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Abstract: Within the neurovascular unit, brain pericytes (BPs) are of major importance for the
induction and maintenance of the properties of the blood-brain barrier (BBB) carried by the brain
microvessel endothelial cells (ECs). Throughout barriergenesis, ECs take advantage of soluble
elements or contact with BPs to maintain BBB integrity and the regulation of their cellular homeostasis.
However, very few studies have focused on the role of ECs in the maturation of BPs. The aim of
this study is to shed light on the proteome of BPs solocultured (hBP-solo) or cocultured with ECs
(hBP-coc) to model the human BBB in a non-contact manner. We first generated protein libraries for
each condition and identified 2233 proteins in hBP-solo versus 2492 in hBP-coc and 2035 common
proteins. We performed a quantification of the enriched proteins in each condition by sequential
window acquisition of all theoretical mass spectra (SWATH) analysis. We found 51 proteins enriched
in hBP-solo related to cell proliferation, contractility, adhesion and extracellular matrix element
production, a protein pattern related to an immature cell. In contrast, 90 proteins are enriched in
hBP-coc associated with a reduction in contractile activities as observed in vivo in ‘mature’ BPs, and
a significant gain in different metabolic functions, particularly related to mitochondrial activities and
sterol metabolism. This study highlights that BPs take advantage of ECs during barriergenesis to
make a metabolic switch in favor of BBB homeostasis in vitro.

Keywords: brain pericytes; blood-brain barrier; human syngeneic in vitro model; label-free quantita-
tive proteomics; SWATH; cell-cell communications; cell maturation

1. Introduction

Although a discrete component of a brain microvascular multicellular entity named
the neurovascular unit (NVU), the brain pericytes (BPs) have a major role in the induction
and maintenance of the blood-brain barrier (BBB) properties [1–3]. BPs are recruited at
early stages of brain development by brain endothelial cells (ECs) secreting platelet-derived
growth factor-β (PBGF-β) [4]. This recruitment promotes pro-angiogenic processes, the
formation of blood vessels and the development of a common basement membrane, which
occurs when ECs and BPs are close or in contact through the secretion of transforming
growth factor-β (TGF-β) by BPs [5–8]. Then, brain microvessel ECs mature in response to
the secretion of angiopoietin-1 (Ang1) by BPs [1,2,9], the activation of Notch1-4/Smad-4 sig-
naling pathway [10–12] and also some possible contact sites referred to as peg-and-socket
junctions facilitating the exchanges of soluble factors [13–16]. Thus, gradually, ECs acquire
the mature and functional BBB main features some days after birth [3], characterized by
(i) junctional complexes composed by apical tight junctions, median and basolateral adher-
ent junctions and/or Ca2+-mediated junctions, (ii) limited aspecific transports, transcytosis
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routes being restricted to specific transporters, receptor-mediated clathrin- or caveolin-
dependent forms or adsorptive events, (iii) a limited passive diffusion of compounds due
to efflux pumps and metabolic enzymes [3,17–19]. All along life, BP’s physiology and fate
are directly linked to BBB maintenance and leakage in pathological contexts. Indeed, the
loss of BPs or their alteration observed in neuropathological conditions such as Alzheimer’s
disease leads to a decrease of stability and integrity of the BBB [20]. Moreover, due to the
expression of contractile proteins [21], BPs regulate regional blood flow in brain microves-
sels and capillaries, but this regulation remains modest compared to smooth muscle cells
in upstream arteriolar networks [22–25]. However, the abnormal contractility of BPs has
consequences for the proliferation and pro-angiogenic capacity of ECs. Indeed, it has been
reported that mutation of the myosin phosphatase-RhoA interacting protein (MRIP) results
in increased contractile activity and disorganisation of the pericyte cytoskeleton into stress
fibers, leading to deregulation of the ECs cell cycle and pro-angiogenic behavior [26]. BPs
exhibit, therefore, a minute contractility, and an abnormal contractile capacity is consistent
with a destabilization of local cerebral blood flow and the BBB properties [27].

In a so-called traditional manner, studies on BPs only focused on their role in the
induction and maintenance of BBB properties and homeostasis of ECs in physiological
and pathological conditions [28,29]. However, very few studies have focused on the
contribution of ECs to BPs and their development or maturation. Thus, the purpose of
this study is to investigate in vitro the proteome of human BPs cultured alone (hBP-solo
condition) or cocultured with ECs (hBP-coc) for the time required to induce the BBB main
features on ECs, i.e., 6 days for the human in vitro syngeneic BBB model used [29,30].
For this, we first established the protein libraries of hBP-solo and hBP-coc, and then we
quantified by a sequential window acquisition of all theoretical mass spectra (SWATH)
analysis the proteins enriched in each condition to determine the possible maturation and
functional switches in BPs after the induction of the BBB phenotype on ECs in vitro.

2. Materials and Methods
2.1. Cells and Cell Culture

The human brain pericytes (hBPs) were obtained from the Pr. Takashi Kanda’s team
(Department of Neurology and Clinical Neuroscience Clinical Neuroscience, Yamaguchi
University Graduate School of Medicine of Medicine, Yamaguchi University, Ube, Japan).
They were isolated from a patient who suddenly died from a heart attack [31]. The study
protocol for human tissue was approved by the ethics committee of the Medical Faculty
(IRB#: H18-033-6), University of Yamaguchi Graduate School and conducted in accordance
with the Declaration of Helsinki, as amended in Somerset West in 1996. Written informed
consent was obtained from the family of the participant before entering the study.

After isolation from brain tissue, pericytes were immortalized by transfection of
retrovirus vectors encoding the temperature-sensitive SV40 T antigen (tsA58) and encoding
human telomerase (hTERT) [31]. The hBP cell line was previously characterized for so-
called pericyte markers such as Desmin, PDGFR-ß and α-SMA [32].

After thawing, 6.25 × 105 hBPs used between passage 15 and 25 are seeded in gelatin-
coated (Sigma-Aldrich-Aldrich, Saint-Louis, MS, USA, G-2500) 100-mm-diameter Petri
dishes and cultured in DMEM (Dulbecco’s modified Eagle’s medium; Life Technologies)
supplemented with 4.5 g/L glucose, 10% fetal calf serum (FCS, Life Technologies, Waltham,
MA, USA), 2 mM L-glutamine, and 1% antibiotics (penicillin and streptomycin).

