = 1d || oo (o, 7pm772 (07y9) 1P | Lo (0,772 08)18) < CTH2. (4.29)

Let estimate 0;Byoq and 0;Bss in H3/4(0, T; L*(0F)). In the sequel, we commonly make a change of variable to
reduce the time interval into (0, 1) to make sure that the constant C' is independent of 7. We use the following
notation

f)=f"T) = f*(t"), t"€(0,1).
Since d,v € H**(0,T; [L*(0F)]%), using we get

[(nx —n)- 8tUHH3/4(0TL2(af)) | (|b 7| ]I3> n- atU”HS/‘l(O,T;L?(BJ-'))

b
< (25 = 1) e 0 = @O ssoirazomy + 1 (s =T ) 1 OO lssioriary. (430

We estimate the first term in (4.30) as follows
|| <|b ‘ ) n- (at'U - (atv)(o))HH3/4(0,T;L2(8}‘))

_ _ b* * *
— VA (|bXn| —]I3> n - (Opv™ — (Opv™)(0))l prasa0,1:02 (07))
X

— * * b}
< CT 4|0 v* = (0= 0™ ) (0)[| grs/4(0,1:122 (07 (|b*Xn| - ]I3> I z17/3(0,151L°¢ (0.7))9)

< CT?5/4T5/4”615U - (atv)(O)HH3/4(0,T;[L2(6]—')]5 H (|b | ) ||H7/8 0,T;[L>° (8F)]° < CT3/8 (431)

Since dyv € L>®(0,T; [HY?(0F)]®) and HY?(F) — L*(dF), then using (A.3) we have for the second term in
(4.30)

bx bx
[ (le | H3> n - (9y0) (0) || s/ 0,1 2(07)) < Cll(0rv)(0 )||[L4(8F)]3||m — L3l s/ 0,754 (07))9)

< CTT/8=3/4 — I3l grr/so.mfros oy < CT®. (4.32)

X
|bxn|
Since v € L>(0,T; [L>(0F)]*) and &, <bbx|> € L>=(0,T; [L>(8F)]°), we can write
xn
bX bX 0
[0 <|bxn|> n- U||H3/4 0,T;L2(0F)) S [0 (lbxn> n-(v—v )||H3/4(0,T,L2(af))

bx bx 0 bx
+ /(0 <|bxn> n — (0 <|bXn|> (O)n) - 0"\ gs/a0,m52207)) + [ (O (|bXn|) - 0)(0) [ /40,1322 (07))%)-
(4.33)
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The third term in (4.33) gives

bx
[(v- O n)(0 )||H3/4(0TL2(8]-')) < T2, (4.34)
[bxn|
Since 0; (|ben|) e H3(0,T;[L*(0F)]°) and v € H**(0,T;[L>®(dF))®), arguing as and ([£31), we
X
obtain
|0 7|bxn| n-(v—uv )||H3/4(O,T;L2(8}'))+H( t 7|bxn| n— (0 7|bxn\ n)(0)) - v \|H3/4(0TL2(af))

(4.35)
In the other hand, we notice that

bx bx X
lw' x (X —1d) - mnHHl(O,T;LQ(OS)) Fllwxv- oxn" (wxwv- |bXn|n)(0)||H1(O,T;L2(BS))
b
+|lwx (X —1d) - & (|b;(n|> nHHl(O,T;L?(E)S)) <C. (4.36)

From Lemma [A.3]

[w" x (X —1d) - mn\\HSM(o,T;m(as» +flw x v |bxn\n —(wxwv- |bXn|n)(O)HHBM(o,T;Lz(aS))

b
e (6 =100 (25 ) ooy < CT% (431)

Since (w X v - |be|n)(0) € L>=(0,T; L*(0S)), we get finally from (4.37)
xn

1, (w < (X —1d)- X g o/ (4.38)

|bxn| ) ”HW“(OVT:L?(@S)) =

The last term in (2.12) can be estimated similarly. Gathering the estimates (4.28)), (4.31), (4.32), (4.34)), (4.35),

(4.29) and (4.38]) we get

|Bos || /20 70207 )n 120,13 572(07)) + IBoall me/ao,1:12 (07))nL2 077205y < CTYE. (4.39)

4.4 Estimation on Gyq and Gys

First, we extend Gy and Gys over F and we use the same calculation as Fi, we see that Gy, Gss €
L*(0,T; [H?(F))?). Using the trace theorem, we get

