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Abstract: Accumulating evidence indicates that chronic exposure to a low level of pesticides found
in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the
physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and
the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also
known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with
diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides,
microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the
similarities/differences between these two physiological barriers and the different pathways that link
the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain.
We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and
raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant
women and offspring).

Keywords: gut-microbiota-BBB axis; barriers; pesticides; Chlorpyrifos; prebiotics; vulnerable population

1. Introduction

Given the sharp rise in the incidence of cancer, leukemia, inflammatory bowel disease
(IBD), and neurological diseases, it is evident that human chronic exposure to pesticides is
a real public health problem [1,2]. Since 1975, the World Health Organization (WHO) has
classified families of pesticides as “hazardous substances” and has continued to classify
them according to their dangerousness in the light of the latest knowledge [3,4]. Despite the
effort to limit their use, pesticides are widely used throughout the developing world, and
their demand is increasing due to the current system of crop production which prioritizes
high agriculture yields [5]. Pesticides have generally been considered to be contributors to
global food security and were originally designed to kill pests by interacting with the targets
involved in vital functions (e.g., nerve signaling, metabolism, cell survival, or division).
However, as the research in recent years has shown, they can have deleterious effects on
human health (nontargeted organism) by modifying physiological mechanisms that are
not specific to them [6,7]. To limit the entry of potential hazards and to protect itself from
pathogens, environmental toxins, or neurotoxic molecules, the body has developed several
barriers, including epithelial cell barriers (the intestinal barrier (IB)), the air–blood lung
barrier, the blood–cerebrospinal fluid barrier (BCSF-B), and the blood–brain barrier (BBB),
each displaying different barrier properties and cellular composition [8–10]. The IB and BBB
play an important role by protecting the host against food, environmental contaminants,
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and infections. The IB, located in the intestine’s surface, is part of the first defense system
between the external environment and the internal systems of our body [11]. This barrier
is built from a single layer of epithelial and Paneth cells separating the gut lumen from
the internal space, whereas the BBB is a selective barrier localized at the endothelial cells
(ECs) constituting the brain microvessels, which separates the lumen of blood vessels from
the central nervous system (CNS) parenchyma [12–14]. The IB and BBB are considered
immunological and physical barriers [15–17]. Each barrier not only provides protection
against invading pathogens but is also important for controlling the microenvironment of
the tissue and, therefore, tightly regulates the movement of the molecules and ions between
the cellular spaces [13,18,19]. These barriers have many similarities in their mechanisms of
action despite providing defense in very different environments [20]. Unlike the BBB, the IB
is constantly exposed to food antigens and contaminants and is colonized by a collection of
bacteria and microorganisms’ antigens of the microbiota. The gut microbiota (GM) is a real
organ system that includes a diverse and complex population of microorganisms colonizing
the digestive tract and having a symbiotic host’s relationship that helps to maintain a
dynamic metabolic and ecological balance [21]. In fact, the GM consists of more than
3 million genes compared to 23,000 genes in the human genome, making the microbiome
crucial in many functions in the human organism’s health and disease [22]. The neural,
endocrine, and immune network of communication exists between the gut, microbiota, and
brain. This axis of bidirectional communication, defined as the gut-microbiota–brain axis is
essential in maintaining homeostasis of the gastrointestinal, CNS, and microbial systems
(Figure 1) [23,24].
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Under normal, healthy conditions, mucus and a tight barrier of epithelial cells confine
most microbes to the gut lumen [12]. Daily exposure to contaminants, including pesticides,
changes the structure and the balance of the GM (named gut dysbiosis or dysbacteriosis)
in favor of potentially pathogenic bacteria [25,26]. Dysbiosis is defined as an imbalance
in the GM and/or its functions due to the loss of beneficial microbes and the increase in
pathogenic ones that might induce inflammation and immune dysregulation leading to an
unhealthy outcome [27–29]. As a result, the alteration in bacterial metabolites modulates
the IB permeability and thus generates an uncontrolled and permissive passage of not only
proinflammatory agents (cytokines, interleukins, bacteria, and bacterial products) [30,31]
but also bacterial neurotransmitters from the microbial environment and immune cells that
can compromise intestinal and brain homeostasis by affecting the BBB integrity leading
to inflammatory and neurological disorders [32,33]. The passage of viable bacteria of the
gastrointestinal flora is through the barrier of the intestinal mucosa (the lamina propria)
to the mesenteric nodes and then to normally sterile internal organs and is defined as
“bacterial translocation” [26].

The link between pesticides and diseases is not limited to the dose we are exposed to
but most importantly (1) the timing of the exposure (prenatal exposure, the first 1000 days
of life) or “windows of vulnerability” of the Developmental Origins of Health and Disease
(DOHaD) concept and (2) the duration of the exposure: a chronic exposure to a low dose
or to the dose with no effect (No-observed-adverse-effect level: NOAEL) can have more
of an impact on health than a short-term exposure to a high dose [26,33–36]. Therefore,
understanding how the gut, microbiota, and BBB are affected by environmental factors
such as pesticides is important for elucidating the way of preventing and treating bowel
and brain pathologies.

Nowadays, the interplay between pesticides, the GM, and the BBB is still not fully ex-
plored. Consequently, to understand how the IB and BBB are affected following microbiota
dysbiosis induced by pesticides, it is necessary to (a) acknowledge the structure and the
function of these three “organs” as if they form one system which is the gut-microbiota-BBB
axis and analyze how pesticides could impact this axis.

We will first discuss the similarities and the differences between the IB and the BBB.
Then, we will focus on the current knowledge of the effects of pesticides on this axis
and raise awareness of the danger of chronic exposure, especially during the perinatal
period. Finally, we will briefly discuss whether prebiotics could counteract the effects of
these xenobiotics.

