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  The sidescan sonar records the energy of an emitted acoustical wave backscattered by the sea floor, orthogonally to the
track followed. The statistical properties of the backscattered energy change with the nature of the sea floor, which allows
for a segmentation of the seabed into homogeneous regions. However, the statistical description of the backscattering is
not constant over the full swath of the sonar. Making the backscattered energy independent of the grazing angle is a more 
difficult challenge, conventionally solved by considering a flat seabed and by using physical or an empirical law estimated
from the sonar data. To avoid the definition of a physical law describing the change in energy with grazing angle, the
proposed algorithm divides the slant range into small stripes, where the statistics can be considered unaltered by the
grazing angle variations. The starting stripe at mid sonar slant range is segmented with an unsupervised classifier based on
the SOFM (Self-Organizing Feature Maps) algorithm. Then, from the knowledge acquired on the segmentation of this
first stripe, the classifier adapts its segmentation to the neighboring stripes. Segmentation performances of the proposed 
algorithm are compared with those of conventional algorithms.
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1 INTRODUCTION  
The sidescan sonar records the energy of an emitted acoustical wave backscattered by the seafloor, 
orthogonally to the track followed. The statistical properties of the backscattered energy change with 
the nature of the seafloor, which allows for a segmentation of the seabed into homogeneous regions. 
However, the statistical description of the backscattering is not constant over the full swath of the sonar 
[1], due to the propagation of acoustic wave in water and characteristics of sonar system beam 
(directivity, duration of emitted signal, ensonified area, etc.) [2]. Thus, the segmentation results of 
algorithms applied to sidescan sonar images are non optimal. 

As with most other digital remote sensing images data, the preprocessing of sidescan sonar images 
includes two steps detailed in [3]: geometric and radiometric corrections. Some of the geometric 
problems that need to be corrected for sidescan sonar images are: the water column offset, slant-range 
to ground-range projection, distortion due to the resolution ratio between the along and across-direction 
and change of ship’s velocity. The second preprocessing step is radiometric corrections. Typically, most 
algorithms used for radiometric corrections are: shading correction due to the energy decreasing from 
near to far-range, correction for speckle. 

In the literature, several works have studied the effect of variability of seabed backscattering response 
on image segmentation results. In [1], the data are first corrected for artifacts related to the wave 
propagation and characteristics of the sonar system. This approach requires strong knowledge of the 
system and the conditions of acquisition. Further work, [4] use a preprocessing step in which the data 
are corrected by estimating range-dependent variations. In [5], correction model for compensation of 
sonar sidescan images is proposed using three multiplicative corrections factors. These factors 
describe changes in the sonar altitude and angular dependencies, mainly due to the vertical beam 
pattern and grazing angle. 

Seafloor segmentation approaches could be categorized as either parametric or non-parametric. The 
parametric ones are based on modeling the probability distribution of the backscattering energy. These 
models take into account the conditions of acquisition, the properties of the seabed and the angular 
variations of signal backscattering. The most used models include the Rayleigh model, Weibull and K 
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distributions. The parametric models are more often used in Bayesian framework, [6] - [7]. In [7], a 
measure of similarity between the distributions of the different types of seabed sediments is estimated. 
The measure used is a weighted sum of the Kullback-Leiber divergence. The weight is introduced in the 
estimation of the measure that considers the influence of incidence angle. The nonparametric 
approaches do not consider the conditions of acquisition and physical properties of the backscattering 
signal. These approaches consider seabed backscatter as textured image. Most features commonly 
used are Haralick attributes based on the co-occurrence matrix [8], spectral analysis (Fourier transform) 
[9] and time scale analysis (wavelet) [10].  

The statistical description of the backscattering is not constant over the full swath of the sonar. Making 
the backscattering energy independent of the grazing angle is a more difficult challenge, conventionally 
solved by considering a flat seabed and by using either Lambert’s law or an empirical law estimated 
from the sonar data. To avoid the definition of a physical law describing the change in energy with 
grazing angle, the proposed algorithm divides the slant range into small stripes, where the statistics can 
be considered unaltered by the grazing angle variations. The starting stripe at mid sonar slant range is 
segmented with an unsupervised classifier. Then, from the knowledge acquired on the segmentation of 
this first stripe, the classifier adapts its segmentation to the neighboring stripes, allowing slight changes 
of statistics from one stripe to the other. The operation is repeated until the beginning and the end of 
the slant range are reached. The proposed approach for unsupervised segmentation of a slant range 
stripe is an adaptation of the Kohonen algorithm SOFM (Self-Organizing Feature Maps) [11]. This 
algorithm is a competitive neural network based on the biological functioning of the cerebral cortex. 
SOFM algorithm is different from other artificial neural networks in the sense that it uses a 
neighborhood function to preserve the topological properties of the input space. The algorithm is 
applied to the raw sonar images and does not require a priori knowledge about the data.  

