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Abstract. Detect and prevent an aircraft instability condition is extremely important,
especially for flight control, and morphing airfoils can be used for this purpose. This work
proposes the determination of a digital morphing airfoil, using a deep learning approach, to
avoid an unstable aeroelastic condition in a 2D wing model. To parametrize the airfoil’s
geometry, Bezier – Parsec 3434 parametrization was used and some of the parameters
were determined by an optimization process based on a Genetic Algorithm. The airfoil’s
geometric Cg position, cl, cd and cm distributions for some angles of attack were used to
train a deep neural network, capable to estimate the desired BP3434 parameters. Finally,
this trained machine learning model was then coupled to the 2D aeroelastic model of a wing
to change the airfoil’s curvature when it faced an instability. The trained deep learning
algorithm had an excellent Person’s coefficient of 0.919 when predicting a new geometry.
Our methodology permits to automatically detect and avoid instability using digital morph-
ing techniques coupled with AI, using only one sensor, monitoring the dynamic behaviour
of the airfoil.

Keywords: Digital morphing airfoils, deep neural networks, Bezier-Parsec parameteri-
zation, 2D aeroelastic instabilities
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LIST OF SYMBOLS

cl lift coefficient
cd drag coefficient
cm moment coefficient
Cg center of gravity
EA elastic axis
ODE ordinary differential equation
MSE mean square error
ANN artificial neural networks

1 INTRODUCTION

Historically, the study of airfoils has always been extremely important in the aeronau-
tical industry [1]. Airfoils are also essential in describing the aeroelastic characteristics of
a wing, so studying and improving their performance is highly necessary. In this context,
morphing airfoils are being studied, due to their ability to adapt to a given flight require-
ment, as this technology is aimed at very efficient aerodynamic and structural designs
during flight, contributing to the performance of an aircraft [2]. The impact of this new
technology, as well as simple modelling of this type of airfoil was better described in [3].

In an aircraft, several situations that occurs during flight can alter the global center
of gravity and even that of the wing, such as jettisoning and fuel consumption, which
can instantly bring the aircraft into an unstable condition. Therefore, using airfoils with
variable geometry allows the optimization of their shape, hence returning the aircraft to
a stable position. Due to the high non-linearity of this process, it is interesting to use
deep neural networks, which are viable computational models aimed at a wide variety of
problems, including optimization, nonlinear system modelling and control [4], seeking to
represent the way the human brain works, with neurons and connections between them.
This modelling is one of the most modern ways to optimize high complex systems and
obtain acceptable results. This work links the study of the aeroelastic characteristics of
morphing airfoils with the deep neural network tool.

Despite a 2D aeroelastic model of a wing, with a reduced number of degrees of freedom,
being simplistic, a few problems can occur, as in [5]:
• For the construction of the database there is the need to carry out an optimization

to determine some parameters, therefore, it can be computationally expensive to build a
large dataset.
• To guarantee the training of a neural network with high accuracy and low loss func-

tion, a high number of airfoils and their respective parametrization is necessary, which
further increases the time of the process.
• Difficulty in coupling the neural network model with the aeroelastic model. Conse-

quently, this work neglects the transient changes in the geometry of the airfoil
Despite these problems that can occur, this research aims to develop a simplified model,

although being very representative for this case study.
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2 STATE OF ART

Determining an optimal geometry for the morphing airfoil consists of a high complex
optimization problem as well-known airfoils are described by many points as in [6]. How-
ever, using a form of parameterization through Bezier-Parsec curves as described in [7], it
is possible to parameterize the geometric characteristics of an airfoil’s geometry through
a reduced number of parameters. It is possible to say that Bezier’s formulation is more
directly related to airflow than the formulation presented by Parsec, where the parame-
ters are more aerodynamically oriented. The Bezier-Parsec (BP) parameterization uses
Parsec variables as parameters, which in turn define four separate Bezier curves. These
curves describe the leading and trailing portions of the camber line, and the leading and
trailing regions of the thickness distributions [8].

