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ABSTRACT 19 

Deep oceans receive mercury (Hg) from upper oceans, sediment diagenesis, and submarine volcanism; 20 

meanwhile, sinking particles shuttle Hg to marine sediments. Recent studies showed that Hg in the trench 21 

fauna mostly originated from monomethylmercury (MMHg) of the upper marine photosynthetic food webs. 22 

Yet, Hg sources in the deep-sea chemosynthetic food webs are still uncertain. Here, we report Hg 23 

concentrations and stable isotopic compositions of indigenous biota living at hydrothermal fields of the 24 

Indian Ocean Ridge and a cold seep of the South China Sea along with hydrothermal sulfide deposits. We 25 

find that Hg is highly enriched in hydrothermal sulfides, which correlated with varying Hg concentrations in 26 

inhabited biota. Both the hydrothermal and cold seep biota have small fractions (<10%) of Hg as MMHg 27 

and slightly positive Δ
199

Hg values. These Δ
199

Hg values are slightly higher than those in near-field sulfides 28 

but are 1 order of magnitude lower than the trench counterparts. We suggest that deep-sea chemosynthetic 29 

food webs mainly assimilate Hg from ambient seawater/sediments and hydrothermal fluids formed by 30 

percolated seawater through magmatic/mantle rocks. The MMHg transfer from photosynthetic to 31 

chemosynthetic food webs is likely limited. The contrasting Hg sources between chemosynthetic and trench 32 

food webs highlight Hg isotopes as promising tools to trace the deep-sea Hg biogeochemical cycle. 33 

KEYWORDS 34 

marine mercury cycling, oceans, hydrothermal fluids, cold seeps, biota, mercury isotopes 35 

SYNOPSIS 36 

Mercury isotope measurement is a promising tool to track the food sources and Hg biogeochemical cycle in 37 

deep-sea chemosynthetic ecosystems. 38 

  39 



 3 / 29 

 

Table of Content (TOC)/Abstract Art 40 

 41 

  42 



 4 / 29 

 

1. Introduction 43 

Mercury (Hg) is released into Earth’s surface environment from natural and anthropogenic sources 
1
. 44 

One of the most toxic forms of Hg is monomethylmercury (MMHg), which bioaccumulates and 45 

biomagnifies in marine food webs. In the open oceans, MMHg is thought to be mostly derived from in situ 46 

production within the upper marine (<1000 m) waters 
2, 3

. However, it is still uncertain if MMHg could be in 47 

situ produced in deep marine (>1000 m) waters and sediments. Deep oceans receive Hg from upper oceans 48 

via particle settling 
4, 5

, deep water formation 
6
 and occasionally carrion (e.g., whalefall) 

7
. Thus, 49 

anthropogenic Hg can be brought into deep oceans and finally buried into sediments. Meanwhile, the 50 

sinking particles and seafloor sediments could also release Hg during remineralization and diagenesis 51 

processes 
4, 5, 8, 9

. In addition, geogenic Hg could be discharged into the deep oceans via submarine 52 

hydrothermal vents mostly surrounding mid-ocean ridges, back-arc basins, and submarine volcanic arcs, and 53 

possibly cold seeps located at continental slopes near the tectonic plate boundaries 
10-15

. 54 

To date, the submarine geogenic Hg is poorly constrained but is potentially important at volcanic- and 55 

hydrothermal-active areas. An upper range value of 600 Mg yr
-1

 for the submarine hydrothermal Hg flux has 56 

been estimated in the UNEP report 
1, 16, 17

, although it may vary orders of magnitude (20-2000 Mg yr
-1

) 57 

based on several field measurements of hydrothermal fluids 
10

. For example, Lamborg, et al. (2006) 
12

 found 58 

slightly enhanced levels of total Hg (THg) nearly all present as MMHg in fluids (~10 pM) compared to 59 

seawater (~1-2 pM) from the Sea Cliff submarine hydrothermal field, Gorda Ridge. Assuming the 60 

hydrothermal Hg flux from this site was representative of global submarine hydrothermal systems, they 61 

estimated a global hydrothermal Hg flux of 20 to 80 Mg yr
-1

. In contrast, Crepo-Medina, et al. 
18

 showed 62 

that the fluid MMHg in East Pacific Rise deep-sea vents was a minor species (<12.5%) with concentrations 63 

mostly below the detection limits of <1.5 pM, but THg concentrations were extremely high in both diffuse 64 

(12 to 450 pM) and focused flow vents (3500 to 11000 pM). The authors suggested that hydrothermal fluids 65 
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may contribute ~2000 Mg yr
-1

 of Hg to the ocean. Besides, one hydrothermal fluid sample in the Guaymas 66 

Basin, Gulf of California was reported to have as high as 11000 pM of THg 
19

, and two hydrothermal fluid 67 

samples at Tonga back-arc had low THg concentrations of 5 and 10 pM 
11

. As for cold seeps, there is no 68 

estimation of the Hg flux. Therefore, we currently could not thoroughly evaluate hydrothermal and cold seep 69 

Hg inputs to the ocean, and integrate them into marine Hg models. In addition, it is still largely unknown 70 

how submarine geogenic Hg affects deep marine Hg biogeochemical cycling. 71 

Mercury has seven stable isotopes, and the ratios of these isotopes have been developed as diagnostic 72 

tracers to understand biogeochemical cycles of Hg in Earth’s ecosystems 
20, 21

. Hg isotopes exhibit 73 

significant mass-dependent fractionation (MDF, represented by δ
202

Hg) in nearly all biogeochemical Hg 74 

transformations, and large mass-independent fractionation of odd-mass number isotopes (odd-MIF, 75 

represented by Δ
199

Hg and Δ
201

Hg) mainly in photochemical Hg transformations, notably photoreduction of 76 

inorganic Hg(II) and photodegradation of MMHg 
22-25

. Much smaller magnitude but significant even-mass 77 

number MIF (even-MIF, represented by Δ
200

Hg and Δ
204

Hg) has also been observed primarily in 78 

atmospheric precipitation, which is hypothesized to be linked to photochemistry of gaseous Hg in the upper 79 

atmosphere 
26-29

. Numerous studies have used Hg isotopic signatures, especially MIF, in aquatic food webs 80 

to trace in vitro Hg sources and transformation in aqueous systems, because in vivo metabolic processes and 81 

the accumulation and trophic transfer of Hg within food webs cause insignificant MIF 
30-33