Human hematopoietic stem cells were obtained from umbilical cord blood as pre-
viously described [29,30]. Informed consent was obtained for the collection of human
umbilical cord blood. The protocol was approved by the French Ministry of Higher Educa-
tion and Research (CODECOH Number DC2011-1321), and all experiments were conducted
in accordance with the approved protocol. Briefly, blood was centrifuged in a Ficoll gradi-
ent to isolate the mononuclear cells. CD34+ hematopoietic stem cells were then sorted on
MACS columns [29,33] and cultured in gelatin-coated 24-well plates in EGM-2 medium
(Lonza, Basel, Switzerland) supplemented with 20% FCS and 50 ng/mL VEGF (PeproTech



Cells 2023, 12, 1010 3 of 19

Inc, Cranbury, NJ, USA). After 15 to 20 days, CD34+ cells were differentiated into endothe-
lial cells (ECs) and cultured in 100-mm diameter gelatin matrix-coated Petri dishes (0.2%)
in ECM-5 medium corresponding to Endothelial Cell Medium (ECM, ScienCell, Carlsbad,
CA, USA) supplemented with 5% FCS, 2 mM L-glutamine, 50 µg/mL gentamycin and 1%
Endothelial Cell Growth Supplement (ECGS, ScienCell, Carlsbad, CA, USA) [29,30]. Cells
were cultured at 37 ◦C in a humid atmosphere with 5% CO2.

On the 6th day of coculture, hBP were treated with trypsin/EDTA and seeded at
6.25 × 105 cells in a Petri Dish (Costar, Transwell 3419, Corning, NY, USA), or 8 × 104 cells
on a coverslip of 18 mm (ThermoFisher Scientific, Waltham, MA, USA, 0111580) in a 12 well
plate (Costar, 3512, Corning, NY, USA). At confluence, CD34+ endothelial cells are also
treated with trypsin/EDTA and seeded on filtered inserts (0.4 µm, 75 mm, Costar 3419)
previously covered with MatrigelTM (Corning, NY, USA) at a rate of 3.1 × 106 cells/filter.
Filters with endothelial cells were placed on top of wells containing hBPs. The cells are
grown in coculture for 6 days.

2.2. Sample Preparation for Label-Free Mass Spectrometry (MS)

Protein extracts from hBPs were prepared from two independent batches after 6 days
of culture alone (hBP-solo) or cocultured with CD34+ endothelial cells (hBP-coc). hBP-solo
and hBP-coc were treated with Accutase (StemCell Tech., Vancouver, BC, Canada, #07920)
and the detached cells recovered in pellet by centrifugation at 300× g for 5 min at 4 ◦C. The
cells were then rinsed three times with phosphate buffer saline (PBS, 8 g/L NaCl, 0.2 g/L
KCl, 0.2 g/L KH2PO4, 2.87 g/L NaHPO4 (12 H2O), 0.1 g/L CaCl2, 0.1 g/L MgCl2 (6H2O),
pH: 7.4) and centrifuged for 5 min at 300× g at 4 ◦C, and the final pellets were stored at
−80 ◦C until preparation for MS analysis. hBP total proteins were extracted with a 50 mM
Tris-HCl buffer (pH 7.5) containing 6M guanidine-hydrochloride for 5 min at 4 ◦C (ice).
Samples were purified from cell debris and contaminating DNA with Total RNA Protein
Isolation kit (Sigma-Aldrich, Germany) following manufacturer’s recommendations. The
protein concentration was determined using the Quick Start Bradford dye reagent (Biorad,
Hercules, USA). A 100 µg sample of protein was reduced with 25 mM dithiothreitol (DTT,
Sigma-Aldrich, w/v) in 25 mM ammonium bicarbonate (NH4HCO3) for 20 min at 56 ◦C,
alkylated in 50 mM iodoacetamide (w/v) in 25 mM NH4HCO3 for 20 min in the dark at
room temperature and purified by ice cold 80% acetone precipitation, overnight at −20 ◦C.
The precipitate was recovered by centrifugation at 14.000× g for 10 min at 4 ◦C and digested
in 2 µg Trypsin (Promega, Madison, WI, USA) at 37 ◦C overnight in 50 mM NH4HCO3
(w/v) pH 8.5 with an enzyme/substrate ratio of 1/50. The enzymatic reaction was stopped
in 0.2% (v/v) formic acid in water. Peptides were desalted, trapped, and concentrated
using the HyperSep SpinTip Microscale C18 (ThermoFisher Scientific, Waltham, MA, USA).
Samples were dried and resuspended in a solution of 2% acetonitrile (ACN) 0.1% (v/v)
formic acid in water. Peptide concentration was measured by a Quantitative Colorimetric
Peptide Assay (Thermo Fisher Scientific, Waltham, MA, USA), and samples prepared with
a final concentration of 1 µg/µL before MS analysis.

2.3. Generation of hBP Protein Spectral Library by Data-Dependent Analysis (DDA) MS

To generate the protein libraries, 2 µg samples of protein from each condition were
analyzed using an LC–MS/MS system composed by an AB SCIEX TripleTOF 5600+ mass
spectrometer (AB Sciex, Foster City, CA, USA) and an Ekspert nanoLC 400 System. Each
sample was injected 5 times (N = 2, n = 10) and a PepCalMix LC-MS solution (AB Sciex)
was used for recalibration after each injection allowing for maintenance of a mean mass
error below 10 ppm.

After each injection and for chromatographic separation in micro-flow mode, samples
were loaded in a Trap column (Luna Omega 5 µm Polar C18 100 Å, Micro Trap 20 × 0.5 mm,
Phenomenex, Torrance, CA, USA) with a rate of 10 µL/min for 3 min and separated by an
Eksigent Chrom XP-C18 HPLC reverse phase column (0.3 × 150 mm, 120 Å, particle size
3 µm) using a variable gradient of the mobile phase composed of 0.1% (v/v) formic acid in
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2% ACN 98% water (phase A) and 0.1% (v/v) formic acid in 98% ACN 2% water (phase B)
with a flow rate of 5 µL/min. The following gradient details are given for the percentages
of phase B in phase A only: from 3 to 25% for 68 min, from 25 to 35% for 5 min, 35 to 80% for
2 min, 80% for 3 min, 80 to 3% for 1 min, 3% for 6 min. The temperature of the autosampler
and column were maintained at 8 ◦C and 35 ◦C, respectively. The column eluent was
directed into the AB Sciex TripleTOF 5600+ system, then was operated in positive ion mode
by electrospray ionization using the DuoSpray® and Turbo V® ionization sources and
controlled by the Analyst software (version 1.7.1). Ionization parameters were as follows:
ISVF = 5500, GS1 = 15, GS2 = 15, CUR = 25, TEM = 150. MS spectra were acquired in
high sensitivity (HS) mode for 250ms from 400 to 1250 m/z and MS/MS scan from 100
to 1500 m/z (60 ms accumulation time, 20 ppm mass tolerance, rolling collision energy).
The generation of protein libraries was performed using the ProteinPilot software (AB
Sciex, version 5.0.2) with a UniProt human-filtered proteome database (February 2021),
specifying iodoacetamide and methionine oxidation as variable modifications. The detected
protein threshold was set to 10% (unused ProtScore > 0.05). Identification data for the
two independent biological samples were merged to generate the so-called hBP-solo and
hBP-coc protein libraries.