Using the BP parameterization it is possible to train a neural network as in [5], for
a desired input vector capable to predict these parameters. In this work, we chose to
use the same idea to train a deep neural network using the Keras package in Python
[9]. Additionally, there will be a coupling with a 2D aeroelastic simulation, in which an
airfoil undergoes a sudden change on its geometric Cg, taking it to an unstable condition
of flutter. For the modeling of this condition, an algorithm developed by ALTRAN was
used [10]. The neural network will then be able to predict a new airfoil (through BP3434
parameters) and return the Cg to a stable condition, maintaining the same aerodynamic
characteristics as the current profile. The construction of the database to train the neural
network will be done using the Matlab software and the Xfoil code. Then the neural
network and the aeroelastic code will be coupled in Python language.

The background section (Section 3) presents a basic review of the concepts used in the
development of the work. Then, the methodology section (Section 4) shows how these
concepts were put together to model the behavior of the desired digital morphing airfoil.
The results section (Section 5) shows the results obtained. Finally, a general conclusion
(Section 6) about the work is made.

3 BACKGROUND

3.1 Artificial neural networks

Artificial neural networks (ANN) are computational models designed to simulate math-
ematically how the human brain analyses and processes information. Such systems learn
to perform tasks by learning from examples (supervised learning algorithm) and they are
formed by a set nodes called neurons. After some mathematical transformations, each
neuron propagates an output value yj. The network consists of connections between these
neurons, each connection providing an output which is then an input to another neuron.
For each of these connections a weight wij, that represents its relative importance as well
as the effect of the neuron i on neuron j, is assigned [11]. Each neuron also has an external
input (bias) bj that shifts the value up and down. Then, the product input-weight and the
bias are added up and passed through a function called ”activation function”, to model
the non-linear behaviors. Most frequently the form of the propagation rule is given in [5].

yj(t) =
N∑
i=1

wij(t)xj(t) + bj(t) (1)

Next, an activation function f(•) is given and it then determines the new level of
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activation based on the effective input xj(t) (Figure 1):

Figure 1: Structure of one neuron

Thus, each neuron receives an input from its neighbours and uses this to compute an
output value, which is propagated to another neuron. The connections between them
build the deep neural network (called ”deep” because it has some intermediate columns
called layers) as can be seen in Fig.2. The second step is to adjust the weights wij and the
bias bj through a learning method, which consists basically in an optimization process,
that can be done by a simple gradient descent method (although other complex methods
could be used). The objective function for this optimization is called ”Loss function” and
it measures the distance between the desired output ydesiredj and the obtained yj for each
step.

Figure 2: Structure of an ANN

Moreover, it is important to select the correct activation function as it performs the
non-linear transformation in the input data, making it possible to learn and perform
more complex tasks. The aim of this work is to predict the BP parameters given the
aerodynamic coefficients and the Cg position as inputs, resulting in a regression task.
There are several types of activation functions, such as Linear, Sigmoide, Tanh, ReLU,
Leaky ReLU, Softmax, in which Leaky ReLU was selected for this work. However, it is
first necessary to define the ReLU function, which is the rectified linear unit. The ReLU
function is defined in Eq.2:

f(x) = max(0, x) (2)
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It is the most used activation function when designing neural networks. The ReLU
function is non-linear, which means that it can easily copy the errors back and have
multiple layers of neurons activated by the ReLU function. The main advantage of using
the ReLU function over other activation functions is that it does not activate all neurons
at the same time. However, in the ReLU function, the gradient is 0 to x < 0, which causes
neurons to ”die” from activations in that region. Hence the use of Leaky ReLU, which
helps to solve this problem. The Leaky ReLU function is defined in Eq.3:

f(x) = ax, x < 0

f(x) = x, x ≥ 0
(3)

so the ReLU graph ends up having a small slope and avoiding null values for the
gradient during the optimization process.

3.2 Genetic algorithms

The genetic algorithm is a method for solving both constrained and unconstrained
optimization problems that is based on a genetic natural selection [5]. This optimization
algorithm is interesting because there is no need to know the function or even its derivative
to be able to do the desired optimization. Its convergence is not proved mathematically
although it always converges to an optimal value.