. As proxied by 82 

marine pelagic fishes, Δ
199

Hg values of MMHg in upper oceans decrease systematically with depth, which is 83 

primarily caused by great photo-degradation of bioavailable MMHg in the surface ocean followed by the 84 

transport of surface MMHg via sinking particles and mixing with subsurface MMHg 
34-37

. 85 

There is still relatively little Hg isotope research in the deep ocean, even though it accounts for over 70% 86 

of the whole ocean’s volume. Recent studies on Hg isotopic compositions in hadal fauna and sediments from 87 

the deepest ocean (i.e., trenches, >6000 m) indicated that the biotic Hg was mostly derived of MMHg from 88 
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the upper oceans, including Hg from anthropogenic sources 
38-40

. In addition to trenches, hydrothermal vents 89 

and cold seeps also host high densities of endemic fauna, yet their Hg sources remain to be controversial 
12, 

90 

14
. The food and energy sources of hydrothermal and cold seep ecosystems rely mainly on chemosynthetic 91 

bacteria and archaea at the bottom of food webs 
41, 42

. They are quite different from trench ecosystems that 92 

mainly rely on sinking organic matter photosynthesized at the upper oceans 
43-45

. Moreover, hydrothermal 93 

vents and cold seeps could potentially release large amounts of geogenic Hg which might disperse into the 94 

deep oceans and then is accumulated in the surrounding ecosystems 
11, 46

. 95 

In this study, we report Hg isotopic compositions of submarine hydrothermal sulfides and indigenous 96 

epibenthic biota living at several different hydrothermal vent fields from the Indian Ocean Ridge and a cold 97 

seep from the South China Sea. Combining THg/MMHg concentrations, bulk carbon/nitrogen stable 98 

isotopes of biota, we aim to trace the sources of Hg of chemosynthetic food webs and to understand how 99 

submarine geogenic Hg affects the Hg biogeochemical cycling in deep-sea extreme ecosystems. 100 

2. Materials and Methods 101 

2.1. Sample Collection and Pretreatment 102 

During the Chinese cruise TS10 from November 10
th

, 2018 to March 10
th

, 2019, video survey and 103 

sampling were undertaken using the submersible “Shenhai Yongshi” (Deep-Sea Warrior) that was equipped 104 

with a seven-function manipulator at the Indian Ocean Ridge. We selected 14 surface layer bulk sulfides 105 

(Table S1) and ~30 biota samples (Table S2; all invertebrates, e.g., Bathymodiolus mussels, Alviniconcha 106 

snails, Peltospiridae gastropods, Galatheidae crabs and Rimicaris shrimps) from four deep hydrothermal 107 

fields (HFs), with two (Longqi HF and Duanqiao HF) from the Southwest Indian Ridge (SWIR) of 108 

ultra-slow spreading rates (7 to 16 mm yr
-1

) and two (Edmond HF and Kairei HF) from the Central Indian 109 

Ridge (CIR) of intermediate spreading rates (50 to 60 mm yr
-1

) (Figure 1 and Supporting Information). The 110 
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spreading rate is defined as the relative separation rate of the plates on either side of the mid-ocean ridge
47

. 111 

In addition, the ROV (Remotely Operated Vehicle) of ROPOS (Remotely Operated Platform for Ocean 112 

Science) onboard R/V Tan Kah Kee was used during Dive 2046 to sample epifauna at the Site F cold seep of 113 

the South China Sea in April 2018, from which Gigantidas platifrons and Bathymodiolus aduloides muscles 114 

were selected in our study 
48, 49

. 115 

 116 

Figure 1. Geological map of Indian Ocean Ridge. The studied Longqi and Duanqiao hydrothermal fields in 117 

SWIR and Edmond and Kairei hydrothermal fields in CIR are shown in red boxes. Note: SWIR, Southwest 118 

Indian Ridge; CIR, Central Indian Ridge; SEIR, Southeast Indian Ridge. 119 

The captured biota samples were immediately frozen at -80 °C upon loading on deck. After returning to 120 

the laboratory, they were carefully washed with 18.2 MΩ cm Milli-Q water, and then their muscle and gill 121 

were separated using pre-cleaned surgical scissors and tweezers. For nearly all the biota samples, 122 

measurements were performed only on their muscle tissues due to the limited mass of gill. Only one 123 

hydrothermal biota sample (SY138-mussel) was measured on gill rather than muscle. Two cold seep mussels 124 

were measured on both gill and muscle. Individuals of similar size and from the same location were 125 

typically combined to one sample to increase the sampling representativeness and Hg mass required for 126 
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isotope analysis. Before measurement of Hg concentrations and isotopic compositions, all the samples were 127 

freeze-dried and homogenized. 128 

2.2. THg, MMHg Concentrations and Hg Isotope Measurement 129 

THg concentrations of all sulfide and biota samples (Tables S1, S2) were quantified by cold vapor 130 

atomic absorption spectrometry (CV-AAS, DMA-80 evo Direct Mercury Analyzer) following the US-EPA 131 

method 7473 
50

. Detectable MMHg concentrations in the biota samples (Table S2) were determined by cold 132 

vapor gas chromatography atomic fluorescence spectrometry (CV-GC-AFS, Tekran 2700) following the 133 

US-EPA method 1630 
51

 after solvent extraction using KOH/CH3OH solution, and ethylation by NaBEt4 in 134 

closed purge vessels 
52

. Before Hg isotope measurement, the sulfides and biota were digested separately by 135 

HNO3, HCl and BrCl, and HNO3, H2O2 and BrCl at ~100°C for 48 h 
53

, followed by Hg purification using 136 

the anion-exchange chromatographic method 
53, 54

. Procedural blanks and certified reference materials 137 

(CRMs, DORM-4 and TORT-3 for biota; MESS-4, NIST SRM-2702, and NIST SRM-1944 for sulfides) 138 

were processed with the samples in the same manner. THg concentrations in all purified solutions were 139 

determined by the cold vapor atomic fluorescence spectrometry (CV-AFS, Tekran 2600) according to 140 