2. Formation, Composition, and Role of Gut Microbiota

Most of the research on the GM assesses that microbial colonization of the human gut
begins at birth but progressively evolves and is modified by surrounding factors, such as
environment and diet [37]. The process of colonization of the gastrointestinal tract (GIT) is
influenced by the type of birth, which means that microbial species of C-section neonates
differ from those of vaginally born infants [38]. Advanced studies showed the presence
of microorganisms in the meconium of individuals born by cesarean section and in the
umbilical cord blood of newly born babies, which means that there is microbiota trans-
mission from the mother to the fetus and thus the fetus does not live in a fully germ-free
mother womb [21,39–41]. The GM is extremely complex, and its composition changes after
the shift from breast-feeding to solid food and is continuously influenced by numerous
host-related factors that are external (environment and diet: type of food and feeding
habits) and internal (intestinal pH, microbial interactions, temperature, peristalsis, bile
acids, intestinal secretions, and immune responses). At adulthood, the GIT contains a
vast and complex microbial ecosystem of approximately 100 trillion microorganisms with
more than 40,000 species of bacteria containing 100 times more genes than humans [42,43].
Most of these bacteria protect the gut epithelial cells against pathogens. Strict anaerobes
mainly compose the GM and outnumber the facultative anaerobes and the aerobes by
up to 100-fold [44,45]. Out of the four phyla populating the gut, two phyla, Firmicutes
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and Bacteroidetes, appear predominant in the human GM [46,47]. Despite all the factors
that influence the composition of the intestinal microbiota, the microbial community stays
stable at the phylum level: the two phyla mentioned above are conserved in individuals
and may only vary in their relative proportions at various stages in life [47–49]. How-
ever, on the spatial level of the GIT, the phyla distribution varies. Biopsy studies showed
that the small intestine is enriched with certain members of the Firmicutes phyla and the
colon with members of the phylum Bacteroidetes [50,51]. Variations also exist between
intestinal sections. For example, the genera Bacteroides, Bifidobacterium, Streptococcus, Entero-
coccus, Clostridium, Lactobacillus, and Ruminococcus were all found in the feces, making the
composition representative of the luminal community, whereas only Clostridium, Lactobacil-
lus, and Enterococcus were detected in the mucus layer and epithelial crypts of the small
intestine [46].

The GM is a major component of the digestive tract that stimulates the regeneration of
intestinal epithelial cells and mucus production by goblet cells. It similarly has a role in
nutrient assimilation and the fermentation of non-digestible substrates [29].

Host immunity maintenance depends on the gut microbial–host interactions because
70% of the immune system resides in the gut. The GM stimulates the innate immune
system early in life leading to the maturity of gut-related lymphoid tissue and inspires
acquired immunity by stimulating local and systemic immune responses, gut synthesis,
and the metabolism of certain nutrients [52,53]. The GM nourishes the intestinal mucosa by
producing short-chain fatty acids (SCFAs): acetic, propionic, and butyric acids [54]. Acetate
and propionate are produced by Bacteroides thetaiotaomicron (Bacteroidetes phylum), whereas
butyrate is produced by Clostridium tyrobutyricum (Firmicutes phylum). A study showed
that SCFAs are able to increase the number and function of regulatory T cells (Tregs) in
the gut [55]. SCFAs are also able to decrease BBB leakage: a study on monocolonized mice
with single bacteria strain Clostridium tyrobutyricum or Bacteroides thetaiotaomicron showed
a decrease in BBB permeability compared to germ-free mice. Moreover, when germ-free
mice, having disorganized brain tight junctions (TJs), were colonized by the microbiota of
pathogen-free mice, the integrity of the BBB was increased, proved by the increase in TJs
expression: occludin and claudin-5 [56].

In addition to SCFAs, the GM produces many metabolites, such as lipopolysaccharides
(LPS), trimethylamine (TMA), bile acids, and indoles. [57]. Some of these metabolites are
beneficial such as indoles that regulate the IB function and immune response, and bile acids
and TMA that maintain glycolipid homeostasis. Contrarywise, others are detrimental such
as LPS which is an immune system disrupter and circulating uremic toxins derived from
the digestion of dietary amino acids that have recently been shown to impair BBB integrity
and alter brain activity (p-cresol sulfate and 4-ethylphenyl sulfate) [58,59].

3. The Structure and Functions of the Intestinal Barrier

As mentioned above, the IB refers to the barrier between the microbiota and the
intestinal mucosa and is one of the largest boundary barriers between the body and its
environment [60,61].

The IB constitutes a biochemical and physical barrier where millions of microbes
and environmental antigens come in close contact with the host immune system. The IB
provides an effective obstacle and becomes more selective at birth [62]. This barrier is made
of a mucus layer that represents the first defense component of the IB, limiting the transport
of potentially harmful antigens and microorganisms. The intestinal mucosa is composed
mainly of mucus, highly glycosylated mucin proteins, defensins, Immunoglobulin A (IgA),
and the inner lamina propria where regulatory T cells (Tregs) and resident dendritic
cells maintain an anti-inflammatory environment by secreting an appropriate cocktail of
cytokines [63,64]. This layer, essential in the maintenance of intestinal homeostasis, coats
the interior surface of the GIT and acts as a physical barrier to bacteria and other antigenic
substances present from the lumen to the lamina propria [63].
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Despite its structural role, the mucus layer does not establish alone a significant barrier
to transmucosal water or solute flux. The IB depends on the epithelial cells that are the
bricks of the intestinal physical barrier. The latter is associated with absorptive enterocytes,
goblet cells, enteroendocrine cells, Paneth cells, and microfold cells [65]. Some of these
cells release neuro-immunomodulatory mediators (e.g., enterochromaffin cells) such as
serotonin, while others such as Paneth cells release anti-microbial peptides [66]. These cells
all together form a continuous and polarized monolayer separating the gut lumen from the
internal space.

The passage of most hydrophilic solutes through the adjacent epithelial cells is highly
restricted. Indeed, the paracellular route of solutes, ions, and nutrients is regulated through
the presence of junctional complexes providing a physical barrier to unwanted and poten-
tially damaging molecules [18]. The function of the TJs is important in intestinal health
as a defective IB leads to diseases, including bacterial enteritis, IBD, and irritable bowel
syndrome (IBS) [67].

From apical to basal, the intercellular space is sealed by a complex of junctions, includ-
ing TJs, adherens junctions (AJs), and desmosomes [18]. TJs consist of transmembrane pro-
teins (e.g., claudin and occludin) that seal the intercellular space and peripheral membrane
proteins (e.g., zonula occludens (ZOs) and cingulin). The function of the TJs is determined
by the expression level, distribution, and phosphorylation of the TJs’ proteins [68].