At each step, the genetic algorithm selects the best individuals from the current pop-
ulation and combines their characteristics randomly to produce the new generation of
candidates. The first population is generated randomly but after several iterations, the
population evolves to an optimal solution. The algorithm uses three main rules to evaluate
and generate its population: the selection rule chooses the best individuals to propagate
their characteristics to the next generation; the crossover rule combines the characteris-
tics of these individuals to generate the children and the mutation rule applies random
changes from parents to children.

In this work, the genetic algorithm was used to optimize some parameters of the BP
curves from the airfoil points, consequently to generate the training and test databases
for the neural network. This optimization was used because the function of this transfor-
mation was not known.

3.3 Bezier curves

A Bezier curve of degree n is defined by n + 1 points of a polygon. To describe the
airfoil four Bezier curves were used, two for the camber line and two for the thickness
distribution. The general expression for one curve with degree n is Eq.4:

P (u) =
n∑
i=0

Pi
n!

i!(n− i)!
ui(1− u)n−i (4)

Where Pi represents a control point. The parameter u goes from 0 to 1 with 0 at the
P0 control point and 1 at the Pn control point.

This work will use a third degree curve and a fourth degree curve that will be later
explained. A third order Bezier curve is given by the following equations (Eq.5):
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x(u) = x0(1− u)3 + 3x1u(1− u)2 + 3x2u
2(1− u) + x3u

3

y(u) = y0(1− u)3 + 3y1u(1− u)2 + 3y2u
2(1− u) + y3u

3 (5)

And a fourth order Bezier curve is given by the following equations (Eq.6):

x(u) = x0(1− u)4 + 4x1u(1− u)3 + 6x2u
2(1− u)2 + 4x3u

3(1− u) + x4u
4

y(u) = y0(1− u)4 + 4y1u(1− u)3 + 6y2u
2(1− u)2 + 4y3u

3(1− u) + y4u
4 (6)

An airfoil can be described by the Bezier curves, however the problem with this
parametrization is that it does not establish a proper relationship with the airfoil’s aero-
dynamic parameters.

3.4 Parsec parameters

The Parsec method is a very common method of airfoil parameterization. It uses
eleven parameters to define the aerofoil shape which are the leading edge radius, upper
crest location, lower crest location, upper and lower curvature, trailing edge coordinate
and direction, trailing edge wedge angle and thickness [7]. This method incorporates the
parameters that have a physical relevance to the airfoil shape.

The problem is that the Parsec parametrization does not provide sufficient control over
the trailing edge shape, because it fits a smooth curve between the maximum thickness
point and the trailing edge, making changes difficult at this location, better described in
[12]. For this reason, the couple with the Bezier parameters is interesting.

3.5 Bezier–Parsec parameterization

Combining both methods described before, the Bezier-Parsec can parametrize a given
airfoil with parameters that are related to its aerodynamic and geometrical characteristics.
The detailed development of this method is given by [13]. As said in [7], Oyama et al.
[14] showed that Bezier-Parsec parametrization increased the robustness and convergence
speed for aerodynamic optimization using genetic algorithms. It has a lot of advantages
and in this work it will be used to parametrize the airfoil shape, building the database to
train the neural network architecture. Other parameterizations could be used as the one
presented in [15].

The Berzier-Parsec parametrization uses the Parsec variables as parameters, which in
turn define four separated Bezier curves, two curves to describe the leading edge of the
thickness curve & camber curve and two to describe the trailing edge for both of them.
In this work a BP3434 parametrization will be used. As in the name, both leading edge
curves have polynomials of third degree while both the trailing edge curves have the
polynomials of fourth degree. In Fig.3 these curves can be seen as well as the Bezier
control points and the ten Parsec parameters. The parametrization assumes a unitary
chord for the airfoil.