This paper is organized as follows. In section 2, the dependence of the backscattering to grazing angle 
and proposed process of splitting of sonar images are discussed. Then, the principle of the proposed 
algorithm is given in section 3. In section 4, the different texture features used to discriminate the 
seabed are detailed. In section 5, a brief review of the learning process of SOFM algorithm is given. 
Section 6 provides experimental results of the proposed algorithm on real sonar images and compared 
its performance with the same SOFM algorithm applied on sonar images a priori corrected then 
compared with results obtained by K-means algorithm. Finally, we conclude with remarks and some 
perspectives in section 7. 

2 RANGE DEPENDENCE  
In all sonar systems at the receiving processor output, the amplitude of echo will be function of sonar 
target distance. To compensate these variations, a common solution is to correct the signal received in 
domain time, using a physical or empirical law [12]. The energy loss due to propagation of acoustic 
waves in the marine environment has a dual origin; the first loss is the geometric divergence and a 
second loss due to absorption corresponding to a conversion of acoustic energy into heat dissipation. 
Reverberation is one of the most important physical phenomena in sonar. It is characterized by a 
surfacic or volumic index which is a function of the pulse duration, the directivity of the antenna the level 
of the transmitted signal, the texture of the substance but also the grazing angle [12]. Several empirical 
models give the values of the reverberation index as a function of grazing angle and type of bottom, for 
example the Lambert’s model given in Figure 1. 

����� � �	
 � �� ������������     (1) 
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analysis is the spectral analysis. The input data (vector attributes) of the SOFM result from a texture 
analysis of the sonar image. The proposed algorithm consists of five stages: 

1) Splitting the raw image into stripes, 
2) Creation of vector attributes using texture analysis, 
3) Reducing the dimensionality of the vector attributes using the SOFM algorithm, 
4) Segmentation of the input image into disjoint classes by analyzing the topology map created by 

the SOFM, 
5)  Coding of the neuron map using colors. 

4 FEATURES EXTRACTION 
4.1 Textural Features

The Grey Level Co-occurrence Matrix (GLCM) is a second-order statistical tool used for texture 
analysis of images proposed by Haralick [16]. It has been applied successfully on satellite images [17] 
and medical images [18], etc. The GLCM of an image I of size NxM coded in Ng grayscale is a matrix of 
size NgxNg: It is obtained by calculating the number of transitions for each pair of grey level (i; j) of a 
given distance (d) and angular direction (�).  

The GLCM is calculated in 4 directions to describe the texture content: horizontal (d = 1; � =0°), vertical 
(d = 1; � =90°), right- (d = 1; � =45°) and left-diagonal (d = 1; � =135°) directions. Haralick [19] 
proposed a set of 14 local features. The different Haralick parameters are calculated from the 
normalized GLCM.  
In our work the following Haralick features are used: Entropy, Contrast, Heterogeneity, Homogeneity, 
Correlation, Maximum of probability, Kurtosis and Elongation Factor. 

Analytical expression of GLCM of an image I is given by:  

����������� �� � ������� � �� ��� � � ��!�� � ����!� � �"
#�$%& ����� ' ()� �*+�,- .� � � � � ����

4.2 SPECTRAL FEATURES 

Two-dimensional transforms have been extensively used in image processing to tackle a wide range of 
problems (e.g., description, filtering, compression, enhancement, etc.). Of these, the Fourier transform 
is one of the most widely used [20]. Fourier analysis can be used to study the properties of textured 
scenes, for example the power spectrum reveals information on the coarseness/fineness (periodicity) 
and directionality of a texture. Texture directionality is preserved in the power spectrum because it 
allows directional and non-directional components of the texture to be distinguished [21]. These 
observations have given rise to a powerful approach for extracting texture primitives from the Fourier 
power spectrum, called, ring (circular) filters. 