1(Gas)ill L2(o,sm5/2 07y + 1(Gon)ill oo, rsm5r207y) < CTY?, i =1,2. (4.40)
Now we estimate 8;(Gaq); and 0y(Gas); in HY/*(0,T; L?(0F)). We notice that
2uD(v)n - 7 — 2uDX (V)i - T = 2uD(v)n - T — 2uby DX (v)bxn -

Let estimate for example

||8t (b_ Tvv(bx)—rbxn . Ti) — 8tV1m . Ti||H1/4(07T;L2(8]-'))

S C(@tVU ( 5 (bx) bX —]I3> ||H1/4(O,T;[L2(8]-')]9)

1
+ ||V'Uat (bxl(s)((bX)TbX> ||H1/4(O,T;[L2(3]:)]9))' (441)
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From Lemma the first term at the right hand side of (4.41)) gives

|V (by 5 LTy - L)l e /20,3122 0709)
< CTY3V 0w o myg2orye) 1% Xbxbx Isll w7/ om0y (442)

Using (4.8) and Slobodeckij seminorm with s = 7/8, we deduce that

l
s bbe — Lsll /30,7511 (97)12) Lo (0,731 (7)) < C- (4.43)

Hence,
41
||V8tv(bX15—b}bX — I3) | 140,72 0770y < CTVE. (4.44)

In the other hand, the second term of is estimated thanks to Lemma- . - Lemma | using
the fact that Vo € H/3(0,T; [H3/4(8]-')] ) and H3*(9F) < L8(0F)

41
17002 (357 5-0%0x ) o recome

< CTYET0 = (0O lsiriaaomye) 10 (03 5050x ) oo

1
#1700 (9 (33 50k ) = 0 (330 5-0%0x ) ©) s rpeiom

1
17000 (b5 56k ) Ol sorizzormypy (445)

Since d;bx, ,0x, bx, by and dx are in HY/*(0,T;[L>(dF))°) N L>=(0, T; [L>®(8F)]?), using {#.8) and ([&.9), we
obtain

e < ox bTbX) | e go, o0 (07)0) < C. (4.46)

In the other hand, using Lemma[A.3] (4.8) and (£.10), we obtain

||VU(O) (875 ( 5 bXbX> - 6t ( (5 bTbx) (O)) ||H1/4(O,T;[L2(8]-')]9)

1
< TV (0) <5t ( X 5x bXbX> — O (b 5 bXbX) (0)> s 0.2 0ye) < CTY/F. - (447)
Since Vv, 0 <b;(161b;bx> e L>=(0,T;[H3/?(8F)]"), we have
X

1(V0)(0), (b— Xb;chX>( Mooz peome < CT2. (4.48)

Then, from (4.45)), (4.46]), (4.47) and (4.48)), we get

[2pD(v)n - 7 — 2uD™ (v)x - TX||H1/4(0 T;2(0F)) S <oT'E, (4.49)

The third term in (2.13)) writes ‘
501] . (7' — 7’:;() = 50(]13 — |bxn‘b;(1)1) T
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We get

10 (T — [bxnlbx " )v) [l zr1/a o,y r207)2) < (T3 = [bxnlbx")Oevll grsago rr2o7)s)
+ 1@ (Jbxnlbxh) (v —v°) + (3 (Jbxnlby") — Bu(|bxnlbx')(0)°

+[18:(Jox b3 ) (0)]]

||H1/4(0,T;[L2<af>13>

Since d,v € HY4(0,T; [H (F)]%) and T3 — |bxn|bx' € H'/8(0,T;[L>(dF)]°), then

1(Ts — [bxnlbx")Oevll /s 0,751p207)2) < CT®.
We have
10 (Ibxnlbx") (v = vO) | zr1/a 0 72 07
< CTY3)10u(|bxnlbx ) | a0z @m0 = 0l a7s 0.1y 22 (078
We have also from Lemma [A 3]

(O (|bxn|by') — 5t(|bxn\b}1)(0))voHHl/Ho,T;[Lz@fHB)
< T5/8||(3t(|bxn|b;(1) — 8t(|bxn|b;(l)(0))vo||

H7/8(0,1;[L2(8F)]3
Since v, d;bx" € L>=(0,T; [H3/*(0F))°), thus

1@ (x b OOy 112 0ms, < CTH2

Then, combining (4.50), (4.51), (4.52)), (4.53) and (4.54), we obtain
10 ((Is — [bxnlbx" ) | g/ao,ryrz @y < CTE.