2.4. Data-Independent Analysis (DIA)/Sequential Window Acquisition of All Theoretical Mass
Spectra (SWATH)

SWATH-MS was done using the same material and instrumental setup as described
for the DDA-MS analysis with some modifications. Briefly, a 100-variable-window setup
was generated using the SWATH® Variable Window Calculator 1.1 (AB Sciex) with a 1 m/z
window overlap on the lower side of the window. The MS1 survey scan was acquired
from 400–1250 m/z for 50 ms and MS2 spectra were acquired in high-sensitivity mode
from 400–1500 m/z for 30 ms. The total cycle time was ~3.1 s. The collision energy used in
SWATH-MS was that applied to a doubly charged precursor centered in the middle of the
isolation window calculated with the same collision energy equation for DDA, and with
a CES of 10 eV. For the analyses conducted in the capillary flow and microflow rate, the
SWATH-MS data were recorded as described for the DDA-MS.

The SWATH-MS data analysis was performed using PeakView software (version 2.2,
AB Sciex) for a local SWATH-MS processing workflow. The endogenous hBP peptides
were extracted according to the precursor m/z, intensity and confidence of identification
across the entire time range, and the best scoring peak groups were used for retention time
(RT) calibration. The spectral library and SWATH-MS data were loaded into the SWATH™
Processing microApp. The peak groups were extracted with a 99% peptide confidence
threshold and a 1% peptide FDR threshold. The XIC extraction window and fragment
ion mass tolerance were set to 10 min and 50 ppm, respectively. XIC calculation has been
done for the top 5 peptides of all proteins identified. After data extraction, the results were
imported into MarkerView™ (version 1.2.1.1) for further data processing and normalization,
and analyzed according to the total area sums. The area under the XIC curves of peptides were
individually normalized based on a summed area of all peptides for each sample. Principal
component analysis (Pareto mode for scaling) was performed on samples based on expression
to visualize sample clustering, and group comparisons were performed with a Student’s t-test
to point out fold change (FC) and p values. Data were filtered for p value < 0.01 and FC > 2
(log(FoldChange) > 0.3) or FC < −2 (log(FoldChange) < 0.3). All the quantification results for
proteins with less than 2 peptides were automatically excluded, and the accession number of
the proteins that met both conditions were analyzed using MetaScape [34] and the STRING
database [35]. The interaction maps from the STRING database were obtained for an accuracy
of 0.4 and customized by Cytoscape (version 3.9.1) [36,37] to point out the proteins of interest.

2.5. Dosage of Total Cell Cholesterol

After 6 days, hBP-solo and hBP-coc were treated or not with acetylated LDL (ac-LDL,
25 µg/mL, Invitrogen, Waltham, MA, USA, L35354) during 3h and recovered in dry pellet
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after accutase detachment to be prepared for cholesterol assay. The dry pellet is rinsed
twice in Ringer-Hepes buffer (RH, 150 mM NaCl, 5.2 mM KCl, 2.2 mM CaCl2, 0.2 mM
MgCl2-6H2O, 6 mM NaHCO3, 5 mM HEPES, 2.8 mM glucose, pH: 7.4). The cells were then
lysed in lysis buffer and centrifuged for 10 min at 13,000× g at room temperature. The
supernatants were kept and heated for 5 min at 50 degrees. The samples were then dried in
the vacuum for 30 min. The samples were then assayed using a Cholesterol Quantitative Kit
(Sigma-Aldrich, MAK043). Briefly, this assay uses a coupled enzyme giving a colorimetric
(570 nm)/fluorometric (λex = 535 nm/λem = 587 nm) product, proportional to total cell
cholesterol and more precisely free cholesterol and cholesterys esters. The measurement of
the total cell cholesterol was normalized by µg of protein in each hBP sample.

2.6. Statistical Analysis

The results are indicated as the mean ± SEM and analyzed by Student’s t-test or
one-way ANOVA test followed by multiple comparisons for different conditions. All the
statistical tests were performed using Prism Software (GraphPad Software Inc., San Diego,
CA, USA).

3. Results
3.1. Dosage of Total Cell Setup of Protein Libraries from Solocultured and Cocultured Human
Brain Pericytes by Data-Dependent Analysis-Mass Spectrometry (DDA-MS)

Figure 1 summarizes the experimental design of the study divided into two major
steps: the setup of protein libraries and label-free quantification of proteins enriched
in solo-cultured human brain pericytes (hBP-solo) and pericytes cocultured with CD34+

endothelial cells used to model the BBB in vitro (hBP-coc) [29,30]. The induction of the BBB
on ECs in the coculture condition was confirmed by permeability assays for Lucifer yellow
and immunostaining for the tight junction (TJ) protein Claudin-5 and the TJ-associated
protein Zonula Occludens-1 (ZO-1, Figure S1). We first established protein libraries from
hBP-solo and hBP-coc (Figure 1 Step 1) and identified 2233 proteins (30386 peptides) in
hBP-solo and 2492 (31901 peptides) in hBP-coc.

Cells 2023, XX, x FOR PEER REVIEW 5 of 19 
 

 

2.5. Dosage of Total Cell Cholesterol 
After 6 days, hBP-solo and hBP-coc were treated or not with acetylated LDL (ac-LDL, 

25µg/mL, Invitrogen, Waltham, MA, USA, L35354) during 3h and recovered in dry pellet 
after accutase detachment to be prepared for cholesterol assay. The dry pellet is rinsed 
twice in Ringer-Hepes buffer (RH, 150 mM NaCl, 5.2 mM KCl, 2.2 mM CaCl2, 0.2 mM 
MgCl2-6H2O, 6 mM NaHCO3, 5 mM HEPES, 2.8 mM glucose, pH: 7.4). The cells were then 
lysed in lysis buffer and centrifuged for 10 min at 13,000× g at room temperature. The 
supernatants were kept and heated for 5 min at 50 degrees. The samples were then dried 
in the vacuum for 30 min. The samples were then assayed using a Cholesterol Quantita-
tive Kit (Sigma-Aldrich, MAK043). Briefly, this assay uses a coupled enzyme giving a col-
orimetric (570 nm)/fluorometric (λex = 535 nm/λem = 587 nm) product, proportional to 
total cell cholesterol and more precisely free cholesterol and cholesterys esters. The meas-
urement of the total cell cholesterol was normalized by µg of protein in each hBP sample. 