The claudin-2, -3, -4, -7, -12, -14, and -15 isoforms are expressed in the epithelium of
the IB [69,70]. Some of these claudins (e.g., claudins 3, 4, 7, and 14) form a selective barrier
to macromolecules and ions, whereas others (claudins 2, 12, and 15) are pores to ions and
water. Claudin 5, on the other hand, is less expressed in epithelial cells than in endothelial
cells and its role as the gatekeeper of the permeability of the IB is less important than that
of the BBB [71].

Occludin, adherens junctions, and claudin molecules are linked to the cytoskeleton
by zonula occludens (ZOs). The functions of ZOs are still under investigation. Most ZOs
are known to regulate the assembly as well as stabilization of TJs [72]. Nevertheless, the
role of ZO-1 in the TJs is still unclear. Unlike endothelial cells, recent studies found that
ZO-1 is not essential for the barrier function and is not required for mucosal organization
but for its repair [73]. Though the paracellular barrier properties of the IB are quite
conserved throughout the whole intestine, the transcellular barrier properties of the IB differ
according to the section of the intestine that is considered. The efflux of xenobiotics and their
conjugates from the epithelial cells occurs through diverse membrane transporters such
as the ATP-binding cassette (ABC) proteins such as P-gp (Glycoprotein P) and MRP1 and
2 (Multidrug-Resistant Protein). In the BBB, they are recognized for their ability to modulate
the absorption, distribution, metabolism, secretion, and toxicity of xenobiotics. Despite the
apical distribution on enterocytes, little is known regarding how ABC transporters interact
with the GM. Recent studies reported that their expression is influenced by gut microbes
(pathogenic or otherwise) (Figure 2) [74].
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Figure 2. Similarities and differences between the intestinal barrier (IB) and blood–brain barrier
(BBB). The IB is made up of epithelial cells separating the gut lumen from the internal space, whereas
the BBB is formed by endothelial cells (ECs) lining the blood vessels separating lumen of blood
vessels from the central nervous system (CNS) parenchyma. The first defense component of the IB,
separating the microbiota from the epithelial cells, is the intestinal mucosa: mucus layer composed
of highly glycosylated mucin proteins, defensins, Immunoglobulin A (IgA), and the inner lamina
propria where T-regs (regulatory T cells) and resident dendritic cells maintain an anti-inflammatory
environment by secreting an appropriate cocktail of cytokines. Each barrier tightly regulates the
movement of molecules and ions between the cellular spaces through paracellular (rare in the BBB)
and transcellular transports (diffusion, vesicular, and active). The active transport is ensured by efflux
pumps and specific transporters. Thus, these two barriers are considered physical, immunological,
and dynamic barriers protecting the host against food contaminants and pathogens. The molecular
composition of BBB endothelial tight junctions, ensuring paracellular passage restrictions, shows
remarkable similarities to those in epithelial cells (but more stringency at the BBB) as they are formed
by strands of occludin, claudin molecules, and JAM (junction adhesion molecules) that are linked to
the cytoskeleton by zonula occludens (ZO-1, 2, and 3) as well as intracellular proteins (e.g., catenin).
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4. The Structure and Functions of the Blood–Brain Barrier

The BBB is a barrier localized at the level of the brain microvasculature. It is the major
brain barrier in terms of the length, close to 650 km, and the surface, 10–20 m2 [75–77]. The
BBB is formed by the brain endothelial cells (ECs) lining the brain microvessels.

ECs, pillars of the BBB, are in close contact with the brain pericytes sharing the
same basement membrane (BM) layer and are both surrounded by a continuous sleeve of
astrocytic feet. Together, with microglia and neurons, they form the neurovascular unit
(NVU) and cooperate and intercommunicate to ensure the brain’s health [13,78]. Compared
with other endothelial and IB epithelial cells, the morphology and functional properties
of ECs are different as they lack fenestrations to limit the movement of molecules, have
a low rate of vesicular transport to prevent the unspecific transport of large hydrophilic
molecules to the CNS, are enriched in mitochondria, and have very few vacuoles of
endocytosis [70,79–81]. To restrict the passage between the adjacent endothelial cells and
protect the CNS from exposure to potential harmful molecules, ECs are tightly sealed
through junctional complexes. The molecular composition of the BBB shows remarkable
similarities to those of IB cells as they are formed by strands of occludin, JAM (junctional
adhesion molecules), and claudins molecules that are linked to the cytoskeleton by ZOs
(ZO-1, 2, and 3) which are membrane-associated guanylate kinases [21]. Claudin 5 is critical
to the BBB formation, as claudin 5-deficient mice show a size-selective leakage of the BBB,
whereas claudins 1, -3, and -12 have also been identified at the IB [70].

In contrast to IB cells, the TJs of the BBB are localized only at the apical surface
of the non-fenestrated endothelium, sealing the paracellular route and making the ECs’
penetrance to the intravascular materials lower than peripheral endothelial cells [82].

The junctional complex contributes to the low paracellular permeability of the BBB
by limiting the paracellular movement of endogenous and exogenous compounds. Thus,
TJs are particularly important for BBB function and their loss can greatly increase its
permeability, resulting in inflammation and neuropathology [83].

The BBB is an even more selective barrier than the IB. To cross the BBB, xenobiotics can
diffuse passively through the membrane of ECs (transcellular route) if they are lipophilic or
will be taken up by transporters. Indeed, ECs express specific transporters and receptors at
the apical (blood side) and basolateral (brain side) membranes to ensure efficient nutrient
supply and brain waste elimination, such as the glucose transporter (GLUT1), the mono-
carboxylate transporters (MCT), and the low-density lipoprotein receptor (LDL-R) that
participate in the transport of glucose, ketone bodies, and lipoproteins, respectively [19,84].

In addition, ECs express several members of the ATP-binding cassette (ABC) family,
such as ABCB1 (or P-gp), ABCC1 (or MRP1), and ABCG2 (or BCRP: Breast Cancer-Resistant
Protein) that all impede the penetration into the brain of various potentially toxic com-
pounds and prevent their CNS accumulation (Figure 2) [85,86]. The functional activity
of these transporters increases or decreases under the influence of internal and external
factors including pesticides with damage to vessels and the CNS [87–89].

5. Gut-Microbiota-BBB Communication

Many complex and bidirectional interaction mechanisms exist between the gut and
brain: neural, metabolic, endocrine, and immune pathways. This complexity of interactions
is summarized in the term “gut-brain axis” [90].