The parameters in Eq.5 and Eq.6 can be determined by the control points for each
section as follows:

Leading edge thickness curve: Equation 7



Raul Carreira Rufato and Joseph Morlier

Figure 3: BP 3434 airfoil geometry and Bezier control points defined by ten aerodynamic
and five Bezier parameters [7]

(x0, y0) = (0, 0);

(x1, y1) = (0, b8); (7)

(x2, y2) = (
−3b28
2rle

, yt);

(x3, y3) = (xt, yt);

In which b8 is between 0 < b8 < min(yt,
√
−2rlext

3
)

Trailing edge thickness curve: Equation 8

(x0, y0) = (xt, yt);

(x1, y1) = (
7xt + 9b28

8rle
, yt); (8)

(x2, y2) = (3xt +
15b28
4rle

,
yt + b8

2
);

(x3, y3) = (b15, dzte + (1− b15)tan(βte));

(x4, y4) = (1, dzte);

Leading edge camber curve: Equation 9

(x0, y0) = (0, 0);

(x1, y1) = (b0, b0tan(λle)); (9)

(x2, y2) = (b2, yc);

(x3, y3) = (xc, yc);

Trailing edge camber curve: Equation 10
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(x0, y0) = (xc, yc);

(x1, y1) = (
3xc − yccot(λle)

2
, yc); (10)

(x2, y2) = (
−8yccot(λle) + 13xc

6
,
5yc
6

);

(x3, y3) = (b17, zte − (1− b17)tan(αte));

(x4, y4) = (1, zte);

3.6 Aeroelastic Model

The aeroelastic model chosen in this work is a simplified model of an airfoil with two
degrees of freedom: Translation and rotation. A schematic representation of the system
can be seen in Fig.4.

Figure 4: Modeled system

The airfoil has a damping and stiffness system in both degrees of freedom, therefore it
is possible to model the system as in [16]. Knowing that x is measured along the chord
and it is not a generalized coordinate, it cannot undergo virtual change. The generalized
coordinates can be described as in Eq.11.

{q1 = h, q2 = θ} (11)

And the displacement of any point in the airfoil is (Eq.12).

−→r = u
−→
i + z

−→
k (12)

Where u is the horizontal displacement component and z is the vertical displacement
component. From the geometric characteristics it can be said (Eq.13):

θ � 1→

{
u = x[cosθ − 1] ≈ 0

z = −h− xsinθ ≈ −h− xθ
(13)

Hence, the kinetic energy is calculated as Eq.14:
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T =
1

2

∫
[(
dz

dt
)2 + (

du

dt
)2]ρdx

' 1

2

∫
(
dz

dt
)2ρdx

=
1

2

∫
(−ḣ− θ̇x)2ρdx

=
1

2
ḣ2
∫
ρdx+ ḣθ̇

∫
xρdx+

1

2
θ̇2
∫
x2ρdx

=
1

2
ḣ2m+ ḣθ̇xθm+

1

2
θ̇2Iθ

(14)

Where m =
∫
ρdx is the total mass; Iθ =

∫
ρx2dx is the moment of inertia and ρ is the

mass per unit chord length.
The potential energy is Eq.15:

U =
1

2
Khh

2 +
1

2
Kθθ

2 (15)

where Kh and Kθ are the spring stiffness. Then, calculating the generalized forces and
using the Lagrange’s equations, with the right algebraic arrangement, it is possible to
obtain the equation of motion that describes the model (Eq.16):

[
m mxθ
mxθ Iθ

]
×
[
ḧ

θ̈

]
+

[
Ch 0
0 Cθ

]
×
[
ḣ

θ̇

]
+[

Kh 0
0 Kθ

]
×
[
h
θ

]
=

[
F
M

] (16)

In which m represents the mass of the airfoil; xθ represents the distance between the
Cg (center of gravity) and the elastic axis and Iθ = I0 + mx2θ is the moment of inertia
displaced from the Cg; h(t) is the degree of freedom plunge and θ(t) is the degree of
freedom in torsion, both measured from the static equilibrium position.

Considering this a dynamic aeroelasticity problem, it was used an aerodynamic model
to describe the flow. Thus, the panel method was used to determine the aerodynamic
loads during the time simulation. Because aerodynamic and structural models have dif-
ferent requirements, it is necessary to use different approaches for the discretization of the
modelled geometry, consequently , the aerodynamic and structural meshes are different,
containing an interface which provides the communication between them. The solution for
the interface used, provided by ALTRAN, uses a Radial-Basis-Function (RBF), a method
for spatial interpolation in 2D, which transfers the loads from the structural mesh to the
aerodynamic mesh.