2.6. Statistical Analysis 
The results are indicated as the mean ± SEM and analyzed by Student’s t-test or one-

way ANOVA test followed by multiple comparisons for different conditions. All the sta-
tistical tests were performed using Prism Software (GraphPad Software Inc., San Diego, 
CA, USA). 

3. Results 
3.1. Dosage of Total Cell Setup of Protein Libraries from Solocultured and Cocultured Human 
Brain Pericytes by Data-Dependent Analysis-Mass Spectrometry (DDA-MS) 

Figure 1 summarizes the experimental design of the study divided into two major 
steps: the setup of protein libraries and label-free quantification of proteins enriched in 
solo-cultured human brain pericytes (hBP-solo) and pericytes cocultured with CD34+ en-
dothelial cells used to model the BBB in vitro (hBP-coc) [29,30]. The induction of the BBB 
on ECs in the coculture condition was confirmed by permeability assays for Lucifer yellow 
and immunostaining for the tight junction (TJ) protein Claudin-5 and the TJ-associated 
protein Zonula Occludens-1 (ZO-1, Figure S1). We first established protein libraries from 
hBP-solo and hBP-coc (Figure 1 Step 1) and identified 2233 proteins (30386 peptides) in 
hBP-solo and 2492 (31901 peptides) in hBP-coc.  

 
Figure 1. Graphical experimental design of the study. Human brain pericytes (hBP) are processed 
for mass spectrometry analysis after 6 days alone (hBP-solo) or in coculture with CD34+ endothelial 
cells (hBP-coc). 6 days correspond to the time necessary to promote the BBB main features on in the 
coculture model used, and therefore to optimize bidirectional cell-cell communications along the 
BBB establishment. Step 1 refers to the setup of protein libraries in both conditions (DDA-MS), Step 

Figure 1. Graphical experimental design of the study. Human brain pericytes (hBP) are processed
for mass spectrometry analysis after 6 days alone (hBP-solo) or in coculture with CD34+ endothelial
cells (hBP-coc). 6 days correspond to the time necessary to promote the BBB main features on in the
coculture model used, and therefore to optimize bidirectional cell-cell communications along the BBB
establishment. Step 1 refers to the setup of protein libraries in both conditions (DDA-MS), Step 2
corresponds to the generation of label-free SWATH quantification of proteins enriched in hBP-solo or
in hBP-coc conditions (DIA-MS analysis).
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The Venn diagram for these identified proteins showed that 2035 proteins are common
in hBP-solo and hBP-coc conditions, 198 were specifically identified in hBP-solo and 457 in
hBP-coc (Figure 2A, Table S1).

Cells 2023, XX, x FOR PEER REVIEW 6 of 19 
 

 

2 corresponds to the generation of label-free SWATH quantification of proteins enriched in hBP-
solo or in hBP-coc conditions (DIA-MS analysis). 

The Venn diagram for these identified proteins showed that 2035 proteins are com-
mon in hBP-solo and hBP-coc conditions, 198 were specifically identified in hBP-solo and 
457 in hBP-coc (Figure 2A, Table S1). 

A comparative gene ontology (GO) analysis was conducted based on the enriched 
proteins in both conditions, and showed on one hand that proteins enriched in hBP-solo 
are preferentially involved in developmental, growth, and locomotion processes com-
pared to hBP-coc (Figure 2B). These functions linked to actin filament-based processes and 
positive regulators of cell motility (Figure 2C). On the other hand, hBP-coc enriched pro-
teins are associated with biological and cellular processes (Figure 2B), such as vesicle-me-
diated transport (Figure 2C). Moreover, proteins enriched in hBP-coc are highly linked to 
localization GO entry compared to hBP-solo. Altogether, these data suggest a trend for 
cell differentiation or speciation in hBP-coc with improved specialized cellular and meta-
bolic functions and depressed immature functions such as cell growth, development, and 
locomotion. 

 
Figure 2. Libraries and functions of proteins identified as enriched in hBP-solo and hBP-coc condi-
tions. (A) Venn diagram of the identified proteins in hBP-solo and hBP-coc conditions by DDA-MS 
analysis (2233 and 2492 respectively, N = 2, n = 10). Only proteins identified based on at least 2 
peptides were included in this study. (B) Top-level gene ontology (GO) biological processes for hBP-
solo and hBP-coc enriched proteins. (C) Dendogram of statistically enriched ontology clusters for 
hBP-solo and hBP-coc enriched proteins. −log10(p-values) represents the enrichment of protein can-
didates in each cluster. 

3.2. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) Data Independ-
ent Analysis-Mass Spectrometry for hBP-Solo and hBP-Coc Proteins 

To rigorously quantify the proteins enriched in hBP-solo and hBP-coc cell total ly-
sates, we opted for a sequential window acquisition of all theoretical mass spectra 
(SWATH) approach, a label-free method to quantify the proteins with high accuracy and 
reproducibility [38]. We led two independent SWATH analysis for two biological batches 
and crossed the quantification data to sort a list of significant proteins enriched in hBP-
solo and hBP-coc. Briefly, each SWATH batch was set up considering as significant can-
didates the quantified proteins with p-values inferior to 0.01 and fold changes superior to 
2 for hBP-coc and inferior to 2 for hBP-solo. Figure 3A shows the Volcano plots obtained 
for each biological batch using these restrictive selection criteria. 

Figure 2. Libraries and functions of proteins identified as enriched in hBP-solo and hBP-coc conditions.
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(2233 and 2492 respectively, N = 2, n = 10). Only proteins identified based on at least 2 peptides
were included in this study. (B) Top-level gene ontology (GO) biological processes for hBP-solo and
hBP-coc enriched proteins. (C) Dendogram of statistically enriched ontology clusters for hBP-solo
and hBP-coc enriched proteins. −log10(p-values) represents the enrichment of protein candidates in
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A comparative gene ontology (GO) analysis was conducted based on the enriched
proteins in both conditions, and showed on one hand that proteins enriched in hBP-
solo are preferentially involved in developmental, growth, and locomotion processes
compared to hBP-coc (Figure 2B). These functions linked to actin filament-based processes
and positive regulators of cell motility (Figure 2C). On the other hand, hBP-coc enriched
proteins are associated with biological and cellular processes (Figure 2B), such as vesicle-
mediated transport (Figure 2C). Moreover, proteins enriched in hBP-coc are highly linked
to localization GO entry compared to hBP-solo. Altogether, these data suggest a trend
for cell differentiation or speciation in hBP-coc with improved specialized cellular and
metabolic functions and depressed immature functions such as cell growth, development,
and locomotion.