US-EPA method 1631E 
55

. The procedural blanks accounted for <1% of Hg mass in the samples, and the Hg 141 

recoveries were in the range of 93-103% for procedural CRMs and 84-108% for samples. All the purified 142 

sample and CRM solutions were diluted with ultrapure water to Hg concentrations of 0.5-1 ng g
−1

 and were 143 

measured for Hg isotope ratios by coupling a customized cold vapor generation system to multi-collector 144 

inductively coupled plasma mass spectrometry (MC-ICPMS, Nu Plasma 3D at Tianjin University, China). 145 

Mass bias of MC-ICP-MS was corrected by an internal NIST SRM-997 Tl standard using the exponential 146 

law and by the primary NIST SRM-3133 Hg standard using the standard sample bracketing method. Details 147 

on the analytical procedures for concentrations of THg and MMHg, and Hg isotope ratios are provided in 148 

the Supporting Information.  149 
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The Hg isotope ratio is expressed as δ
xxx

Hg (‰, xxx = 199, 200, 201, 202, 204) by normalizing to the 150 

primary NIST SRM-3133 Hg standard: 151 

               
      

               
      

                                      (1) 152 

MIF value is denoted as Δ
xxx

Hg (‰, xxx = 199, 200, 201, 204), representing the difference between the 153 

measured δ
xxx

Hg value and that predicted from δ
202

Hg using a kinetic MDF law 
56

: 154 

                   
                                                       (2) 155 

The mass-dependent scaling factor 
xxx

β is 0.2520 for 
199

Hg, 0.5024 for 
200

Hg, 0.7520 for 
201

Hg, and 156 

1.4930 for 
204

Hg. 157 

The Hg isotope ratios of the secondary standard NIST SRM-8610 and procedural CRMs analyzed 158 

during different analytic sessions agreed with those reported in previous studies (Table S3) 
52, 56-59

. The 159 

typical 2σ analytic uncertainties of samples were estimated as the larger 2SD uncertainties of Hg isotope 160 

ratios between NIST SRM-8610 and procedural CRMs (DORM-4 and TORT-3 for biota; MESS-4, NIST 161 

SRM-2702 and NIST SRM-1944 for sulfides). The 2SE uncertainties of Hg isotope ratios in samples with 162 

replicate analyses were applied as the analytic uncertainties only when they were larger than the typical 2σ 163 

analytic uncertainties 
56

. 164 

2.3. Stable Carbon and Nitrogen Isotope Analysis 165 

Carbon and nitrogen isotope ratios were determined by gas stable isotope ratio mass spectrometer (253 166 

Plus, Thermo Fisher Scientific) equipped with a Flash 2000 HT elemental analyzer. The carbon and nitrogen 167 

isotope ratios are expressed as δ (‰) notations by referring to their respective standards (Vienna Pee Dee 168 

Belemnite, V-PDB and atmospheric N2): 169 

            
    

             
    

                                             (3) 170 

            
    

             
    

      
                                      (4) 171 
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The typical analytic uncertainty assessed by the internal standards (IAEA-600, USGS-40 and USGS-41) 172 

were within 0.2‰ for δ
13

C and within 0.3‰ for δ
15

N.  173 

2.4. Data Analysis 174 

The correlations between studied variables were calculated using the linear regression correlation 175 

analysis of the software OriginPro 2021. The fitting curves are bounded by 95% confidence bands, with 176 

Pearson’s R-Square and P-values calculated by algorithms of the software. Two-side analysis of variance 177 

(ANOVA) was used to asses if the regression slope is significantly different from zero at α = 0.05. The 178 

isotope mixing model was run using a Monte Carlo simulation approach (n = 10,000 times) through the 179 

pseudorandom number generation function of the MatLab software (R2016b, MathWorks) 
38

.Data were 180 

checked for normality (Shapiro-Wilks tests) and variance homogeneity (Bartlett's tests). Parametric and 181 

non-Parametric statistic methods of the software SPSS 19.0 is used compare the same variable (e.g., THg 182 

and MMHg concentrations and isotope data) between two different groups. 183 

3. Results and Discussion 184 

3.1. Hydrothermal Sulfides as Important Hg Sinks 185 

THg concentrations in studied massive sulfides range over three orders of magnitude from 7 to 1.8 × 186 

10
4
 ng g

-1
 (dry weight), with an average of 2690 ± 4689 ng g

-1
 (mean ± 1SD, n = 14) (Table S1, Figure 2). 187 

These high and large scatter of Hg concentrations are consistent with the previously reported values in 188 

massive and chimney sulfides and sulfide minerals of Duanqiao and Yuhuang HFs from SWIR (350 to 4.4 × 189 

10
4
 ng g

-1
) and hydrothermally-altered sediments in CIR (17 to 1.3 × 10

4
 ng g

-1
) 

15, 60
, corroborating the 190 

viewpoint that Hg discharged from hydrothermal vent fluids is preferably removed by co-precipitated 191 

sulfides 
60, 61

. The Hg MDF and odd-MIF values (δ
202

Hg: -1.17 to -0.34‰, -0.77 ± 0.25‰; ∆
199

Hg: -0.06 to 192 

0.16‰, 0.05 ± 0.06‰; n = 14) (Table S1, Figure 3) of our massive sulfides are also comparable (P >0.05) to 193 
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those of previously reported SWIR sulfides (δ
202

Hg: -1.23 to -0.05‰, -0.59 ± 0.30‰; ∆
199

Hg: -0.10 to 194 

0.20‰, 0.05 ± 0.06‰; n = 42) 
15

. The even-MIF values (∆
200

Hg = 0.01 ± 0.01‰, -0.01 to 0.03‰; ∆
204

Hg = 195 

0.00 ± 0.03‰, -0.07 to 0.08‰) of our massive sulfides are mostly within their analytic uncertainty (Figure 196 