The neural bidirectional communication network with the GM mainly includes the
enteric nervous system that controls the gastrointestinal system and the vagus nerve that
allows the bidirectional signaling between the gut and the CNS [23,91]. The endocrine
pathway involves a connection between the GM and the hypothalamic–pituitary–adrenal
(HPA) axis through hormones. Both neural and hormonal lines of communication combine
to allow the brain to influence intestinal activities and vice versa under the influence of the
GM [92].
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Another intercommunication exists through the bloodstream and is possible because,
beyond the mucus and intestinal epithelial barrier, the gut is equipped with a gut vascular
barrier (GVB), which acts as a gatekeeper to control the access of molecules and microorgan-
isms in the systemic blood circulation [93,94]. This communication is mainly mediated by
microbiota. The GM sends signals to the brain and vice versa by stimulating the release of
intestinal hormones or by transforming dietary components into several substances includ-
ing the amino acids, neurotransmitters (serotonin, tryptophan, and gamma-amino-butyric
acid), and vitamins that influence the metabolism and the immune system, which in turn
influence the integrity of the BBB and brain function [95,96].

In addition, the GM can affect the BBB through the regulating secretion of inflam-
matory factors and producing systemic circulating metabolites such as SCFAs by the
fermentation of dietary fibers and LPS [97]. SCFAs can translocate from the intestine
to the brain through the bloodstream and cross the BBB [98,99]. Some studies have re-
ported various effects on immune cells, including Treg cells [55,100] or T effector cells
and macrophages [99]. Through these metabolites and other molecules, the microbiota
regulates the innate immune system and modulates the structural and functional integrity
of the IB and BBB. A study showed that fetal BBB maturation is delayed in germ-free (GF)
pregnant mice and the expression of TJs’ proteins claudin-5 and occludin was reduced [56].
These findings highlight the importance of the GM in a healthy barrier’s phenotype and
may explain how disorders can be associated with a barrier’s physiology disturbance.

In fact, recent research has shown that GM disorders (dysbiosis and/or bacterial
translocation) are often associated with a leaky IB and BBB disruption accompanied with in-
flammation [101,102]. Ancient medical texts referred to inflammation as a redness, warmth,
pain, and functional loss, while currently it is defined as the immune system’s way of
eliminating foreign substances and endogenous stress signals. The resolution of systemic
inflammation results in the successful clearance of pathogens, but untreated or repeated
acute inflammation could worsen the condition or transform into chronic systemic inflam-
mation characterized by proinflammatory biomarkers [103]. In other terms, a plethora
of secreted proinflammatory cytokines (IL-1b, tumor necrosis factor (TNFα), or INF-
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C-reactive protein (CRP) [104], lipoteichoic acid from Gram-positive bacteria, (LPS) from
Gram-negative bacteria, and double-stranded RNA from viruses will translocate, cross the
IB, and reach the blood [32,105], affecting the arrangement and expression of TJs and the ex-
pression of efflux pumps and transporters of the BBB, thus impairing the barrier’s integrity.
Specifically, in the case of a microbiota dysbiosis scenario, Long et al. explain that local
intestinal inflammation induced by dysbiosis lies in the communication between the host
and bacteria [101]. LPS-mediated communication is possible because of its recognition by
the TLRs of monocytes, macrophages, and microglia at the level of both barriers, enhancing
the secretion of proinflammatory cytokines. LPS activate the nuclear factor-kappa B (NF-κB)
signaling pathway by binding to TLR4 [97,106]. It is this activation that is responsible for
the secretion of proinflammatory cytokines which leads to systemic inflammation [101].
The resulting cocktail of proinflammatory cytokines (TNF-α and interleukin (IL)-1β and
IL-6) in the bloodstream in addition to the LPS disrupt the IB and BBB (increase in the
barriers’ permeability) and promote α-synuclein deposition [101,107,108]. This increase in
permeability can be associated to TJs’ modulation mediated by released cytokines. TNF-α
is a cytokine that has been reported to be involved in many intestinal diseases and can
induce altered barrier function and increased vascular permeability. TNF-α decreased the
expression of the TJs’ proteins, including ZO-1, occludin, and claudin-1, and increased the
claudin-2 expression [70]. Notably, BBB dysfunction and leakage threaten brain safety, lead-
ing to brain inflammation and opening the path to the development of neurodegenerative
diseases [77].
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Gut dysbiosis is considered to be an important environmental factor responsible for the
loss of barriers’ integrity. Any disruption of the microbiota by diet and food contaminants
leading to dysbiosis, translocation, and eventually inflammation will affect the integrity of
the IB and BBB. Microbiota disorders and pathways lead to inflammation and the break-
down of both barriers, particularly in the case of chronic exposure to pesticide residues.

6. Pesticide Residues Exposure and Effects on the Gut and BBB

As previously mentioned, one important connection between the gut and the brain is
the microbiota. This means that any dysregulation of the microbiota (named dysbiosis) can
affect the two parts of this axis. Oral-exposure substances that can disrupt microbiota can
be in diet, drugs, antibiotics, and, most importantly in this review, pesticide residues.

Pesticide residues are food and water contaminants. Some of them alter the composi-
tion of the GM and disrupt and cross the IB [25,109,110]. They are defined by the Food and
Agriculture Organization (FAO) as any substance or mixture of substances intended for pre-
venting, destroying, or controlling any pest, including vectors of human or animal disease,
unwanted species of plants or animals, causing harm during or otherwise interfering with
human activities (production, processing, storage, transport, marketing of food, agricultural
commodities, etc.) [111]. These substances are classified based on various criteria, such as
the targeted pest organism type (fungicide, herbicide, insecticide, etc.), chemical composi-
tion (e.g., synthetic organic insecticides: organochlorines, organophosphates, carbamates,
and pyrethroids), and mode of entry in the body [3,112]. The mode of action of pesticides
targets the physiological systems of the pests they kill, but this can result in poisoning
nontarget species, such as humans (phylogenetic similarities in digestive, respiratory, and
nervous systems). Since the beginning of the 20th century, the use of pesticides and fertiliz-
ers is intensive to ensure large agriculture production to adapt with demographic growth.
The most frequently used chemical families in agriculture are the synthetic organic insecti-
cides mentioned above and triazines [5]. This means that we are not only exposed to one or
two but to a mixture of environmentally persistent pesticides daily. Thus, the assessment
of the impact of these substances nowadays should consider the chronic cumulative effect
as well as the cocktail effect [113–115]. The concept of metabolization (biotransformation
by microbiota bacteria and liver detoxification enzymes) is also a point of interest because
the pesticide metabolite can be more harmful than the parent compound, indicating a
metabolic activation. Generally, oxon-type intermediate metabolites are more hazardous
than their parent pesticide. Organophosphates oxon-metabolites are an example of more
toxic metabolites than the corresponding pesticide: Chlorpyrifos-oxon (CPF-oxon) is more
potent than Chlorpyrifos (CPF) itself, same as for paraoxon and parathion [2,116,117]. The
neurotoxic effects and impact on the gut-microbiota-BBB axis of the most detected pesti-
cides in food (according to the EFSA European Food Safety Authority) [118] are detailed in
Table 1. This review details the effects of the most used organophosphate insecticide, CPF,
on the gut-microbiota-BBB axis.
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Table 1. Neurotoxic effects and impact of pesticides on the gut-microbiota-BBB axis. AChE: acetylcholinesterase; BBB: blood–brain barrier; C57BL/6: C57 black