3.2. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) Data Independent
Analysis-Mass Spectrometry for hBP-Solo and hBP-Coc Proteins

To rigorously quantify the proteins enriched in hBP-solo and hBP-coc cell total lysates,
we opted for a sequential window acquisition of all theoretical mass spectra (SWATH)
approach, a label-free method to quantify the proteins with high accuracy and reproducibil-
ity [38]. We led two independent SWATH analysis for two biological batches and crossed
the quantification data to sort a list of significant proteins enriched in hBP-solo and hBP-coc.
Briefly, each SWATH batch was set up considering as significant candidates the quantified
proteins with p-values inferior to 0.01 and fold changes superior to 2 for hBP-coc and
inferior to 2 for hBP-solo. Figure 3A shows the Volcano plots obtained for each biological
batch using these restrictive selection criteria.
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We quantified a reproducible number of proteins in the hBP-solo condition with 78
and 85 proteins for Batch 1 and Batch 2, respectively, as well as in the hBP-coc condition (106
and 116 proteins, Table S2). Then, to promote the strength of this quantitative approach,
we combined both batches to sort the proteins quantified in both SWATH approaches
with a mean of expression superior to 2 in the hBP-coc condition or inferior to 2 in hBP-
solo. Figure 3B compares the number of significant candidates for each condition for each
SWATH analysis and after the combination of both. We observed a decrease of significant
candidates in the hBP-solo condition by 38%, reducing the number of proteins of interest
for this condition to 51 (listed in Table S3). Similarly, we reduced to 90 the number of
significant proteins in the hBP-coc condition (listed in Table S4). As for the data generated
by DDA-MS analysis, we compared the GO from the list of quantitative candidates from
the hBP-solo and hBP-coc condition (Figure 3C) and observed that the proteins enriched
in the hBP-solo condition are in favor of contractility, blood vessel development, cell-cell
adhesion processes, Integrin-1 and vascular endothelial growth factor (VEGF)-mediated
pathways. In the hBP-coc condition, the quantitatively enriched proteins were involved in
cholesterol and mitochondrial metabolism, confirming the trend toward cell differentiation
observed in Figure 2C.

3.3. hBP-Solo Enriched Proteins Seem to Play in Favor of a Non-Differentiated and Angiogenic
Behavior of hBP According to Transgelin-1-Mediated Processes

The Top 20 proteins upregulated in the hBP-solo condition are listed in Table 1.
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Table 1. Top-20 of the 51 proteins enriched in solo-cultured hBP. The complete list is available in
Table S3.

Accession Number Gene
Name Detailed Name Mean a S.D.

P02452 COL1A1 Collagen alpha-1(I) chain 13.8 1.62
P08123 COL1A2 Collagen alpha-2(I) chain 9.92 0.910
P02461 COL3A1 Collagen alpha-1(III) chain 9.89 0.257
Q01995 TAGLN Transgelin 7.03 0.979
P24844 MYL9 Myosin regulatory light polypeptide 9 4.67 0.737
Q9Y617 PSAT1 Phosphoserine aminotransferase 4.19 0.098
P15924 DSP Desmoplakin 3.62 0.07
P09493 TPM1 Tropomyosin alpha-1 chain 3.57 1.12
P42566 EPS15 Epidermal growth factor receptor substrate 15 3.51 0.814
Q05682 CALD1 Caldesmon 3.43 0.973
P24821 TNC Tenascin 3.42 1.09
Q5EB52 MEST Mesoderm-specific transcript homolog protein 3.29 0.613
P20908 COL5A1 Collagen alpha-1(V) chain 3.27 0.398

Q8WX93 PALLD Palladin 3.22 0.481
P78330 PSPH Phosphoserine phosphatase 3.21 0.518
Q71U36 TUBA1A Tubulin alpha-1A chain 3.18 0.393
Q96IZ0 PAWR PRKC apoptosis WT1 regulator protein 3.17 0.641
O15460 P4HA2 Prolyl 4-hydroxylase subunit alpha-2 3.16 0.345
P34741 SDC2 Syndecan-2 3.13 1.343
P08243 ASNS Asparagine synthetase [glutamine-hydrolyzing] 2.99 0.321

a Mean from the two independent SWATH analyses.

GO analysis of these proteins showed their involvement in blood vessel development
linked to the VEGF signaling pathway, actin-myosin related contractile movements, and
cytoskeleton-related proteins referred to as syndecan interactions and focal adhesion GO
functions (Figure 4A). The interaction map of these 51 proteins pointed out two main nodes
(Figure 4B). The first main node noticed by orange and yellow circles correspond to secreted
extracellular matrix components with collagen fibrils such as collagen alpha-1 (I, III, V)
chains (COL1A1, COL3A1 and COL5A1), alpha-2 (I, V) chains (COL1A2 and COL5A2)
and proteoglycans known to structure or regulate the expression of extracellular matrix
components such as Syndecan-2 (SDC2) [39] and Prolyl-4-hydroxylase subunit alpha-2
(P4HA2). The proteins composing the second main node with blue and light-blue circles
referred to cell adhesion proteins (Testin or TES, Vinculin or VCL), actin cytoskeleton
organizers (TES), actin/myosin components (Tropomyosin alpha1-chain or TPM1) and
regulators (Caldesmon or CALD1, Myosin regulatory light polypeptide 6 and 9 or MYL6
and MYL9). Both nodes were linked to a common regulatory protein, Transgelin-1 or
TAGLN (pink circle in Figure 4B), known to act on the previously cited processes through a
transforming growth factor-β1 (TGFß1)-mediated pathway [40–42]. SWATH quantification
showed an increased expression of TAGLN in hBP-solo by 7.03 ± 0.979 compared to
hBP-coc (Table 1), as well as a TGF-β1-induced protein, transforming growth factor-beta-
induced protein ig-h3 (TGFBI), by 2.13 ± 0.144 (light-pink circle in Figure 4B, Table S3).
These data suggest an improvement in TAGLN/TGF-β-mediated processes in hBP-solo,
particularly extracellular matrix production, cell motility, adhesion, and contractility. All
these functions are in favor of a so-called immature or undifferentiated pericytes.
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3.4. hBP-Coc Enriched Proteins Are Mainly Linked to Cholesterol, Fatty Acid and
Mitochondrial Metabolisms