S1). In Table 1, we summarize the statistic values on Hg isotope compositions of sulfides in different 197 

hydrothermal fields from Indian Ocean Ridge: Longqi (δ
202

Hg = -0.77 ± 0.22‰; ∆
199

Hg = 0.06 ± 0.06‰; n 198 

= 7), Duanqiao (δ
202

Hg = -0.35 ± 0.18‰; ∆
199

Hg = 0.05 ± 0.03‰; n = 11) and Yuhuang (δ
202

Hg = -0.68 ± 199 

0.29‰; ∆
199

Hg = 0.05 ± 0.07‰; n = 32) from SWIR and Edmond and Kairei (δ
202

Hg = -0.78 ± 0.33‰; 200 

∆
199

Hg = 0.03 ± 0.07‰; n = 6) from CIR. In comparison, they are quite similar to Hg isotopic compositions 201 

of Earth’s silicate crust (δ
202

Hg = -0.78 ± 0.51‰; Δ
199

Hg = 0.00 ± 0.08‰) summarized in Sun, et al. 
62

, bulk 202 

Hg emissions from passively degassing volcanoes (δ
202

Hg = -0.76 ± 0.11‰; Δ
199

Hg = 0.05 ± 0.03‰; n = 9) 203 

62, 63
, and chimney pieces and fluid precipitate from the Guaymas Basin sea-floor rift (δ

202
Hg = -0.23 ± 204 

0.19‰; Δ
199

Hg = 0.02 ± 0.02‰; n = 3) 
19

. However, based on 
3
He-rich lavas from Samoa and Iceland, 205 

primordial mantle (δ
202

Hg = -1.72 ± 1.15‰; Δ
199

Hg = 0.00 ± 0.10‰; n = 11) appears to have significantly 206 

lower δ
202

Hg values 
64

. 207 

 208 

Figure 2. Plots showing THg (a), and MMHg concentrations and MMHg fractions (b). THg concentrations 209 

(logarithmic scale; DW: dry weight) in sulfides and biota from different hydrothermal fields at the Indian 210 

Ocean Ridge and mussels from the Site F cold seep (SFCS) at the South China Sea (a); Detectable MMHg 211 

concentrations and site-specific means of MMHg fractions in biota (b). Note: LHF: Lonqi HF; DHF: 212 
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Duanqiao HF; KHF: Kairei HF; EHF: Edmond HF; SFCS-Center mussel: mussel near the center of the Site 213 

F cold seep; SFCS-Edge mussel: mussel at the edge of the Site F cold seep. 214 

 215 

 216 

  217 

Figure 3. ∆
199

Hg versus δ
202

Hg in hydrothermal sulfides and biota from the Indian Ocean Ridge (a) and 218 

individual hydrothermal fields including Longqi HF (LHF) (b) and Duanqiao HF (DHF) (c) at the Southwest 219 

Indian Ridge (SWIR), and Kairei HF (KHF) and Edmond HF (EHF) (d) at the Central Indian Ridge (CIR). 220 

The ellipses and rectangle in subplot (a) are used to outline the variation ranges of Hg isotopic compositions 221 

of individual hydrothermal fields. The error bars in subplots b-d denote mean ± 1SD  222 

 223 
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Table 1. Summary of THg Concentrations and Isotopic Compositions of Sulfides, Biota, and Vent-Proximal Sediments from Different Hydrothermal Fields in 224 

the Indian Ocean Ridge. 225 

Hydrothermal 

fields 

type n 

Hg concentration (ng g
-1

) δ
202

Hg (‰) Δ
199

Hg (‰) Δ
201

Hg (‰) 

mean 1SD min median max mean 1SD min median max mean 1SD min median max mean 1SD min median max 

Longqi HF, 

SWIR 

sulfide 7 3702 6542 7.2 1510 18217 -0.77 0.22 -1.09 -0.69 -0.51 0.06 0.06 -0.01 0.05 0.16 0.04 0.04 -0.01 0.03 0.11 

biota 7 261 311 6.0 114 882 -0.58 0.36 -0.87 -0.76 0.02 0.20 0.16 0.07 0.14 0.48 0.15 0.11 0.07 0.11 0.33 

Duanqiao HF, 

SWIR 

sulfide* 11 3937 2590 147 4248 8121 -0.35 0.18 -0.68 -0.28 -0.12 0.05 0.03 0.02 0.05 0.10 0.04 0.02 0.01 0.03 0.07 

biota 5 2488 2950 164 728 7045 -0.12 0.59 -0.91 0.03 0.52 0.11 0.11 0.04 0.06 0.30 0.07 0.10 -0.01 0.04 0.24 

Yuhuang HF, 

SWIR 

sulfide* 32 5306 7722 435 2686 44035 -0.68 0.29 -1.23 -0.73 -0.05 0.05 0.07 -0.10 0.06 0.20 0.03 0.06 -0.10 0.03 0.19 

Edmond & 

Kairei HFs, 

CIR 

sulfide 6 1932 1548 203 1709 4574 -0.78 0.33 -1.17 -0.73 -0.34 0.03 0.07 -0.06 0.03 0.15 0.01 0.03 -0.03 0.01 0.06 

Kairei HF, 

CIR 

biota 4 142 156 9 127 307 -0.27 0.42 -0.55 -0.48 0.21 0.07 0.03 0.04 0.07 0.10 0.05 0.01 0.04 0.05 0.06 

CIR 

vent-proximal 

sediment** 

5 6857 4811 1042 5329 12944 0.16 0.23 -0.20 0.26 0.39 -0.11 0.04 -0.14 -0.12 -0.06 -0.08 0.01 -0.10 -0.08 -0.06 

*Most of sulfides from Duanqiao HF (n = 10) and all sulfides from Yuhuang HF are from Zhu, et al. (2020)
15

; **hydrothermal-altered sediments are cited from 226 

Kim, et al. (2022) 
60

; n: number of the combined samples. 227 

  228 
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During the formation of submarine hydrothermal fluids, the conductively heated seawater leaches, 229 

concentrates and transports Hg from magmatic/mantle rocks. Previous studies showed that these 230 

hydrothermal processes including boiling of hydrothermal fluids, aqueous Hg0 separation, and redox 231 

reactions could cause significant MDF. 
19, 65, 66

. Similarly, the deposition of the sulfides from hydrothermal 232 

fluids was also suggested to induce significant MDF, enriching sulfides with light Hg isotopes. 
15, 65-67