Using the same arguments as we obtained (4.38)), we get

[0 (w x (X —1Id) - |bxn|by ) || < o734,

H1/4(0,1;L2(88))

Gathering (4.4), (4.55), (4.49) and (4.40), we obtain finally

1Gos)illmsrao,r:20F)nr2 0,152 (07)) + 1(Go)ill ers/10,m:L2 (07)) L2 (0.1:572 (8F)) <

HY/4(0,1;[L2(87))3) "

H/4(0,T;[L2(87))3)

(4.50)

(4.51)

) SCTYS. (4.52)

< CT%/®.  (4.53)

(4.54)

(4.55)

cTVE, (4.56)

Same calculations implies that Z defines also a contraction mapping on Br . That concludes the proof of

Theorem

A Useful Estimates

Lemma A.1 (Korn Inequality). Let 5 > 0. There exists a constant C > 0 such that
@l cmye < C (IB@Iaryp + 188 IEzaomys )

for all i € [H*(F))® such that @, = 0.

Proof. The proof is classical, it can be found in [I]. For the sake of completeness, we sketch the ideas of the

proof. We only need to show that there exist a positive constant C' such that

ID@)Fez o + 188 Fezomy > Cllalfza .

26

(A1)



Local strong solutions for a compressible fluid-solid system

and the result will follow from the classical Korn inequality since F is Lipschitz domain (see for instance [47]).
Suppose that the inequality (A.1l) is not true, then for any positive integer k there exists uy such that

||D(Uk)||[L2(f)]9 + [|B(ur)+ ||[L2(af)] ||Uk||[L2(f)]3
We normalize by ||uy||[z2(#)s, in such a way we get a sequence denoted again (uy)x that verifies
[|l[p2(m)e = 1.

We deduce from the classical Korn inequality that () is bounded in [H'(F)]*, then up to a subsequence, it
converges weakly to @ in [H'(F)]®. Consequently

ID@)Ifr2 0 + 1188z opys < lminf [ID(@) [[Fp2zyp + 18k 1fr2 o7y = 0-

Then, D(u) = 0 in F. It implies that u(z) = a+ b x z in F, but since & = 0 on OF, then a = b = 0, which
contradicts the fact that ||[ug|[[z2(r)s = 1. O

Lemma A.2. Let X a Banach space and £ € H3/4(O,T; X) such that £(0) = 0, then there exists Eept €
H3%(0,T*; X), where T* > 2T and

€eatll r3ra0,m:x) < CllEllmsrac0,1;20)5 (A2)
with C' a constant that does not depend on T'.
Proof. We define ., as follows

Sert(t) = g(t)a te [OaT]a
Eext(t) =E(2T —t), te€|[T,2T),
Eert(t) =0, te 2T, T,

We have that epe € H3/4(0,7%; X). Let us prove the estimate (A.2). Since £(0) = 0, then it suffices to show
the estimate (A.2) using Slobodeckij seminorm with s = 3/4.

ng:z:t ezt( ”)( T T ”gezt gemt( )HX
[gezt $,2,(0,7*) = / / |t t/‘25+1 dt'dt = t/|2s+1 dt’dt

2T 2T
ngwt ext( HX ||€ewt e:vt( HX
/ / e dt'dt + e dt'dt.

Then,
2T 2T 2T
”Eemt fewt ||X ||fewt HX
[Seatls,2.0,00) = / / — /25t dt'dt + o Jt— t/|25+1 dt'dt

el di'dt. (A3
|t*t/|2s+1 : ( : )

Let us deal with the first term in the right hand side of (A.3).