cellCaE: carboxylesterase; ChE: cholinesterase; CPF: Chlorpyrifos; IB: intestinal barrier; IL: interleukin; IMZ: imazalil; IFN-
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Pesticides Effect on Gut Effect on Microbiota Effect on BBB Neurotoxic Effect References

Organophosaphates

Chlorpyrifos (CPF)

a. ↓ in epithelial thickness of ileum
and colon of rats after exposure to
1 mg/kg/day of CPF
↓ of tight junction gene expression
of the intestinal barrier and ↑ of
proinflammatory cytokines

c. Exposure to 1 mg/kg/day of
CPF-induced (1) microbial
dysbiosis in pregnant rats and
offspring, a ↓ in potentially
beneficial flora and an ↑ of the
potentially pathogen one, and (2)
bacterial translocation to sterile
organs

d. Altered gene expression
levels of claudin 5, ZO-1, and
TRPC4 genes disrupting the
barrier integrity in an in vitro
BBB model

e. Exposure to 1.5 (low dose) and
3 (high dose) mg/kg/day of
CPF-induced inhibition of
cholinesterase in rats in a
dose-related manner
f. Inhibition of carboxylesterase
(CaE) and cholinesterase (ChE)
activities by 43–100% in an vitro
BBB model treated with (0.1 to
10 µM) of CPF

a. [31,34,35]
b. [119–121]
c. [26,30,34,122]
d and f. [87]
e. [123]

b. ↓ of TJs gene expression of the
IB (Caco-2/TC-7 model treated
with SHIME supernatant exposed
to 3.5 mg of CPF for 30 days)

g. Exposure of pregnant rats to 1
and 5 mg/kg/day of CPF-induced
inhibition of AChE of juvenile and
adult offspring leading to high
sleep apnea index

g. [124]

Diazinon

h. Exposure to 4 ppm for 13
weeks in drinking water had an
impact on bacterial populations
and composition of
Lachnospiraceae, Ruminococcaceae,
Clostridiaceae, and
Erysipelotrichaceae in male mice

i. Exposure to 0.5 and 2
mg/kg/day induced long-lasting
alterations in cognitive function in
adolescence and extending into
adulthood of rats

h. [125–127]
i. [128]

Malathion

j. ↓ in bacterial populations
(depletion of 4 genera) in male
mice exposed to 2 mg/mL in
drinking water for 13 weeks

k. ↓ in the TEER in two BBB
in vitro models treated with
malathion (10−3 to 10−8 M)

l. Induces neurotoxicity through
ChE inhibition and non-cholinergic
mode: apoptotic cell death by
targeting mitochondria in N2a
neuroblastoma mouse cells (at 0.25,
0.5, or 1 mM for 8 h)

j. [125,127]
k. [129]
l. [130]
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Table 1. Cont.

Pesticides Effect on Gut Effect on Microbiota Effect on BBB Neurotoxic Effect References

Herbicides

Glyphosate

m. ↑ in proinflammatory cytokines
transcriptomic expression (IL-1β,
IL-6, and TNF-α) after exposure to
5, 50, and 500 mg/kg for 35 days in
male rats

n. ↓ in the relative abundance of
Firmicutes and Lactobacillus but
increased Fusobacteria in male
rats exposed to 500 mg/kg for 35
days

o. ↑ in barrier permeability to
fluorescein (at 1 and 10 µM of
glyphosate) and ↓ in
claudin-5 fluorescence
intensity (at 100 and 1000 µM)
after 24 h treatment of the
BBB model

p. 24 h of treatment with high
doses of glyphosate (100 µM) can
affect neurons metabolic activity

m and n. Q. [110]
o and p. [131]

Fungicides

Imazalil

q. ↑ in a colonic inflammation
biomarker (Lcn-2)
↑ in mRNA levels of TNF-α, IL-1β,
IL-22, and IFN-
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in the colon after
exposure to 100 mg/kg bw/day
IMZ for 28 days in mice

r. ↓ in Bacteroidetes, Firmicutes,
and Actinobacteria in the colon
after exposure to 100 mg/kg
bw/day IMZ for 28 days in mice

s. ↑ in oxidative stress ↑basal
calcium ions Ca2+ (indicating
inhibition of
depolarization-evoked
calcium influx) in an in vitro model
of rat dopaminergic PC12 cells
treated with 100 µM of IMZ

q and r. [25]
s. [132,133]

t. 15 weeks administration of IMZ at doses of 0.1, 0.5, and
2.5 mg/kg/day to C57BL/6 mice led to:

u. 48% inhibition of AChE by IMZ
(at 500 µM, in vitro enzymatic
inhibition assays)

t. [134]
u. [135]

IB dysfunction gut-microbiota dysbiosis
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6.1. Chlorpyrifos (CPF)
6.1.1. CPF Utilizations until 2022