. 233 

However, significant MIF unlikely occurs in these processes. In general, the ranges of δ
202

Hg in sulfides 234 

from Indian Ocean Ridge (-1.23 to -0.05‰ for SWIR and -1.17 to -0.34‰ for CIR, Table 1) are >5 times 235 

smaller than those documented for subaerial hydrothermal systems (-3.69 to 2.10‰). This suggests that 236 

some hydrothermal processes, such as phase separation and Hg redox reactions, cause less MDF in 237 

submarine hydrothermal systems than in subaerial hydrothermal systems. 
19, 65, 66

. 238 

The Hg isotopic compositions in submarine hydrothermal sulfides have been interpreted to reflect a 239 

mixture of primordial (magmatic/mantle) Hg and seawater Hg under a regime of hydrothermal leaching 
15, 60

. 240 

The magmatic/mantle Hg is characterized by zero MIF 
64, 68

, and the seawater Hg typically by small and 241 

positive MIF 
33, 69

. Using a binary mixing model which assumes magmatic/mantle and open seawater have 242 

mean ∆
199

Hg values of 0.00 ± 0.05‰ 
64

 and 0.11 ± 0.09‰ (1SD, represented by Atlantic open seawater) 
33

, 243 

respectively, we estimate that on average ~50% of Hg in CIR sulfides (Edmond and Kairei: 46%, 34-73%) 244 

and SWIR sulfides (Duanqiao: 46%, 40-59%; Longqi: 51%, 37-75%; Yuhuang: 49%, 33-82%; respectively) 245 

sourced from seawater. We acknowledge that the calculated seawater Hg contributions to the sulfides are 246 

biased by the representativeness of magmatic/mantle and open seawater end-members, and potentially small 247 

MIF during the abiotic, hydrothermal processes 
70

.Even though, seafloor sulfide deposits could be an 248 

important sink of seawater Hg as well as hydrothermal Hg in deep oceans. In addition, the regression slope 249 

of Δ
199

Hg and Δ
201

Hg line (1.04 ± 0.08; 1SE) for all Indian Ocean Ridge sulfide samples (Figure S2) 250 

suggests that odd-MIF in the hydrothermal sulfides was imparted by seawater that transported to depth 251 

following Hg(II) photo-reduction at the ocean surface 
22

.  252 
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The total accumulation of seafloor sulfide deposits in global submarine neovolcanic zones is estimated 253 

as ~6 × 10
8
 Mg, and sulfides on slow- and ultra-slow spreading centers (spreading rate <40 mm yr

-1
) 254 

including Indian Ocean Ridge account for ~86% of the total mass of sulfide deposits at ridges 
71, 72

. Based 255 

on the mean Hg concentration (4475 ± 6400 ng g
-1

, n = 56) of massive sulfides in four HFs (Table 1) we 256 

calculated that the seafloor hydrothermal sulfides deposited 2685 ± 3840 Mg of Hg, in which ~1300 Mg 257 

from seawater according to our binary mixing model. A recent study estimated that the total Hg budget in 258 

global mid-ocean ridge regions could reach ~320 Mg yr
−1

 
60

, implying that seawater and magmatic/mantle 259 

Hg, each of ~160 Mg yr
−1

, are immobilized in seafloor sulfide deposits. The seawater Hg sink fluxes via 260 

seafloor hydrothermal sulfides are thus equally important as those via trench sediments, also estimated as 261 

~160 Mg yr
−1

 
73

. It is interesting to note that trench sediments mainly remove anthropogenic Hg sinking 262 

from surface to trench waters 
73

, while hydrothermal sulfides appear to mainly remove natural Hg of deep 263 

oceans 
12

. Taken together, the seawater Hg removal via seafloor hydrothermal sulfides and trench sediments 264 

could reach 320 Mg yr
-1

. These fluxes are not explicitly included in the most recent Global Mercury 265 

Assessment report by UNEP 
16

, which estimated ~600 Mg yr
-1

 Hg removal via deep-sea sediments and ~200 266 

Mg yr
-1

 Hg removal via coastal sediments.  267 

3.2. Limited MIF Values in Chemosynthetic Food Webs 268 

Relative to most of the deep-sea environments, hydrothermal fields and cold seeps often host large 269 

biomass and productivity. The biota (mostly macroinvertebrates including crabs, snails, shrimps, mussels) 270 

surrounding hydrothermal fields are adapted to wide temperature range, and typically possess symbiotic 271 

relationships with chemoautotrophs that convert the dissolved chemicals from the vent fluids into organic 272 

matter
74

. The stable isotopic compositions of carbon and nitrogen (δ
13

C and δ
15

N) are generally used to 273 

determine the origin of food sources (organic matter) and biosynthetic pathways. The δ
13

C and δ
15

N values 274 

in our hydrothermal biota were quite variable, ranging from -36.28 to -13.63‰ and -12.04 to 8.69‰, 275 
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respectively. These values are within the ranges (δ
13

C: -36.91 to -8.29‰; δ
15

N: -15.8 to 11.78‰) of 276 

counterparts collected around Mid-Atlantic Ridge hydrothermal vent fields 
75

. Within the same species, they 277 

have similar δ
13

C and δ
15

N values, with highest values for shrimps (δ
13

C: -13.70 to -13.63‰; δ
15

N: 7.74 to 278 

8.69‰), intermediate values for crabs (δ
13

C: -18.73 to -16.27‰; δ
15

N: 6.84 to 7.91‰) and “scaly-foot” 279 

gastropods (δ
13

C: -23.47‰; δ
15

N: 4.95‰) and lowest values for mussels (δ
13

C: -36.28 to -31.82‰; δ
15

N: 280 

-12.04 to 0.39‰) (Table S2, Figure 4). The lowest δ
13

C values of our mussels overlapped with those 281 

observed for different species of mussels from Mid-Atlantic Ridge and Pacific hydrothermal vents, known 282 

to host thiotrophic symbionts 
75-77

. These symbiotic autotrophic bacteria are also accountable for the lowest 283 

δ
15

N values in the mussels by providing local nutrients for the hosts 
78

. The shrimps with both the highest 284 

δ
13

C and δ
15

N had much higher δ
13

C than deep-sea surface sediments and pelagic particulate organic matter 285 

sinking from the euphotic zone (ca. between -28‰ and -19‰) (Figure 4-a) 
79, 80

, suggesting that sinking 286 

particles does not constitute a substantial part of their diet. The crabs and “scaly-foot” gastropod with 287 

intermediate δ
13

C and δ
15

N values likely suggests their mixed food sources. 288 
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 289 