In our case, six features are computed from the Fourier transform. Three features calculated directly 
from the magnitude spectrum of the Fourier transform F(u,v), are: the mean, the variance and the 
power of the magnitude. 
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The other three attributes are calculated from frequency filtering based on the Fourier Transform. 
Circular filters applied in three spectral bands: low, medium and high frequencies. The operator takes 
an image and a filter function in the Fourier domain. This image is then multiplied with the filter function  
H(u; v) in a pixel-by-pixel. For example, F(u,v) is the input image in the Fourier domain, H(u,v) the filter 
function and G(u,v) is the filtered image. The filters used in our work are ideal filters for low pass, band 
pass and high pass. For example, in equation (3) the band pass filter HLF (u; v) leaves all frequencies 
unchanged between the cut-off DLF and DHF frequencies and suppresses other frequencies (Figure 3). 

/01�2� 3� � 4)�����5����601 7 829 � 29 7 6:1
����5����601 7 829 � 29 7 6:1�

.     (3) 

DLF is the low cut-off frequency and DHF is the high cut-off frequency. 

• Low frequency power (LFP) 

;01�2� 3� � /01< ��2� 3�      (4) 

=�> � ?
@A�BC�D D �;01�2� 3�9�CE?FG
BE?HG
     (5) 

Where F(u,v) is the input image in the Fourier domain, HLF (u; v) the low filter mask and GLF (u; v) is the 
low filtered image normalized by the power spectrum E. 

• Medium frequency power (MFP) 

;B1�2� 3� � /B1< ��2� 3�      (6) 

��>� )
�IJ=�>�K��L� D D �;���2��3���LJ)3��J)2�     (7) 

HMF (u; v) the medium filter mask, GMF (u; v) is the medium filtered image normalized only with power 
spectrum contained in the medium and high frequency (E-LFP). 

• High frequency power(HFP) 

/�> � ) M (=�> ���>-      (8) 

An example of the filtering band on three types of texture (rock, ripples and sand) is shown on Figure 4. 
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Figure 3: Circular filter gabarit.  Figure 4: Result of circular filtering applied on three 
textures: rock, ripples and sand.

4.3 FEATURES VECTOR 

The sidescan sonar raw images are divided into vertical stripes of 96 pixels width. On each stripe, 39
Features are calculated: 32 features of Haralick and six (6) Fourier features. The Haralick parameters 
are calculated using an analysis window of 96x32 pixels, with a step of 32 pixels along range and 8 
pixels along track. To take into consideration sonar altitude variations, sonar altitude is inserted as 39th 
feature. 

5 UNSUPERVISED SEGMENTATION  
The purpose of unsupervised learning methods are to develop an optimal partitioning, i.e. clustering, of 
the data set to be analyzed. Cluster analysis is the organization of collection of patterns which are 
usually represented as vectors of measurements, into clusters based on similarities. Approaches to 
unsupervised learning include clustering (K-means, mixture models, hierarchical clustering, self 
organizing feature map (SOFM), etc). 

5.1 K-means Clustering 

K-means is an unsupervised learning algorithm; its purpose is to divide observations into k partitions or 
clusters in which each observation belongs to the partition with the nearest average. In this work, 
principal components analysis (PCA) is used to reduce the dimensionality of feature vector space of 
each stripe before application of K-means clustering. The PCA gives orthogonal linear combination 
ordered by amount of variance they present. Typically more than 90% of the variance contained in the 
first three components. So, to facilitate human interpretation and further processing, it convenient to 
reduce the dimensionality of feature vector space from 39 to only 3 components. Euclidean metric is not 
well suited for acoustic records after PCA because the three PCA axes represent distinctly different 
amount of variance and thus should not be treated equally [15]. So, Mahalanobis metric is used for K-
means clustering. This metric obtained with normalization by variance of euclidean metric in each PCA 
direction. 
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5.2 K-means with Confusion Matrix (KM-CM) 

We performed the same process of splitting stripes of sonar image for K-means algorithm 
segmentation. The number of clusters initialized for K-means is K=4. The problem encountered is the 
transition management and continuity of classes between the stripes of image. This problem is due to 
the random initialization of K-means clusters applied separately on each stripe. To overcome this 
problem, inter-stripes management is performed by confusion matrices computed on the overlapping 
pixels of consecutive stripes, calling this process K-means with confusion matrix (KM-CM).The result of 
segmentation by KM-CM algorithm is shown in Figure 6. 