Organophosphorus pesticides are extensively used worldwide because of the wide
range of pests they kill, the broad spectrum of applications (food trees, wheat, corn, al-
monds, tea, etc.), and their persistence in soil [2,136]. Chlorpyrifos (CPF) is the most
commonly used thionophosphorus organophosphate insecticide, available on the market at
a low price since 1965, especially in France, one of the first pesticide consumers in Europe.
In 1998, only one study was sufficient for the European Union (EU) to give use approval
of CPF, but it took more than hundreds of studies showing neurotoxic, metabolic, and
endocrine effects to make the decision in 2019 limiting its use. Nonetheless, CPF production
has not been banned. Therefore, pollution in the environment is still present. After the
ban of CPF use in the EU by the EFSA, except for the culture of spinach in France, the
EPA (United States Environmental Protection Agency) made a recent regulatory decision
banning CPF for food uses in the United States in February 2022 (EPA final rule) [137]. How-
ever, on one hand, it is still allowed for mosquito control, on tobacco, on plantations not for
feed purposes, and on food destined to export when it complies with foreign purchaser
specifications (updates on CPF uses in 2022, Iowa State University) [138]. Therefore, these
limitations do not prevent the accumulation of CPF in the soil and then in water and thus its
uptake by aquatic species and its entry into the food chain of human beings [139]. And still,
many other regions of the world including China and India continue allowing CPF on crops.
On the other hand, it has been demonstrated by many studies on the biotransformation of
CPF in soil that its half-life has a very wide range, from 360 days to 17 years, because its
fate depends on the initial concentration used on plants and the biodegradation rate. This
means that even after limitations, measures should be taken concerning the control of CPF
residues in soil, local and imported food, and most importantly in human blood or urine. In
addition, strict measures should be adopted in countries where residents have easy access
to this dangerous pesticide: in Iran, CPF residues are found in the milk of breast-feeding
mothers, their urine, and even their children’s urine [140]. A total of 92% of these mothers
confirmed pesticides’ house use, an activity banned since 2001 in the US [106]. Rathod
and Garg reported a scenario in India where the commonest method of suicide (40.5%) is
organophosphorus compound (OPC) intake [2,141]. Therefore, limitations are essential in
these countries to protect residents and their future generations.

6.1.2. CPF Mechanism of Toxicity and Toxicokinetic

Chlorpyrifos is absorbed by all routes of exposure. Urinalyses of exposed human
volunteers indicate that approximately 70% is absorbed by the oral route [2,142]. After
CPF exposure and then distribution throughout the body, cytochrome P450 (CYP) in the
liver metabolizes CPF, replacing the sulfur group with oxygen, to CPF-oxon, a metabolite
that is more toxic than CPF itself. The detoxification of CPF-oxon consists of oxidase en-
zymes hydrolyzing it to diethylphosphate (DEP), diethyl thiophosphate (DETP), and 3,5,6-
trichloro-2-pyridinol (TCP) [2]. TCP is a specific metabolite of CPF, whereas DEP and DETP
can be detected after exposure to other organophosphates [143,144]. It is the metabolic
bioactivation to CPF-oxon that leads to the irreversible inhibition of acetylcholinesterase
(AChE) preventing the breakdown of acetylcholine (ACh), a neurotransmitter that ensures
nerve cells communication. The accumulation of ACh in the synaptic cleft overstimulates
the neuronal cells, leading to a collapse in the nervous system of insects (National Pesticide
Information Center) [145]. Similarly, in higher vertebrae, in particular humans, CPF has a
cholinergic effect and has been demonstrated to have a plethora of non-cholinergic effects.

6.1.3. CPF Biotransformation by Intestinal and Soil Bacteria

The research on xenobiotics degradation in the human body mostly focuses on detox-
ification by CYP and other liver enzymes, but based on the literature, a minority of the
studies focus on their degradation by intestinal microorganisms and specifically bacteria. A
2013 study by Harishankar and colleagues found that 70% of CPF was degraded to TCP by
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Lactobacillus fermentum, 61% to CPF-oxon by Lactobacillus lactis, and 16% of CPF to CPF-oxon
and DEP by Escherichia coli [146]. Recently, insect experimental studies were conducted
to investigate the fate of pesticides by an intestinal microorganism [147]. A 2021 study
assessed the biodegradation of organophosphorus including CPF by isolating insect gut
microbial species. Four potential bacterial endosymbionts such as Bacillus subtilis, Bacillus
licheniformis, Pseudomonas putida, and Pseudomonas cereus used CPF as a unique source of
carbon and energy for their growth and enzymatic function. They found that Pseudomonas
cereus and Pseudomonas putida have more potential to degrade the CPF [148].

Similarly, in soils, the researchers suggested that CPF is totally degraded by microor-
ganisms and especially by Pseudomonas putida MB285 to form the primary products TCP
and DETP, which are further decomposed into non-toxic metabolites, such as CO2, H2O,
and NH3 [149]. Pseudomonas is a diverse genus with multiple degradation pathways. It was
reported that Pseudomonas putida MAS-1 had the highest degradation efficiency for CPF in
Pseudomonas genus, with a 90% degradation rate within 24 h [150]. Furthermore, another
study published in 2008 reported that different bacteria contribute to the biodegradation
of CPF in five aerobic consortia, based on antibiotic resistance survival and REP-PCR
(Repetitive Extragenic Palindromic Polymerase Chain Reaction). The results illustrated
that 75–87% of the CPF was degraded to TCP after 20 days of incubation by Pseudomonas
aeruginosa, Pseudomonas fluorescence, Bacillus subtilis, Brucella melitensis, Klebsiella sp., Bacillus
cereus, and Serratia marcescens. However, the results also showed that the TCP disappeared
after 30 days of incubation [151]. A mini review published by Supreeth in 2017 evalu-
ated the biotransformation of CPF and endosulfan by bacteria and fungi and discussed
the aftereffects of their transformed byproducts (metabolites) [136]. The degradation of
CPF to TCP was executed by different bacteria species, Enterobacter sp., Stenotrophomonas
sp., Sphingomonas sp. [152], Pseudomonas aeruginosa, Bacillus cereus, Klebsiella sp., Serratia
marscecens [153], Bacillus subtilis inaquosorum strain KCTC13429, B. cereus ATCC 14579, and
B. safensis F0-36b [154], and to CPF-oxon 3,6-Dihydroxypyridine-2,5-dione and DETP by
Pseudomonas putida (NII 1117) Klebsiella sp. (NII 1118) P. stutzeri (NII 1119), P.aeruginosa (NII
1120) [155], and Ralstonia sp. Strain T6 [156].