2T 2T T AN
”gezt ert( HX ”femt gemt(t )”X
/ / e dt'dt = t/|2b+1 dt'dt
2T 2T
”fext fewt( ||X ||£ewt ewt( )HX
// T dt'dt + T dt'dt
2T 2T
Hf?zf m«t( )”X
/ / OOl . ()
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Since the second and the third terms in the right hand side of (A.4) are of the same kind then it suffices to
treat one of them using a change of variables as follows

2T /
||§ert gemt t ”X / Hf ”X
/ / e dt'dt = \2T—t t,|28+1 dt'dt
— P E) - E@)IE
dt'dt. (A5
/ / |2T7t t/|25+1 | t/|25+1 ( )

Since t,t" € (0,T), then

—| < 1
2T —t -t

T ||§e:ﬂt ea:t ||X dt dt r ||€ ”X dt dt =
|t*tl|25+1 |t*t/|28+1 \_ngQ(OT)'

1 We obtain that

‘ t—t

Thus,

2 T ngact ext( )HX dt'd 4 A
It — t/|2+1 t'dt < 4[€)2 5, 0.1)- (A.6)

Now, we deal with the second term in the right hand side of (A.3), the third term can be treated similarly. Let
define ¢(t) and d(t) such that

t T /
c(t):%/o (€() — £()) dt', d(t):/t C(tt,) dt', te(0,T).
We notice that
() = c(t) — (d(t) — d(0))
Indeed,
f<t>=§/<s<t>—s< yat [ at =+ [ e )(1—2,) at+ [ ar

/5 (/d)dt—i—/§ dt' = //Et/dtd—s—/g
e+ [ %] / £(r) ~ &(¢) a | dr =eto) - (ale) - d00))

T
/0 262 dt < CLES o, (A7)

where C'is a constant that does not depend on T'. We have

T T rt 12 T ,rT (12
“2s) () |12 1€C) = EENZ 4y e — 1€Ct) — % 5y a0
A ! ”C(t)”X s /0 /O g2+l = A /t’ t2stl vt

T (T 112541
- £ — ¢ *1 E) — E@)I%
_/o /t/ 12s+1 |6 — ¢/2sT1 dtdt’. (A.8)

> We want to show that

Since t € (¢, T) and t € (0,T) then
t—t

~
N
—_
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W obtain

2 llg(®) = €)% ||€ llgt) = €% 2
/Ot le()l13 dt < //t t’|25+1 dtdt’ < t,|25+1 dtdt’ = [€)2 5 0r)-  (A9)

In the other hand,

d(t) — d(0) = —/t o) g

t/
0
Then, by Hardy inequality, we get

T T t t/)” 2 dt 1 T
£72|d(t) — d(0)||% dt = t*“*l/?)/ Itz o)~ 4t 7/ 2 e())|% dt. (A1
e law - ao o= [ = o eyl A L T e

Finally, using (A.9), we obtain

T —2s 2 1 2
[ a0 = a0)1 dt < 7 € (A11)

Then, by (A.11) and (A.9), we deduce (A.7). It remains to estimate the second term in the right hand side of

by using .

T IOl dt'dt = N 13 1 dt' dt
‘t—t/|25+1 0 ”5@11&( )”X o7 (t,_t)25+1

7 -1 " 2T € (1)
= [ el [, < [ e an

We write
[T Oy [ Oy [T WOy [T OB [T ROy,
0o (2T —1t)% o (2T —1t)%s r (2T —1t)% o (2T —t)%s 25 0 t2s '
Since t € (0,T) then ¢t < 2T — ¢ and hence
2T T
[€eat ()15 / 2 2
e s . Al
| Grpra<e [ e (A.13)
From (A.7), we deduce that
2T
ermt( )”X
/0 ﬁdt Clelz, (0,1 (A.14)
Thus,
T el dt'dt < C|€)? (A.15)
ot =ttt 5,2,(0,1) )
Gathering (A.15), (A.6), we obtain . O

We present also in the sequel some technical estimates concerning fractional Sobolev spaces that have been
established in [13].

Lemma A.3. Assume o9 € (1/2,1] and 01 € [0,02]. Using the above result, there exists a constant independent
of T such that for any & € H??(0,T;X) and £(0) = 0, then

1€l o1 0,720 < T 74 [I€ll oz 0,7,2) - (A.16)
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Lemma A.4. Assume that X1, X5 and X3 are Banach spaces such that

1f9llx, SCNfllx, l9llx,, VIfeX, VgeXs

Let us assume o € (1/2,1], s € [0,1/2], To > 0. Then there exists a constant C such that for any T < Ty we
have

Ta—s—1/2

H“1u2||Hs(o,T;3e3) <C H“luHs(o,T;xl) ||U2||Hv(o,T;3e2) + ||u2(0)|\3€2 ||u1||Hs(o7T;3el)a (A.17)

for all uy € H*(0,T;X1) and us € H?(0,T; X2).
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