Figure 4. Plots of δ
15

N versus δ
13

C (a), MMHg% versus δ
13

C (b), and MMHg% versus δ
15

N (c) in 290 

hydrothermal biota from different hydrothermal fields at the Indian Ocean Ridge and mussels from the Site 291 

F cold seep at the South China Sea. Note LHF: Lonqi HF; DHF: Duanqiao HF; KHF: Kairei HF; 292 

SFCS-Center mussel: mussel near the center of Site F cold seep; SFCS-Edge mussel: mussel at the edge of 293 

Site F cold seep. The typical δ
13

C range is shown in the green shaded area for deep-sea particulate organic 294 

matter 
79, 80

. 295 

Our hydrothermal biota had a wide range of THg concentrations (6.0 to 7045 ng g
-1

, 928 ± 1883 ng g
-1

; 296 

dry weight, n = 16). On average, THg concentrations in biota were highest in Duanqiao HF, SWIR (164 to 297 

7045 ng g
-1

; 2488 ± 2950 ng g
-1

; n = 5), which were ~10 times higher (P <0.05) than those in nearby Longqi 298 

HF (6.0 to 882 ng g
-1

, 261 ± 311 ng g
-1

; n = 7) and ~20 times higher (P = 0.06) than Kairei HF, CIR (9.3 to 299 

307 ng g
-1

, 142 ± 156 ng g
-1

; n = 4) (Table 1). In addition to sampling bias in the types of biota samples, this 300 

large difference likely also reflected the variability of THg concentrations in hydrothermal fluids and 301 

sulfides (Figure 2; Table 1). THg concentrations are lowest in CIR but are comparatively high in SWIR for 302 

both sulfides (P = 0.31) and biota (P = 0.35). Similar observations were also made in previous studies which 303 
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showed that hydrothermal sulfides and biota from the active hydrothermal vents of Tonga Arc in 304 

southwestern Pacific were orders of magnitude higher than those in Mid-Atlantic Ridge 
11, 81, 82

. MMHg 305 

concentrations in the hydrothermal biota also varied largely (2.7 to 53.1 ng g
-1

) but only accounted for very 306 

small fractions of THg concentrations (~3%, mostly <10%). Even smaller fractions (<1%) of MMHg were 307 

observed in hydrothermal biota of Tonga Arc and Mid-Atlantic Ridge 
11, 81

. In contrast, MMHg in benthic 308 

invertebrates living in coastal, hadal, fresh and abyssal environments are on average account for ~76%, 309 

~32%, ~21% and ~8% of THg, respectively 
39

. The low MMHg fractions in hydrothermal biota are likely 310 

related to the low MMHg discharge rate 
18

 and low Hg methylation in the hydrothermal vent environments 311 

due to high temperature and limited bioavailability of Hg(II) for bacteria capable of methylation 
11, 83

. 312 

Besides, MMHg has been suggested to be rapidly demethylated in fluid plumes 
12

. Further, symbiotic 313 

chemoautotrophs hosted by hydrothermal biota might transform MMHg into inorganic Hg with temporary 314 

detoxified storage and excretion in the digestive gland 
84

, but the detoxification mechanism is unclear yet. 315 

The absence of correlations between MMHg fractions and δ
13

C or δ
15

N values in our studied biota (Figure 316 

4b-c) suggests that the food sources and trophic levels have a limited effect on the ultimate Hg accumulation 317 

in the deep-sea hydrothermal ecosystems. The correlations between MMHg in our studied biota and food 318 

sources is potentially obscured by various biogeochemical processes as listed above. The “scaly-foot” 319 

gastropod known only from deep-sea hydrothermal vents in the Indian Ocean had the highest THg 320 

concentrations (7045 ng g
-1 

in Duanqiao HF and 882 ng g
-1

 in Longqi HF) among all collected biota, with 321 

MMHg concentrations up to 606 ng g
-1

 (~8.6% of THg) in Duanqiao HF (Table S2). This is most likely due 322 

to the use of iron sulfides (pyrite and greigite, typically enriched in Hg) in the structure of the dermal 323 

sclerites of the "scaly-foot" gastropod, which may increase Hg levels in its body. 324 

Overall, δ
202

Hg and ∆
199

Hg values of hydrothermal biota varied within small ranges, from -0.91 to 0.52‰ 325 

(mean = -0.33 ± 0.48‰, n = 13) and 0.04 to 0.48‰ (0.13 ± 0.12‰, n=13), respectively. On average, δ
202

Hg 326 

in Duanqiao HF (-0.12 ± 0.59‰, n = 5) was less negative than Kairei (-0.27 ± 0.42‰, n = 3, p = 0.71) and 327 

https://en.wikipedia.org/wiki/Indian_Ocean
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Longqi (-0.58 ± 0.36‰, n = 5, p = 0.18) HFs; ∆
199

Hg was higher in Longqi HF (0.20 ± 0.16‰, n = 5) than 328 

Duanqiao (0.11 ± 0.11‰, n = 5, p = 0.15) and Kairei (0.07 ± 0.03‰, n = 3, p = 0.07) HFs (Table 1). 329 