6.1.4. CPF Effects on Gut-Microbiota-BBB Axis

As the gut and microbiota have an impact on the absorption and metabolization of
pesticides, these pesticides can have serious effects on all parts of the gut–brain axis. Prena-
tal pesticide exposure studies detected parent molecules of organophosphates and/or their
metabolites, CPF in particular, in meconium [157–160]. In fact, meconium has become a
biomarker of in utero pollutants exposure. At this stage of rapid growth and development,
especially of the brain, humans are more vulnerable and sensitive to the toxic effects of
pesticides [161,162]. The message behind these analyses is that even before birth, which
means before gut microbial colonization, we are exposed to CPF, which seems to cross
the placental barrier. In addition, considering the oral route, before reaching the brain to
inhibit acetylcholinesterase, the first organ to encounter CPF or any food contaminant is
the digestive tract. Thus, it is necessary to investigate the organophosphate effects on the
intestinal tract. Working on the rat offspring NOAEL of 1 mg/kg/day, Joly et al. studied
the effect of 1 mg/kg/day or 5 mg/kg/day of CPF perinatal exposure on the GM of the rats’
progeny at two developmental time points: weaning (D21) and adulthood (D60) [34]. Their
results show that CPF exposure induces microbial dysbiosis: a decrease in Lactobacillus spp.
counts in the ileum, cecum, and colon as well as a decrease in Bifidobacterium spp. at D21 in
the ileum and D60 in the colon, and an increase in Clostridium spp. and Staphylococcus spp.
counts in the cecum and colon at D21. This means that CPF exposure reduces potentially
beneficial bacteria and increases potentially pathogenic ones. The epithelial thickness of
the ileum and colon was decreased by CPF treatment. Because the first study was based
on classical microbiology tests, they researched further to identify more specifically in-
testinal bacteria by MALDI-TOF-MS and investigate bacterial translocation from intestinal
segments to sterile organs [30]. By molecular typing, they were able to confirm the translo-
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cation of Staphylococcus aureus to adipose tissues, kidney, and Peyer’s patch from 12.5%
of CPF-exposed rats’ intestinal segments and a 5% translocation of Enterococcus faecalis to
the liver. This is logically explained by the increase in gut permeability induced by the
decrease in ZO-1 and claudin 4 transcriptional expression in the ileum and colon, especially
on D21 [62]. CPF exposure of an in vitro artificial human intestine (SHIME®) combined
with a Caco-2/TC-7 model was associated with a decrease in the tight junction gene expres-
sion, occludin and ZO-1, and an increase in the proinflammatory chemokine interleukin-8
(IL-8) [121]. Zhao et al. also confirmed abnormal intestinal permeability in CPF-exposed
mice and reported microbiota dysbiosis (a decrease in Lactobacillaceae and Firmicutes and
an increase in Bacteroidaceae and Bacteroides) and alterations in the metabolism of SCFAs
that led to intestinal inflammation [109]. This is an expected result because CPF treatment
alters the microbial community that produces these metabolites. In addition, an analysis
of serum showed an increase in LPS by CPF treatment. J. W. Li and colleagues showed
that chronic exposure to 0.3 mg CPF/ kg body weight/day induced a significant increase
in TNF-α and IL-6 in the serum of exposed rats [163]. These observations might explain
the alterations in the functional integrity and structure of the BBB by CPF, highlighted by
Parran et al. who worked on an in vitro BBB model (bovine endothelial cells and neonatal
rat astrocytes) [87]. Another study on an in vitro BBB model (rat brain endothelial cells and
neonatal rat astrocytes) showed that the short-term CPF treatment at low concentrations
alters the expression levels of the claudin 5, ZO-1, and TRPC4 (transient receptor potential
canonical channels) genes, disrupting the BBB integrity (TRPC regulates the calcium influx
that modulates the paracellular permeability of the endothelial cells of the BBB) [88]. The
claudin 5 gene is the main tight junction gene involved in the BBB tightness and ZO-1
ensures the support to the TJs’ architecture [164,165]. Thus, CPF targets the most important
actors of the BBB integrity.

Because the exposure to pesticides is often accompanied with saturated fats and refined
sugars (an unbalanced diet based on fast food and processed food), other studies assessed
the impact of the association of CPF to a High Fat Diet (HFD) on intestinal microbiota and
the IB. Guibourdenche and colleagues confirmed that the chronic perinatal exposure to
the NOAEL dose of CPF alone induced a decrease in transcriptional TJs expression and
also demonstrated an increase in proinflammatory cytokines and is aggravated by the
association to an HFD [31,122].

These experimentations all together point to the impact of CPF on the entire gut-
BBB axis even though its main mechanism is the inhibition of acetylcholinesterase in
neurons. Further investigations are necessary to identify molecular pathways that explain
the barriers’ disruption by organophosphates.

6.1.5. CPF Molecular Pathways Underlying Its Effects

In parallel to studies analyzing the effects of organophosphates on the gut–brain
axis, there are several studies investigating the molecular pathways associated to them.
It has been demonstrated that organophosphates induce apoptosis by affecting signaling
molecules, including c-Jun NH2-terminal protein kinase (JNK), p38 MAP kinase, and
extracellular signal regulated protein kinase (ERK1/2) [166,167]. ERK1/2 is activated by
neurotrophic factors and growth factors, whereas environmental stresses such as reactive
oxygen species (ROS) activate JNK and p38 MAP kinases. The activation of JNK and p38
MAP kinases induces apoptosis, while the activation of ERK1/2 is protective against it [168].
In fact, CPF increases JNK, ERK1/2, and p38 MAPK phosphorylation [169]. It is known that
mitogen-activated protein kinases (MAPKs) regulate matrix metalloproteinases (MMPs).
MMP9 is regulated by ERK1/2 [170]. MMP9 activation yet increased the IB permeability in
a Caco-2 in vitro model [171]. MMP9 upregulation leads to BBB leakage as well, through
the rearrangement and/or degradation of the tight junctions [172,173]. Moreover, MAPKs
have a role in the inflammatory response. Interestingly, CPF can upregulate cyclooxygenase
2 (COX-2) through MAPK activation [169]. In addition, CPF upregulates inflammation-
related genes and the protein level of NF-κB and TNF-α [174] which in turn can deteriorate
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the BBB permeability [84]. A possible explanation for the CPF implication in these pathways
is as follows: CPF increases NADPH oxidases (NOXs) and superoxide levels which increase
ROS signaling and oxidative stress in cells [175]. The increase in ROS signaling induces, on
one hand, the upregulation of TNF-α and NF-κB and, on the other hand, the increase in
the ASK1 expression responsible for the activation of JNK upregulation which is one of the
MAPKs that regulates MMPs.