5.3 Segmentation SOFM Algorithm 

In the study of brain function, biologists have found that activities such as vision, speech and hearing 
are associated with specific areas of the cortex cerebral. These surfaces are arranged so as to 
preserve the topology of sensorial sensors. For example, Hubel and Weisel (1947) [22] have shown 
that two near areas in the visual cortex correspond to two near areas in the retina. This organization 
inspires Kohonen to develop Self-organizing feature maps (SOFM) algorithm [11]. SOFM transforms 
the input of high dimension into a one or two dimensional discrete map subject to a topological 
(neighborhood preserving) constraint. SOFM algorithm allows reduction of dimensionality of feature 
vector space. So in this case, we do not need to use PCA for reduction dimensionality and euclidean 
metric is used for clustering. Our tests for SOFM classification are performed with 2x2 Kohonen map 
size. A Kohonen map represents m2 different classes, that is to say a 2x2 map presents 4 classes. The 
SOFM algorithm preserves the topology, so we use a color space suitable for the topology; two neurons 
with similar weights (in the feature space) are represented with similar or close colors. 

5.3.1 Learning phase 

The SOFM algorithm is a type of competitive artificial neural network which generally consists of two 
layers of neurons. The first layer is only used to present the observations or vectors +NO from the input 
space while the second is the competition's layer. The geometry of this network is a priori defined. Each 
element of the input layer is connected to all neurons of the second layer to allow the self-organization. 
The link between the two layers is made by vectors denoted #NO (synaptic weights). These weights are 
updated iteratively by the learning algorithm based on the neighborhood. The principle of learning of the 
SOFM algorithm is to promote the winner neuron by comparing the input vector to which it owes its 
victory. The learning phase is to update the weights #NO in such a way that vectors close in distance and 
topology in the input space is associated with nearby neurons on the map. In our case, we note that the 
learning of a given vertical band of the image depends on the learning of the previous band, which 
allows us to keep the continuity of classes from one band to another. The SOFM model chosen in our 
application is a grid of �+� neurons��� � ��P �QP �RS �. Each neuron �� is connected to an input +NO ' �T�
by a vector of weight�#NO � U#N?� #N9� S �#NOV ' �O. The main phases of the SOFM algorithm are given on 
Algorithm 1. 

Algorithm 1: SOFM algorithm 

1. For each stripe of image do: 
2. Random initialization of weights wi
3. A vector xi is chosen randomly presented to the input of the network. 
4. Calculate of the Euclidean distance of each input to neurons in the input vector xi presented 
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5. Selection of winner neuron �#W��that minimizes the criterion distance : 

X+N M #WX � ���X+N M #NX      (9) 

6. Update the weights wi of the all neurons of the map using the formula: 

#N�$ � )� � #N�$� � ��$�YZN�$�(+N�$� M #N�$�-     (10) 

Vki:is the neighborhood function around the winner neuron, �(t) is the learning rate. 

7. Return to step 3 while t < T( T is the number of iterations) 

The generalization ability of the SOFM algorithm depends on two parameters: the learning rate �(t) and 
neighborhood function Vki(t). These two parameters are chosen heuristically [11]. The neighborhood 
function described in step 6 of the Algorithm 1 has the form of a Gaussian function given by: 

YZN�$� � [+TE(\]�^�_�
]�]�`�-      (11) 

� (t) the width of the neighborhood function at iteration t. 
d(k; i) : euclidean distance between neuron k and vector I . 

According to Kohonen the convergence of the learning process requires that the neighborhood function 
Vki(t) � 0 as t � T (T: number of iterations of the process). To ensure convergence of process, the 
learning rate �(t) and standard deviation �(t) of the neighborhood function should be two monotone 
decreasing functions [11]. 

6 EXPERIMENTAL RESULTS 
The sonar images used for our study are provided by the GESMA (Group d’Etudes Sous-Marines 
d’Atlantique). Data were acquired by the Klein 5000 sidescan sonar at the BP02 campaign, recorded 
between May and June 2002 near Framura, north to the Cinque Terre region (Italy). The BP02 
experiment was conducted by NATO/NURC. The carrier frequency of the sonar is 455 kHz. In low 
resolution mode, the along-track resolution is 20 cm and the maximum range is 150m on each side of 
sonar which gives a swath of 300m. In high resolution, the along-track resolution is 10 cm and the 
maximum range is limited to 75m (i.e. a swath of 150m).  In both modes, the across-track resolution is 
3cm. In our study we only use images acquired in high resolution mode.