4 METHODOLOGY

The diagram that represents the order of development of the work can be seen in Fig.5.
The work began with the construction of the airfoil database and its respective pa-

rameters, to train the neural network. In parallel to this process, the aeroelastic code
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Figure 5: Project main scheme

was developed implementing the described system, as well as the possibility of changing
the center of gravity to an unstable position. Then, after analysing the validity of the
results for both models, it was possible to train the neural network and couple it with
the fluid-structure interface. The validations of each step are presented in the following
sections.

4.1 Construction and validation of the database

The research development started by building the database, which is important for
training the neural network. First, the x and y coordinates were determined for the
airfoil points of the 4th NACA Family, varying: maximum thickness, maximum camber
and location of maximum camber, where a thousand different airfoils of the same family
were built. An optimization was then performed to determine the parameters of Bezier-
Parsec 3434 that would be able to describe them. However, in order to reduce the number
of optimization parameters, it was possible to determine seven of them analytically (dzte,
zte, rle, xc, yc, xt and yt), because they are geometric characteristics of each profile, such
as the maximum thickness and maximum camber. The remaining eight parameters have
been optimized, using the differential evolution (DE) algorithm of Rainer Storn [17], in
MATLAB through parallel simulation processing. The characteristics of the optimization
can be seen in Tab.1.

Finally, it was possible to determine the control points of the airfoil and estimate its
curve using the relationships between camber and thickness lines. The results of this
approach can be seen in Fig.6, for the NACA 0012 airfoil.

It is possible to see through Fig.6a that the curve adjustment was satisfactory given
the number of points that describes the airfoil. Figure 6b shows the control points to
describe the thickness and camber lines, determined by the Bezier-Parsec parameters.

The curves of cl, cm, cd (for angles of attack from 1deg to 11deg) and the position of Xcg

for each airfoil were determined using the code Xfoil [18]. In possession of the aerodynamic
curves and the Bezier-Parsec parameters of each profile, the necessary database for the
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Table 1: Optimization characteristics

Objective Function Square error (real and fitted)
Bounds Constrained
Type Without derivate

Number of members of the population 120
Desirable value for objective function 1e-6

Number of variables to optimize 8
Crossover probability 0.8

Maximum number of iterations (generations) 50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
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Ajusted

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 6: NACA 0012 airfoil geometry aproximation using Bezier-Parsec 3434 parameters.
In the right figure the thickness line is represented in red, camber line in blue and the
points represent the control points of the parametrization
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training of the neural network was built.

4.2 Neural network training

Using the built database, the problem to be solved by the neural network consists of
predicting the 15 parameters for a Bezier-Parsec 3434 parametrization, given cl, cm and
cd curves and the Xcg of an unknown airfoil, therefore it is a regression problem.

For the construction of this neural network, the Keras library was used in python
[9], generating a Deep Feed Forward (DFF) type architecture. The DFF is basically an
artificial neural network in which connections between the nodes do not form a cycle [19].
This is the simplest type of neural network, as the information moves unidirectionally,
from the input layer - through the hidden layers, if any - to the output layer, with no
loops or cycles, where all neurons in one layer are fully connected with those in the next
layer. The information on the neural network implemented in this work is described in
Tab.2.

Table 2: Deep Feed Forward (DFF)

Layers 3
Hidden layers LeakyReLU
Architecture 500-100-50-15
Output layer No activation function

Optimizer Adam (learning rate=0.001)
Loss MSE

Data division Training 80% ; Test 20%

Three hidden layers with 500,100 and 50 neurons respectively were used, all of them
with the LeakyReLU activation function explained previously in Section 3.1. The Output
layer must not have any activation function, as it is a regression task, in which the values
must be predicted and not classified. The Adam optimizer with a low learning rate [20]
was used to train the network and determine the optimal weights for each connection.
The loss function chosen was the Mean Square Error (MSE) function, described by Eq.17:

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (17)

The database was used for two different reasons, being 80% for training the neural
network and 20% for testing. Using a database of 1000 4th NACA family airfoils and their
respective parameters, it was possible to train the neural network and test it. Additionally,
its quality was analyzed using the K-fold cross-validation method, which is a resampling
procedure used to evaluate machine learning models on a limited data sample. It is really
usefull to verify and avoid overfitting. The procedure has a single parameter called k
that refers to the number of groups that a given data sample is to be split into. As such,
the procedure is often called k-fold cross-validation [21]. The validation process is also
described at [21].