7. Beneficial Modulation of the Gut-Microbiota–Brain Axis

Recent studies on pesticide effects are focusing on a new concept: the recovery. In fact,
a study of the effect of different doses of imazalil on mice GM evaluated the time of recovery
after 2 and 15 weeks of exposure. They found that 30 or 45 days after impregnation with this
fungicide, the bacterial composition at the phylum level recovered to the control level [134].
This highlights the fact that a change in the microbiota composition is flexible and tends
to regain balance. In addition, new clinical trials indicated that the gut-microbiota–brain
axis pathways and mechanisms are prone to dietary modulation and are of vital interest
in clinical nutrition. As a matter of fact, dietary interventions and supplementation with
probiotics and prebiotics can reshape the bacterial composition and are now administered
as “psychobiotics” to treat neurological disorders because of their beneficial effects on the
brain [176]. This means that by reshaping the GM, the whole gut-microbiota-BBB axis is
positively modulated. The concept of probiotic use in the modulation of gut microflora was
initiated in the 19th century by Elie Metchnikoff who theorized that “health and longevity
could be achieved by manipulating intestinal microflora, i.e., replacing harmful microbes
with beneficial microbes” while prebiotics were introduced by Gibson and Roberfroid in
1995 [177].

Their supplementation is now considered a promising approach that alleviates the
negative effects of food contaminants [178]. In effect, bacterial strains that are considered
probiotic strains (mostly Lactobacillus strains) can bind to xenobiotics and reduce their toxic-
ity (through biotransformation) and the amount absorbed by the host [179]. Lactobacilli spp.
are known to have the highest anti-inflammatory effects [52]. To exert their beneficial
roles, probiotic strains need substrates. Prebiotics partially provide probiotic strains with
substrates that are “nondigestible food ingredients which selectively stimulate the growth
and activity of beneficial bacterial species already implanted in the colon, and thus improve
the health of the host” [180]. Prebiotics are fructo-oligosaccharides (FOS) such as inulin,
galacto-oligosaccharides (GOS), trans-galacto-oligosaccharides (TOS), and resistant starch
which can be found in many fruits, vegetables, grains, and milk [181,182].

Arabinoxylo-oligosaccharides and inulin induced an increase in some SCFAs (ac-
etate, propionate, and butyrate) and a shift in the microbial composition from Firmicutes
to Bacteroidetes [183]. Similarly, Sialyllactose (isolated from milk) and GOS induced the
differentiation of the epithelial cells in the Caco-2 model, the modulation of the microbial
composition (an increase in Bacteroides and Bifidobacteria), and consequently the production
of SCFAs [184]. In fact, the fermentation of prebiotics by gut bacteria produces SCFAs
which can reach the bloodstream by diffusing through gut enterocytes and have beneficial
effects on the host [181]. In effect, an in vitro study linking the Caco-2 model and SHIME
demonstrated that arabinogalactan and FOS decreased proinflammatory cytokines (IL-6
and IL-8), increased the anti-inflammatory cytokine IL-10, and improved the gut barrier
permeability (the TEER measurements of the Caco-2 model) [185]. These findings empha-
size the direct effect of prebiotics on IB function through the modulation of the microbiota
composition. However, these oligosaccharides and the products of their fermentation
(SCFAs) can improve IB function through TJs modulation [186]. Many studies underline
the role of inulin [187] and FOS [188] in enhancing IB through TJs assembly.

Because they have a beneficial effect on the IB and microbial composition, researchers
investigated if pretreatment or supplementation with prebiotics could attenuate damage in
an inflammatory environment or intestinal harm caused by food contaminants exposure.
As an example, GOS pretreatment can alleviate damage of the IB in an inflammatory
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environment (in LPS-challenged mice) [189]. Additionally, inulin supplementation to rats
exposed to CPF, an HFD, or the association of both CPF and a HFD and in in vitro models
(SHIME and Caco-2) reversed their effects on microbial composition by increasing poten-
tially beneficial flora (Lactobacillus and Bifidobacterium), decreasing potentially pathogenic
ones (Enterococcus and Enterobacteriacea) and improving the IB integrity [26,120–122]. Thus,
prebiotics use through nutrition can modulate the GM with beneficial outcomes. New
methods are now emerging such as fecal transplantation, a strategy to deal with dysbiosis,
that has been shown to have a positive effect on the treatment of Parkinson’s disease [190].

8. Conclusions

Pesticides are generally considered to contribute to global food security, although the
extent of this contribution and how it is balanced against their potential to harm human
health is the subject of intense public debate. There is now evidence that the use of certain
pesticides, such as Chlorpyrifos and its metabolites, has serious and long-term negative
effects not only on the environment but also on human health. However, the effects of
pesticides on the functional barriers that protect our body are not well known, either for
the general population or for so-called vulnerable populations, such as pregnant women
and their offspring. The intestinal barrier, the blood–brain barrier, and the gut microbiota
play an important role in the absorption and access of food contaminants. The literature
demonstrates that pesticide residues and saturated fats disrupt the intestinal microbial
balance and the IB and BBB structure and function. Because the GM is the most important
part ensuring the communication between the intestinal tract and the brain within the
gut-microbiota-BBB axis, it is becoming one of the targets to palliate food contaminants
effects and treat intestinal and brain diseases. In fact, certain prebiotics could be beneficial
and counteract their effects by adjusting the microbial balance and improving the functions
of biological barriers. Nevertheless, little is known about these preventive effects at the
level of the gut–brain microbiota axis and still many questions are unanswered. Thus,
further studies on the modulation of the GM are necessary to establish and evaluate
preventing nutrition methods based on prebiotic use and other types of methods, such as
fecal transplantation.

Finally, considering the DOHaD concept stating that individuals are more vulnerable
to food contaminants during the perinatal period, raising awareness in the population,
especially the most vulnerable categories, should be implemented by promoting a diet rich
in natural fibers and lacking food contaminants.
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