Previous studies on coastal benthic invertebrates revealed similar ∆
199

Hg values (0.11 ± 0.06‰ for bivalve, 330 

0.18 ± 0.11‰ for shrimp, 0.20 ± 0.14‰ for cephalopod, 0.21 ± 0.07‰ for gastropod, and 0.25 ± 0.07‰ for 331 

crab) but significantly lower δ
202

Hg values (-2.05 to -1.49‰, group-specific mean values) 
52

. Increases of 332 

both δ
202

Hg and ∆
199

Hg are seen from coastal/estuarine fishes 
52, 85

 to open marine fishes 
34-37

 and then to 333 

mammals/birds 
86-88

. As compared to their nearby sulfides, δ
202

Hg and ∆
199

Hg in our hydrothermal biota are 334 

slightly shifted by 0.19 to 0.51‰ (site-specific means: Longqi: 0.19 ± 0.42‰, P = 0.28; Duanqiao: 0.23 ± 335 

0.62‰, P = 0.44; Kairei/Edmond: 0.51 ± 0.53‰, P = 0.08) and 0.04 to 0.14‰ (site-specific means: Longqi: 336 

0.14 ± 0.17‰, P = 0.07; Duanqiao: 0.06 ± 0.11‰, P = 0.22; Kairei/ Edmond: 0.04 ± 0.07‰, P = 0.43), 337 

respectively. These positive shifts of δ
202

Hg and ∆
199

Hg could be caused by bioaccumulation and trophic 338 

transfer of MMHg 
89-91

. However, the lack of significant correlations of MMHg% with δ
202

Hg and ∆
199

Hg 339 

(Figure S3) exclude this possibility. Alternatively, these shifts are more likely caused by the assimilation of 340 

seawater Hg (characterized by higher ∆
199

Hg values) 
92

 into biota and the precipitation of sulfides from 341 

hydrothermal fluids which could increase δ
202

Hg values of discharged hydrothermal fluids 
93, 94

. 342 

Like hydrothermal fields, cold seeps also host many organisms symbiotic with chemoautotrophs that 343 

use the methane and hydrogen sulfide present in the seep water as an energy source. Cold seeps occur 344 

mostly at tectonic plate boundaries, and thus might release Hg into seawater as well. According to our 345 

mussel samples from the Site F deep cold seep in the South China Sea, the bathymodiolin mussel 346 

Bathymodiolus aduloides (near the center of cold seep) with higher Hg concentrations (592 to 920 ng g
-1

) 347 

had lower δ
202

Hg (-0.74 to -0.73‰) and ∆
199

Hg (0.06 to 0.08‰); another Gigantidas platifrons (at the edge 348 

of the cold seep) with lower Hg concentrations (46 to 173 ng g
-1

) had slightly higher δ
202

Hg (-0.66 to 349 

-0.42‰) and ∆
199

Hg (0.18 to 0.20‰) (Table S2, Figure S4). Overall, their Hg concentrations and isotopic 350 

compositions are comparable to those of hydrothermal biota. Insignificant differences (0.13‰ for δ
202

Hg 351 
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and 0.02‰ for ∆
199

Hg) in Hg isotopic compositions are observed between the gill and muscle of the mussels, 352 

although THg concentrations are significantly higher in the gill (Table S2). The fractions of MMHg in 353 

mussels from the Site F cold seep are also very low (2.6-10.5%). 354 

3.3. Sources of Hg in Chemosynthetic Food Webs 355 

The Hg isotope signature ∆
199

Hg has been used as a robust tracer of Hg sources of marine food webs 
30, 

356 

31
. Δ

199
Hg values of MMHg in the upper oceans are significantly positive (0.82 to 5.50‰, 2.14 ± 0.87‰; 357 

n=137; Figure 5) as proxied by pelagic fishes and decrease systematically with increasing depths 
34-37

. The 358 

Δ
199

Hg values of inorganic Hg as inferred from seawater (mean values: 0.07‰ for Mediterranean Sea; 0.11‰ 359 

for Atlantic) and suspended particles (Mediterranean Sea: -0.06‰; Atlantic: -0.21‰; Pacific: 0.16‰) in 360 

upper oceans are consistently small and show limited variations toward deep oceans as inferred from 361 

sediments (Mediterranean Sea: 0.09‰; Atlantic: 0.01‰; Pacific: 0.29‰) 
33

. Although the difference of 362 

δ
202

Hg between MMHg and inorganic Hg in upper oceans is not as remarkable as Δ
199

Hg, δ
202

Hg values of 363 

MMHg are mainly positive (-0.43 to 1.84‰, 0.65 ± 0.38‰; n=137; Figure 5), in contrast to δ
202

Hg values of 364 

inorganic Hg that are dominantly negative (mean values: -0.27‰ for seawater; -0.28‰ for suspend particles) 365 

33
. Two studies on hadal amphipods and snailfish from the deepest oceans (Kermadec and Mariana 366 

trenches, >6000 m) found that their Hg isotopic compositions (δ
202

Hg = 0.44 ± 0.34‰, ∆
199

Hg = 1.51 ± 367 

0.18‰, n=59; Figure 5) closely matched those of MMHg in upper oceans and suggested that their Hg 368 

mostly derived from bioavailable MMHg in upper marine food webs via sinking particles and carrion 
38, 40

. 369 

The significantly lower Δ
199

Hg values in our epibenthic biota (0.04 to 0.48‰) of hydrothermal fields and 370 

cold seeps (0.06 to 0.20‰) (Figure 5) suggest there is little to no upper marine MMHg in deep-sea 371 

chemosynthetic food webs that mainly rely on symbiotic chemoautotrophs for food and energy. 372 
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 373 

Figure 5. ∆
199

Hg versus δ
202

Hg in biota (including two samples from the Site F cold seep, abbreviated as 374 

SFCS, South China Sea), sulfides and sediments from Indian Ocean Ridge reported in this and previous 375 

studies 
15, 60

. Also shown are Hg isotope values (mean ± 1SD) of chimney pieces and fluid precipitate from 376 

Guaymas Basin (filled red-white circle) 
19

, Earth’s silicate crust (empty red diamond) 
62

, primordial mantle 377 

(red cross) 
64

, seawater (filled blue circle) 
33, 69

, deep-sea (>1000 m) sediments (filled gray circle) 
33, 38, 73, 

378 
95-98

, trench fauna (filled brown-yellow triangle) 
38, 40

, and upper marine fishes (filled purple-pink triangle) 379 
33-37

. The inset shows the enlarged area of the figure, and the ellipses are used to outline the variation ranges 380 

of Hg isotopic compositions for sulfides/sediments and biota. 381 

Large amounts of Hg could be discharged from the surrounding hydrothermal vents 
18, 19