As for hBP-solo enriched proteins, we explored the main cell functions driven by
the Top 20 proteins quantitatively enriched in the hBP-coc condition (Table 2). No-
tably, GO analysis exhibited a strong metabolic switch of hBP-coc compared to hBP-
solo, particularly lipid metabolism in association with de novo cholesterol biogenesis
(−log(P) > 17.5), fatty acid/steroid, and sterol metabolisms (−log(P) > 10.0 and 5.5, respec-
tively (Figure 5A)). Indeed, 6 enzymes involved in the initial steps of cholesterol synthesis
and in both Bloch and Kandutsch-Russell pathways (detailed in Figure S2) are upregu-
lated in the hBP-coc condition (green and light-green circles in Figure 5B): squalene syn-
thase (FDFT1, 2.25 ± 0.146); methylsterol monooxygenase 1 (MSMO1, 4.01 ± 1.08); Sterol-
4-alpha-carboxylate 3-dehydrogenase, decarboxylating (NSDHL, 2.35 ± 0.245); 3-keto-
steroid reductase/17-beta-hydroxysteroid dehydrogenase 7 (HSD17B7, 2.89 ± 0.771); 3-
beta-hydroxysteroid-Delta(8),Delta(7)-isomerase (EBP, 2.31 ± 0.062); 7-dehydrocholesterol
reductase (DHCR7, 3.15 ± 0.001). According to the interaction map in Figure 5B, these
enzymes are functionally linked to proteins involved in fatty acid biosynthesis and β-
oxidation (in blue and light-blue circles), in mitochondrial activities (yellow and light-
yellow circles), and lipid transporters such as low-density lipoprotein receptor (LDLR,
3.47 ± 0.40) and scavenger receptor class B member 1 or SR-B1 (SCARB1, 3.37 ± 1.632) in
magenta circles.

Thus, these SWATH analysis favor a gain in metabolic functions in hBP-coc com-
pared with hBP-solo mostly related to mitochondrial activities, i.e., cellular respiration,
β-oxidation of fatty acids, and lipid metabolism, for which cholesterol metabolism seems
to be higher in hBP-coc compared to hBP-solo. To validate this hypothesis, we measured
after 6 days of culture the total cell cholesterol content of hBP-solo and hBP-coc, and we
surprisingly did not observe any significant difference between either condition (Figure 6).
However, we showed that the loading of hBP-coc in cholesterol brought by acetylated low
density lipoproteins (ac-LDL) is significantly increased by 45% compared to hBP-solo. This
observation is in favor of a SR-B1 and/or LDLR-mediated cholesterol uptake from ac-LDL
since both proteins are upregulated in hBP-coc (Table 2).
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Figure 5. Improvement of cholesterol, fatty acids and sterols metabolism, and mitochondrial functions
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Table 2. Top 20 of the 90 proteins enriched in cocultured hBP. The complete list is available in Table S4.

Accession Number Gene Name Detailed Protein Name Mean a S.D.

P21980 TGM2 Protein-glutamine gamma-glutamyltransferase 2 7.57 0.21
Q13201 MMRN1 Multimerin-1 7.35 1.30
P05362 ICAM1 Intercellular adhesion molecule 1 6.97 0.84
P08572 COL4A2 Collagen alpha-2(IV) chain 4.34 1.00
P35625 TIMP3 Metalloproteinase inhibitor 3 4.07 0.29
P00750 PLAT Tissue-type plasminogen activator 4.03 0.64
P52566 ARHGDIB Rho GDP-dissociation inhibitor 2 4.03 0.77
Q15800 MSMO1 Methylsterol monooxygenase 1 4.01 1.08
O00622 CYR61 CCN family member 1 3.92 0.11
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Table 2. Cont.

Accession Number Gene Name Detailed Protein Name Mean a S.D.

O94919 ENDOD1 Endonuclease domain-containing 1 protein 3.92 0.94
O00767 SCD Stearoyl-CoA desaturase 3.91 0.57
P01130 LDLR Low-density lipoprotein receptor 3.47 0.40
Q13451 FKBP5 Peptidyl-prolyl cis-trans isomerase FKBP5 3.44 0.22

Q8WTV0 SCARB1 Scavenger receptor class B member 1 3.37 1.632
P36269 GGT5 Glutathione hydrolase 5 proenzyme 3.28 0.739

Q9UBM7 DHCR7 7-dehydrocholesterol reductase 3.15 0.001
O95864 FADS2 Acyl-CoA 6-desaturase 3.13 0.514

O75600 GCAT 2-amino-3-ketobutyrate coenzyme A ligase,
mitochondrial 3.05 0.656

Q01628 IFITM3 Interferon-induced transmembrane protein 3 3.01 0.099
Q709F0 ACAD11 Acyl-CoA dehydrogenase family member 11 2.92 0.093

a Mean from the two independent SWATH analyses.

Cells 2023, XX, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. Cholesterol content in hBP-coc is increased after acetylated LDL (ac-LDL) treatment only. 
After 6 days of culture, hBP-solo and hBP-coc were treated 3h with or without 25 µg/mL of ac-LDL 
and their cholesterol content were measured and normalized by µg of proteins. Each bar represents 
the mean ± SEM (n = 6–9). Statistical analysis: One-way ANOVA with Bonferroni’s multiple com-
parison test, NS: non-significant, ***: p < 0.001. 

4. Discussion 
The main purpose of this proteomics study was to highlight the benefit of cell-cell 

communications between BPs and endothelial cells (ECs) during the time required to 
model in vitro the human BBB by focusing on BPs. In fact, the focus has traditionally been 
on ECs, the cell type that carries the BBB phenotype and whose appearance is largely the 
result of interaction with BPs from the embryonic stages throughout a physiological pro-
cess called barriergenesis [3]. However, it would be logical that BPs also take advantage 
of this bidirectional cell-cell communication and adapt their functions to the state of de-
velopment of the human BBB in vitro and, in a broader point of view, the development of 
the neurovascular unit in vivo. 