To assess the performances of our new approach, two comparisons are made. First, we compare the 
segmentation results obtained by application of KM-CM algorithm on raw sonar data with performances 
of proposed algorithm. Then a comparison between results of proposed algorithm with segmentation 
results of sonar images previously corrected then segmented with SOFM algorithm applied to the sonar 
images without splitting process. The corrections applied are geometric and radiometric. Geometric 
corrections consist on the water column offset and slant range to ground range projection. For the 
radiometric correction, a compensation of the variation of backscattering energy by normalization of 
amplitudes is made. The segmentation result of KM-CM clustering algorithm with number of clusters 
K=4 is given in Figure 6 and segmentation result of proposed algorithm is given in Figure 7. The result 
of sonar image preprocessed then segmented with SOFM algorithm without splitting process are shown 
respectively in Figure 8 and Figure 9. 
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To study the quantitative performance of the proposed algorithm, a confusion matrix is calculated on 
the overlap of two adjacent stripes. The calculation is done for each side of the image port and 
starboard. The result of the confusion matrix obtained by the KM-CM algorithm and the proposed 
algorithm is represented on the Figure 10. Clearly, we show that proposed algorithm gives better result 
than KM-CM clustering and manages the continuity of classes between adjacent stripes of image.  

The last comparison considers an homogeneous sandy area. The unsupervised classification should 
give a unique class, defined as the correct class. As the unsupervised classifier can solve the problem 
with more than one class, a pixel rate is computed to indicate these classes are distributed. An ideal 
result would be a correct class which covers nearly 100% of the surface (i.e. a pixels rate of 100%) and 
the other classes with a pixels rate tending to 0%. The KM-CM algorithm gives the worst result with 
54% of correct classification. The SOFM applied on the preprocessed data (geometric and radiometric 
corrections) shows better results as 85% of area belongs to the correct class. The proposed algorithm 
shows that the area as almost entirely represented by a unique class (i.e. 99.97% of correct 
classification). The results of segmentation by different algorithms for the homogeneous sandy area are 
given in Figure 11 and quantitative representation of pixels rate for each class are shown in Figure 12. 

7 CONCLUSION 
In this paper, an unsupervised algorithm for segmentation of raw sidescan sonar images is proposed. 
This algorithm is based on the adaptation of the Kohonen SOFM algorithm. Segmentation 
performances of the proposed algorithm are compared with those obtained by the KM-CM algorithm 
using confusion matrix. Another comparison with a sandy homogeneous area is made. The proposed 
approach allows a better classification rate and does not depend on the incidence angle of the sonar. 
The proposed algorithm performs a segmentation independent to the grazing angle, without a priori 
information on the dependence on the incidence angle of the system acquisition (i.e. without image 
preprocessing) by managing transitions and continuity of classes between the adjacent stripes. Further 
work will address the use of a dynamic map (i.e. size of the SOFM adapting to the complexity of the 
segmentation task) and the improvement of the color coding of the map for a better representation of 
the physical nature of the sediment. 
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Figure 5: Sonar Image.   Figure 6: KM-CM algorithm.  Figure 7: Proposed Algorithm. 

    

Figure 8: Preprocessed image.  Figure 9: SOFM of (Figure 8).  Figure 10: Rate of good classification: 
Comparison between KM-CM    
and proposed algorithm. 

KM-CM (%) Prop. Algorithm 
(%)

Port Starboard Port Starboard 
6 42 86 85 
46 42 78 63 
79 35 74 80 
53 39 71 80 
56 35 76 79 
70 40 60 70 

Mean 51 38 74 76 
Total 
mean 

44 75
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Figure 11: Segmentation of an homogeneous sandy area: a) Raw sonar image, b) KM-CM algorithm, 
 c) Proposed algorithm, d) Preprocessed image, e) SOFM of preprocessed image. 

Figure 12: Comparison of segmentation of an homogeneous area by the three algorithms: KM-CM, 
Proposed algorithm, SOFM of preprocessed image. 
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