. Although Hg 382 

isotopic compositions in submarine hydrothermal fluids have not been reported, their MIF values are 383 

expected to be conserved in fluid precipitates and deposited sulfides due to lack of MIF inducing processes. 384 

As shown above, ∆
199

Hg values in hydrothermal biota (0.07 to 0.20‰, location-specific means) were 385 

slightly and positively shifted relative to their nearby sulfides (0.03 to 0.06‰, location-specific means), thus 386 

the original hydrothermal fluids, implying that Hg from ambient seawater with higher ∆
199

Hg values (up to 387 

0.4‰) 
33, 69

 were also incorporated into hydrothermal food webs. It appears that the hydrothermal Hg 388 
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contributions to food webs were more important in Duanqao HF than Longqi HF, because the ∆
199

Hg shifts 389 

between biota and sulfides in the former (0.06‰) are about two times smaller than the latter (0.14‰) 390 

(Table1, Figure 3). This inference is also supported by the ~10 times higher (P <0.05) Hg concentrations in 391 

biota from Duanqao HF than Longqi HF.  392 

It is still unknown if the studied cold seep was releasing Hg during the sampling period. As shown in 393 

Figure S4, a previous study found no statistical difference in THg and MMHg concentrations and Hg 394 

isotopic compositions between sediments from a cold seep in the northern Gulf of Mexico (δ
202

Hg = -0.72 ± 395 

0.11‰, ∆
199

Hg = 0.08 ± 0.03‰, n = 7) and from background sites (δ
202

Hg = -0.66 ± 0.10‰; ∆
199

Hg = 0.06 396 

± 0.02‰; n = 5), and suggested that cold seeps are not significant sources of Hg. Our near-field mussel 397 

with >5 times higher Hg concentration had comparable Hg isotopic compositions (δ
202

Hg: -0.74 to -0.73‰; 398 

∆
199

Hg: 0.06 to 0.08‰) to these values. Our far-field mussel with lower Hg concentration had slightly 399 

higher δ
202

Hg (-0.66 to -0.42‰) and ∆
199

Hg (0.18 to 0.20‰), with the ∆
199

Hg is close to the background 400 

sediment values (0.21 to 0.45‰) from the South China Sea 
96

. Given that ∆
199

Hg values of geogenic Hg 401 

released from the cold seep are most likely close to 0‰, the higher Hg concentrations and lower ∆
199

Hg 402 

values of the near-field mussel implies that the cold seep was likely releasing Hg to the ambient environment. 403 

However, Hg isotopic compositions in more cold seep biota samples and co-located sediments and seawater 404 

are still needed for confirmation.  405 

The biota samples in our studied hydrothermal fields and cold seep contained small fractions (<10%) of 406 

MMHg which show insignificant correlations with δ
202

Hg and ∆
199

Hg (Figure S3), suggesting that the Hg 407 

isotope values between MMHg and inorganic Hg are not significantly different, and that the MMHg in these 408 

biota samples were likely derived from in situ methylation of inorganic Hg surrounding the hydrothermal 409 

fields and cold seep rather than MMHg transported from upper oceans. This is because upper marine MMHg 410 

have significantly higher δ
202

Hg and ∆
199

Hg than deep marine inorganic Hg (Figure 5), we would expect an 411 
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increase of δ
202

Hg and ∆
199

Hg with the increasing fractions of upper marine MMHg (see Figure S3 for the 412 

theoretical mixing lines between deep marine inorganic Hg and upper marine MMHg). Previous studies 413 

found small fractions of MMHg in sediments near hydrothermal fields (<0.1%) 
11

 and cold seeps (~2.4%) 
14

, 414 

which might partly explain the higher (p = 0.02) MMHg fractions in biota from cold seeps than 415 

hydrothermal fields. It is noted that our inference on MMHg isotope compositions is likely biased by the low 416 

MMHg fractions of our samples which do not show sufficient variation. MMHg from upper oceans could 417 

possibly incorporate into some biota (e.g., SY128-gastropod of very high ∆
199

Hg), but its isotope signatures 418 

were overwhelmed by those of inorganic Hg. More work (e.g., species-specific MMHg isotope analysis) is 419 

still needed to decipher the sources of MMHg in chemosynthetic food webs. 420 

4. Implications 421 

Our results have important implications for understanding the Hg cycling in deep oceans. First, the Hg 422 

isotopic compositions in the submarine hydrothermal sulfides suggest seawater Hg removal flux by sulfides 423 

is potentially significant, but more work is still needed to constrain this flux. If these additional Hg removal 424 

fluxes are implemented in future models, the turnover time of seawater Hg and the clearance time of 425 

anthropogenic Hg are expected to be much shorter than previously estimated. Second, there are still 426 

technical challenges to directly measure seawater Hg isotopes 
33

, especially for the deep oceans. The 427 

measurement of Hg isotopic compositions in biota living at different sea-floor environments would serve as 428 

a promising tool to understand the sources and biogeochemical cycling of deep-sea Hg. Our first 429 

measurement of Hg isotopic compositions of epibenthic biota from hydrothermal fields and cold seeps 430 

indicates that the Hg in chemosynthetic food webs is almost exclusively sourced from hydrothermal fluids 431 

and ambient seawater Hg, with little to no contribution from MMHg in photosynthetic food webs of upper 432 

oceans. In contrast, previous studies showed that the Hg in trench food webs was mostly derived from 433 

photosynthetic food webs 
38, 40

. This contrast reflects the remarkable difference in the ways how the energy 434 
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and food were gained among different deep-sea ecosystems. While our studied hydrothermal fields and cold 435 

seeps are rather deep, future studies on chemosynthetic food webs at shallower depths and food webs at 436 

seamounts and abyssal plains may help understand the interaction of chemosynthetic and photosynthetic 437 

food webs. 438 
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