4.1. Solocultured Brain Pericytes Present a Protein Pattern of ‘Naïve’ Proliferating Cells Con-
ducted by TAGLN/TGF-ß Pathway 

One of the primary roles of BPs is to promote angiogenesis during the embryonic 
stages of the development of the cerebral microvasculature, but also, like the smooth mus-
cle cells surrounding large vessels, i.e., arterioles, arteries, venules and veins, to regulate 
cerebral blood flow at the level of brain microvessels by contractile mechanisms [43,44]. 
Proliferation of pericytes is a sign of angiogenic or pathological neoangiogenesis events, 
such as in tumor development [45]. Our data show that the hBP-solo proteome is enriched 
in proteins involved in cell motility and contraction such as myosin light chain polypep-
tide 6 and 9 (MYL6, MYL9), tropomyosin alpha-1 chain (TPM1) and proteins regulating 
cell motility. Caldesmon participates with Vinculin (VCL) in the regulation of myosin/tro-
pomyosin contractility by creating a function bridge with cadherins and actin cytoskele-
ton [46–50]. Testin (TES) is a scaffold protein involved in cytoskeleton remodeling during 
cell spreading and proliferation [51,52]. The fact that these proteins are downregulated in 
hBP-coc indicates that proliferation and contractility activities in hBPs are under the con-
trol of ECs. Differentiated BBB ECs restrict BPs proliferation and density [53] in line with 
the end of the angiogenesis process and forthcoming appearance and stabilization of the 
BBB phenotype. The progressive reduction in hBPs contractility argues that the contribu-
tion of these cells in the regulation of cerebral blood flow appears to be minimal, compared 
to smooth muscle cells, upstream of the microvascular and capillary beds [22,23]. In other 
words, hBP contractile activity seems to decrease progressively during BBB maturation. 
However, this point remains to be further investigated to better define the mode and 

Figure 6. Cholesterol content in hBP-coc is increased after acetylated LDL (ac-LDL) treatment only.
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4. Discussion

The main purpose of this proteomics study was to highlight the benefit of cell-cell
communications between BPs and endothelial cells (ECs) during the time required to
model in vitro the human BBB by focusing on BPs. In fact, the focus has traditionally been
on ECs, the cell type that carries the BBB phenotype and whose appearance is largely
the result of interaction with BPs from the embryonic stages throughout a physiological
process called barriergenesis [3]. However, it would be logical that BPs also take advantage
of this bidirectional cell-cell communication and adapt their functions to the state of
development of the human BBB in vitro and, in a broader point of view, the development
of the neurovascular unit in vivo.

4.1. Solocultured Brain Pericytes Present a Protein Pattern of ‘Naïve’ Proliferating Cells
Conducted by TAGLN/TGF-ß Pathway

One of the primary roles of BPs is to promote angiogenesis during the embryonic
stages of the development of the cerebral microvasculature, but also, like the smooth mus-
cle cells surrounding large vessels, i.e., arterioles, arteries, venules and veins, to regulate
cerebral blood flow at the level of brain microvessels by contractile mechanisms [43,44]. Pro-
liferation of pericytes is a sign of angiogenic or pathological neoangiogenesis events, such
as in tumor development [45]. Our data show that the hBP-solo proteome is enriched in
proteins involved in cell motility and contraction such as myosin light chain polypeptide 6
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and 9 (MYL6, MYL9), tropomyosin alpha-1 chain (TPM1) and proteins regulating cell motil-
ity. Caldesmon participates with Vinculin (VCL) in the regulation of myosin/tropomyosin
contractility by creating a function bridge with cadherins and actin cytoskeleton [46–50].
Testin (TES) is a scaffold protein involved in cytoskeleton remodeling during cell spread-
ing and proliferation [51,52]. The fact that these proteins are downregulated in hBP-coc
indicates that proliferation and contractility activities in hBPs are under the control of ECs.
Differentiated BBB ECs restrict BPs proliferation and density [53] in line with the end of
the angiogenesis process and forthcoming appearance and stabilization of the BBB pheno-
type. The progressive reduction in hBPs contractility argues that the contribution of these
cells in the regulation of cerebral blood flow appears to be minimal, compared to smooth
muscle cells, upstream of the microvascular and capillary beds [22,23]. In other words, hBP
contractile activity seems to decrease progressively during BBB maturation. However, this
point remains to be further investigated to better define the mode and mechanisms of this
regulation by ECs, and how cerebral blood flow could also impact hBP physiology.

Our results also suggest that the hBP-solo proteome supports the production of ECM
components such as collagen fibrils and proteoglycans. The production of ECM is essential
for cell stabilization, morphology, proliferation, and motility [54], but also to determine cell
fate and cellular functions [55]. ECM is also a structural basis for the formation and function
of multicellular complexes in physiological and pathological conditions such as the NVU
with the common basal membrane shared by BPs and ECs [56–58]. This common ECM is
crucial to control cell motility and proliferation of the cells composing the complexes [59].
We observed an enrichment in collagen type I, III and V proteins (COL1A1-2, COL3A1;
COL5A1-2) in hBP-solo compared with hBP-coc, collagens fibrils, which are linked to the
plasma membrane and stabilized by proteoglycans such as Syndecan-2. Overexpression of
Syndecan-2, which is also associated with the increased expression of collagens through
integrin pathways [39] and improves cell migration as described in melanoma cells [60].
Prolyl-4-hydroxylase subunit alpha-2 (P4HA2) protein expression is also increased in
hBP-solo, an ECM enzyme known to generate and stabilize collagen fibers through the
generation of 4-hydroxyproline [61]. Its expression is also increased in cells presenting
migrating and proliferating behaviors as observed for cancer cells [62]. hBP-coc also
exhibited an enrichment in collagen type IV fibers (COL4A2) linked to the function of a
mature basement membrane at the BBB level [57,58,63]. In a previous study conducted on
a “contact” human in vitro BBB model, whole cell pericyte transcriptomics and proteomics
of secreted proteins, Kurmann and et al. [64] previously observed an opposite trend with
an improved expression of ECM components in cocultured BPs. This contact in vitro BBB
model is based on the coculture of commercially available Human Brain Vascular Pericytes
(HBVP, ScienceCell) and human Cerebral Microvascular Endothelial Cell line (hCMEC/D3
cells [65]) on the two sides of a microporous membrane. These differences observed could
be explained by (i) the nature of the cell lines and (ii) mode of coculture used. This contact
between BPs and ECs is also in favor of the regulation of ECM production by integrin
pathways in both cell types [66]. In our conditions, we explored the non-contact role of
ECs on BPs whole-cell proteome and observed the enhanced expression of type IV collagen
proteins in hBP-coc, which is in line with an induced production by ECs of so-called mature
ECM components by BPs. As also suggested by previous studies [5,7], the promotion of
ECM components is linked to a TGF-β pathway when BPs are in contact with ECs, and
this process is known to be active during the embryonic period [53] which can be referred
to as mid-stages of barriergenesis. In our study, we highlighted that TGF-β-mediated
cell proliferation, migration, and the production of major ECM components are promoted
in hBP-solo and tend to decrease in hBP-coc. Moreover, we showed that Transgelin-1
(TAGLN), protein relying on the production of ECM components and cell motility and
proliferation and known to act as a regulator of the TGF-β pathway [40–42], is increased
in hBP-solo compared with hBP-coc. Altogether, our data suggest that BP-solo show a
behavior equivalent to that observed during the early stages of barriergenesis, leading us
to qualify them as ‘naïve’ or ‘immature’ brain pericytes with respect to this BBB regulation



Cells 2023, 12, 1010 13 of 19

context. We can also hypothesize that the observed activation of the TGF-β pathway is
related to the early stages of BBB development, and that its progressive extinction is a sign
of the acquisition of ‘cellular maturity’ related to the maturation of the BBB phenotype,
facts observed for the late and terminal stages of the barriergenesis. These data suggest
that there is a need to better understand this pathway and, more specifically, its regulation
by TAGLN during embryonic development at the level of brain microvessels.