Using k = 10 number of splits in the dataset, an average result equal to −0.02 and
standard deviation equal to 0.004, representing a satisfactory result for this data set.
Therefore, by training the neural network, it was possible to test it. The results can be
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seen in Fig.7a, Fig.7b and Fig.7c.

(a) Test (b) Mean square error during epochs

(c) Prediction exemple

Figure 7: Prediction results

In Fig.7a the blue line represents the points for which the predicted values are equal
to the real values (y = 1.0x + 0.0) and the yellow line represents the best regression of
the points obtained by the code (y = 0.88x + 0.04). Pearson’s coefficient, which is a
parameter that measures linear correlation between X and Y , was also calculated, and
the value found was equal to 0.919. Hence, with the straight lines very close and the high
correlation, it is possible to say that the model was well trained, despite the existence
of some poorly predicted values. A result of the prediction can be seen in Fig.7c which
shows a desired airfoil and the one found by the neural network, concluding that the
neural network has been trained and validated, despite its limitation in predicting only
airfoils of the 4th NACA family.

4.3 Aeroelastic solution

Based on the system described in Section 3.6 it was possible to build a structural
module, an aerodynamic module and the connection interface between them. This code
was provided by ALTRAN [10] and adapted for the purpose of this work.

The structural sector is responsible for transforming the loads by applying them at the
reference point, in this case the elastic axis, together with the delivery of the displacements
from each point of the mesh to the interface. It is also the place where the equation of
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motion is solved using Euler’s numerical integration method. To explain this method,
suppose that you want to approximate the solution to a problem of initial value (Eq.18):

y′(t) = f(t, y(t)); y(t0) = y0 (18)

Choosing a value for the time step ∆t and assigning each step a point within the
range, we have tn = t0 + n∆t. In this, the next step tn+1 from the previous tn is defined
as tn+1 = tn + ∆t, so Euler’s method consists of determining yn+1 via Eq.19:

yn+1 = yn + ∆tf(tn, yn) (19)

In which yn is an approximation of the ODE solution at the point tn : yn ≈ y(tn),
therefore consisting of an explicit method of integration.

By using this method with the state vector y = [h ḣ θ θ̇]T it is possible to obtain an
approximation for the solution of Eq.16 at each time step ∆t. Also using the acceleration
values calculated for each iteration described by: ḧt = Iθ(F−Chḣt−Khht)−mxθ(F−Cθ θ̇t−Kθθt)

mIθ−m2x2θ

θ̈t = −mxθ(F−Chḣt−Khht)+m(F−Cθ θ̇t−Kθθt)
mIθ−m2x2θ

(20)

It is the responsibility of the aerodynamic module to calculate the loads introduced by
the fluid. The code developed by ALTRAN using the 2D panel method was used in this
work, basically consisting of a solution technique applicable to the potential flow theory,
in which the mathematical equation governing the method is the Laplace equation, given
by the following expression (Eq.21):

52 φ = 0 (21)

The Eq.21 is valid for a stationary, incompressible and irrotational flow (so consisting
of a perfect flow). There are several ways to solve this equation, but the method used in
this work is through singularities as sources, dipoles and vortices. Since the equation is
linear, it is possible to use an overlap of singularities to obtain the solution for a given
flow. The complete formulation of the method is described in [22].

Therefore, in possession of the aerodynamic and structural module and the interface,
it is possible to carry out experiments for a given initial airfoil geometry. A simulation
was performed for a system with the characteristics present in Table 3. The results are
shown in Fig.8.