4.2. Non-Contact Cocultured Brain Pericytes Present a Metabolic Switch Linked to a ‘Specific Cell
Maturation’ Induced by ECs

According to our DDA-SWATH data, hBP-coc present a proteomic profile related
to a decrease in their contractile and/or proliferative activity compared to hBP-solo, but
especially with a notable gain in mitochondrial activities and sterol metabolism. In fact,
six of the main enzymes involved in the two main cholesterol synthesis pathways, i.e.,
Bloch and Kandutsch-Russell pathways [67–70], are upregulated in hBP-coc compared
to hBP-solo. As illustrated in Figure S2 [71–74], Squalene synthase (FDFT1) is involved
in early steps of cholesterol synthesis mediating the formation of squalene from farnesyl
pyrophosphate. MSMO1, NSDHL and HSD17B7 work in concert to form zymosterol and
∆8-cholestenol in Bloch and Kandutsch-Russell pathways, respectively. EBP mediates the
production of ∆7,24-cholestadienol from zymosterol in the Bloch pathway, and lathosterol
from ∆8-cholestenol in Kandutsch-Russell pathway. DHCR7 produces desmosterol in Bloch
pathway, and is the last enzyme of the Kandutsch-Russell pathway leading to the formation
of cholesterol. Surprisingly, we did not measure any variation in the amounts of free choles-
terol and cholesteryl in hBP-coc compared with hBP-solo (Figure 6). This observation can
be explained by (i) a possible high turnover of cholesterol or a regulation of its synthesis by
the sterol responsive element binding protein (SREBP) [75–77] as suggested by a GO study
and an improvement of this pathway in hBP-coc (Figure 5A), or (ii) its release from BPs.
Related to this last point and as we previously described [78], BPs can release free choles-
terol to apolipoproteins A–I or E by reverse cholesterol transfer through the transporter
ATP-binding cassette family A member 1 (ABCA1, [79]). However, the protein expression
of ABCA1 does not seem to vary between hBP-solo and hBP-coc conditions by Western
blot (data not shown), and the lysis conditions of the samples used unfortunately do not
allow access to data from such transporters with several transmembrane domains—12 for
ABCA1 [80]. Scavenger Receptor Class B member 1 or SR-B1 (SCARB1) is a multifunctional
receptor capable of importing cholesterol from apolipoproteins or LDL, but also to efflux
free cholesterol and cholesteryl esters to HDL or HDL-like lipoparticles [81–83]. Since we
confirmed that SR-B1 protein expression is increased in hBP-coc and that this receptor is
functional according to the improved uptake of free cholesterol from ac-LDL (Figure 6),
we suggest that its capacity to release free cholesterol to lipoparticles present in culture
media could also be functional. It is also noteworthy that the protein expression of LDLR
is increased in hBP-coc compared to hBP-solo. This highlights that hBP are also able to
take up free cholesterol through this receptor. Its role in the uptake of ac-LDL remains
minimal; however, the fact that these lipoparticles are negatively charged prevents them
from interacting with LDLR [84]. In addition, we also pointed-out an enrichment of TIMP3
in hBP-coc condition, which is secreted by BPs to inhibit MMP2/MMP9 and is linked to a
maintenance of BBB integrity [85,86]

Altogether, these results suggest that once ECs carry the BBB phenotype, hBPs ‘mature’
or adapt their metabolism to support ECs in maintaining the BBB phenotype by (i) enhanc-
ing their energy metabolism and/or (ii) synthesizing cholesterols and sterols for direct
use or release. This metabolic gain in hBPs would be of importance to support the NVU
cells defects in pathological disorders, such as in Alzheimer’s disease where cholesterol
metabolism within the NVU is highly disturbed [87]. However, the fate of thereleased
sterols and their mode of delivery to ECs remains unknown but could be helpful to regulate
or maintain EC homeostasis and the BBB main features. Moreover, the fact that certain
proteins such as Syntenin-1 (SDCBP) and CD63—known to take part in the biogenesis of
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small extracellular vesicles (EVs) referred to as ‘exosomes’ [88–92]—are overexpressed by
hBP-coc is in agreement with a potential cell-cell communication by EVs able to bring pro-
tein and lipid regulators to ECs as described between pericytes and ECs at the blood-spinal
cord barrier level [93]. We also noticed that short-circuiting the exosome release machinery
in BPs endangered the BBB main features at the EC level in vitro (unpublished data). Al-
though these points need to be explored further, this EV-mediated communication could
also partly explain (i) the cholesterol requirement of BPs since the biogenesis mechanisms
of EVs are intimately linked with the dynamics of membrane lipids and phospholipids [94],
and (ii) why the cholesterol level of cocultured BPs does not vary despite the significant
increase in protein expression of key enzymes of its de novo synthesis.

5. Conclusions

In conclusion, our work in a non-contact human BBB model highlighted in vitro
the change in the proteomic profile of hBPs induced by ECs when they acquire the BBB
phenotype, shifting from a ‘naïve’ or ‘immature’ state related to cell proliferation and
contractility, to a ‘mature’ or ‘differentiated’ state with a deep metabolic switch in favor
of energy and lipid metabolism (Figure 7). Thus, just as ECs benefit from BPs for their
differentiation into BBB ECs, hBPs also benefit from ECs for their own cell differentiation
into what we can refer to as ‘BBB BPs’. As potential outcomes of this study, it would be
interesting to compare these data with a contact human BBB model to consider all the
aspects of BPs-BBB ECs interactions. These bidirectional exchanges and this bidirectional
maturation are essential to ensure the maintenance and homeostasis of the BBB in an
in vitro coculture model and, from a more global point of view, of the NVU in vivo.
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