It is possible to notice the increase in the amplitude of the oscillations over time,
therefore, it is identified an unstable flow called Aeroelastic Flutter. It is defined as ”an
unstable, self-excited structural oscillation at a definite frequency where energy is ex-
tracted from the airstream by the motion of the structure” [23]. It represents a type of
flow in which the frequencies of the two modes of the system are equal, exciting each
other and increasing energy to the flow, which can result in catastrophic situations. The
exponential growth envelope of this system can be approximated by an exponential inter-
polation curve through the signal amplitude peaks, thus used in this work to predict the
appearance of instability. The results of this modelling were satisfactory in the system
description.
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Table 3: Characteristics

Mass 7.0kg
I0 7.0kg.m2

Xcg 0.4
XEA 0.35
V 6m/s
ρ 1.225kg/m3

Kh 30.0N/m
Kθ 50.0N/rad
Ch 2.0N/m/s2

Cθ 6.0N/m/s2

dt 0.1s
Number of steps 100s

Airfoil NACA-3412

Figure 8: Aeroelasticity simulation
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5 RESULTS OF FINAL COUPLING

Using the described modelling, after all validations, it was possible to couple the codes
of the neural network and the fluid-structure, expecting the code to modify the geometry
of the airfoil as soon as an instability arises over time. To verify the appearance of
instability, the characteristic of its exponential envelope was analysed, whether it was
growing or decreasing during the flight simulation. Then, in order to verify the results,
the characteristics of the new desired airfoil (after instability) were pre-determined using
an airfoil of the 4th NACA family, using its geometric Xcg. Additionally, the aim was
to alter the profile’s center of gravity, which may have been modified in some way (such
as jettisoning or fuel consumption) for a region that would cause instability to arise. To
make this sudden change in the center of gravity, a change in the positioning of Xcg in
relation to XEA was made artificially in the simulation at a certain time.

A simulation was performed with the same characteristics of Tab.3, however it started
with Xcg = 0.3 and XEA = 0.4, since it is a stable system, as the center of gravity would
be in front of the elastic axis according to Pines [24] theory. At eight seconds of real time,
the value of Xcg was abruptly changed to 0.5, bringing the system to a region of instability
and at ten seconds the code was able to detect the increase in energy in the system and
the increase in the oscillation amplitudes of the model, thus changing the geometry of
the airfoil and advancing the position of the center of gravity, returning the system to a
stable position. In Fig.9a the temporal response of the simulation is observed, showing
that until eight seconds the amplitudes are reducing in time, in sequence, from eight to
ten seconds, the amplitudes start to increase, but after ten seconds (change of geometry
and advance of the Cg) the system becomes damped again. To return the system to a
stable position, the neural network generated a new airfoil, different from the previous
one, which can be seen in Fig.9b.

(a) Time simulation (b) Airfoil comparison

Figure 9: Results for a given case

It can be seen that the code was able to predict instability and change the airfoil by
correcting and dampening the system.

A problem that was found was the high sensitivity of the neural network when choosing
the curves of the desired airfoil. With each simulation in which the neural network was
trained, it was possible to obtain different results, which perhaps, were not satisfactory,
even with the same training database. This fact occurs due to the random choice of the
neural network between the training and test data, therefore requiring an increase in the
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robustness of this network, such as change the neural network architecture.

6 CONCLUSION

This work showed the implementation and validation of methods used in the modelling
of an aeroelastic system and a neural network capable of changing the geometry of an
airfoil and stabilizing an unstable system. The following tools were used: Bezier-Parsec
3434 parametrization, genetic algorithm, construction of neural network, solution of 2D
aeroelastic problem with dynamic alteration of the Cg and final coupling. It is observed
through the validation of the codes and the results obtained that the proposed model was
well implemented. Figure 9a also shows the correct prevention of the instability that was
initiated, thus demonstrating its validity.

However, the problems foreseen in the introduction occurred and the greatest difficulty
encountered was the construction of the database, a process that required significant
time and computational power. The deficiencies of this work were the simplicity of the
aeroelastic model, the inability of the neural network to predict different families of airfoils,
the sudden change in profile geometry, due to its impossibility in reality, and also the delay
in building the database necessary for the training of this network architecture. The main
problem was the instability of the neural network’s code, because it can generate different
results depending on the database used for training.

As possible future works, it is necessary to try to correct these problems: the neural
network can be improved, making it more generic and powerful; the aeroelastic model and
the method of solving the equation of motion can be more accurate and closer to reality.
Finally, it is also possible to add new capabilities to the model, such as the introduction
of a flap mechanism as a way of controlling instabilities.
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