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Abstract

Anomaly detection remains a challenging task in neuroimaging when little to no supervi-
sion is available and when lesions can be very small or with subtle contrast. Patch-based
representation learning has shown powerful representation capacities when applied to in-
dustrial or medical imaging and outlier detection methods have been applied successfully to
these images. In this work, we propose an unsupervised anomaly detection (UAD) method
based on a latent space constructed by a siamese patch-based auto-encoder and perform
the outlier detection with a One-Class SVM training paradigm tailored to the lesion de-
tection task in multi-modality neuroimaging. We evaluate performances of this model on
a public database, the White Matter Hyperintensities (WMH) challenge and show in par
performance with the two best performing state-of-the-art methods reported so far.

Keywords: Anomaly detection, One-Class SVM, Auto-encoder, Representation learning,
Brain MRI, White Matter Hyperintensities

1. Introduction

Unsupervised Anomaly Detection (UAD), also referred to as outlier detection, has been
proposed as an alternative to deep supervised learning for medical image analysis when
the studied pathology is either rare or with heterogeneous patterns as well as when getting
labels from radiologists is very challenging. This formalism relies on the estimation of the
distribution of normal (i.e. non-pathological) data in some representation space associated
to some distance metric allowing to quantify the deviation of test samples from this normal
model at inference time. Samples highly deviating from the normal distribution are referred
to as outliers.
Different categories of UAD methods have been recently applied to medical image segmen-
tation or detection tasks. The most popular formalism is based on auto-encoders (AE)
architectures that are trained on normal images only to perform a “pretext” task consist-
ing in the reconstruction of the input image. During inference, voxel-wise anomaly scores
are computed in the image space as the reconstruction errors, i.e. the differences between
the input test image and the pseudo-normal reconstructed one, assuming that the AE has
initially well captured the normal subjects main features and will thus generate large errors
for anomalous voxels contained in the test image. Such models have successfully been ap-
plied to the segmentation of visible brain anomalies in MRI medical image analysis (Baur
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et al., 2021). Recent observations, however, outline the limitations of the reconstruction
error scores for the detection of very subtle abnormalities (Meissen et al., 2022). Different
attempts have been proposed to overcome the reported limitations of these approaches.
Pinaya et al proposed an advanced architecture combining a vector quantized auto-encoder
(VQ-VAE) with autoregressive transformers acting in the latent representation space to
explicitly model the likelihood function of the discrete elements (Pinaya et al., 2022). This
was shown to perform well in different neuroimaging applications including the MICCAI
WMH challenge that tackles the detection of white matter hyperintensity (WMH) lesions
in T1 and FLAIR MRI. However, the sequential nature of auto-regressive models intro-
duces bias, which can be handled with an ensemble of models but at the cost of a much
higher computation time at inference. Alaverdyan et al. proposed to perform the detection
step in a latent space by coupling the representation power of patch-based AE networks
to extract relevant and subtle features with the efficiency of a multivariate non parametric
discriminative one class support vector machine (OC-SVM) (Alaverdyan et al., 2020). This
model was shown to achieve promising results for the detection of subtle (MRI negative)
epilepsy lesions in T1 and FLAIR MRI. In this work, we build on the formalism proposed
in (Alaverdyan et al., 2020) and propose an original discriminative model that is compared
to the state-of-the art generative architecture proposed by (Pinaya et al., 2022) and (Baur
et al., 2021). Performance of these models, trained on the same database of normal control
exams (Mérida et al., 2020), are evaluated on the WMH challenge T1 and FLAIR MRI data
to guarantee a fair comparison.

2. Proposed UAD method

The proposed UAD pipeline is depicted on figure 1. It consists of two main steps, the
representation learning step which constructs a latent space of the distribution of normal
samples based on an auto-encoder trained on patches extracted from a control population.
The outlier detection step which estimates the support of the normality distribution for
each patient based on a one-class support vector machine (OC-SVM) trained on a subset
of patches extracted from the patient under consideration.

2.1. Representation learning

With the goal of facilitating outlier detection, we first construct a representation space of
latent variable z that is suitable for this task. Leveraging the architecture proposed in
(Alaverdyan et al., 2020), we train a siamese auto-encoder (SAE) to reconstruct 2D patches
of the input image, where the patch-based approach is aimed at enriching the latent space
with local information at the voxel level. The siamese auto-encoder is composed of two
auto-encoders with shared weights, each taking a couple of input patches (x1,x2) from dif-
ferent subjects, but located at the same location in the brain. The patches are drawn from a
set of normal (i.e. healthy) images X = X h1≤h≤Nhc

= (xhi )1≤i≤m,1≤h≤Nhc
with m the number

of locations and Nhc the number of healthy controls. The network first encodes the patches
(x1,x2) into latent representations (z1, z2) and decodes them into reconstructions (x̂1, x̂2).
While training this network has to balance two terms for the loss 1) a cosine similarity
term, ensuring that the couple of patches located in the same location in the brain are close
when projected in the latent space, thus constructing a meaningful representation space 2)
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Figure 1: Proposed UAD pipeline consisting of 3 steps : 1) representation learning on the
whole control database 2) OC-SVM tuning on each patient using a subset of latent
representations z 3) inference on the whole brain using previously tuned OC-SVM.

a reconstruction error term between the original couple of patches and their reconstructions
ensuring that the encoder does not collapse to a single representation.

LSAE(x1,x2) =
2∑
t=1

||xt − x̂t||22 − α · cos(z1, z2)

The training is done on patches of the input images, with the goal of constructing an encoder
that captures fine and subtle information. Patches are extracted from healthy controls only
with the assumption that the latent variable z extracted from pathological area will appear
as out of distribution in the inference stage. At the end of the training, the encoder’s
weights are frozen and used to extract latent representation z from any image patch x.

2.2. Outlier detection

We propose to perform the outlier detection step in the latent space of the auto-encoder by
estimating the support of the normal (i.e. healthy) probability distribution. To this end, we
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use a one-class support vector machine (OC-SVM) algorithm (Schölkopf and Smola, 2002)
whose goal is to construct a decision function f that is positive on the estimated normal
distribution support and negative outside. Samples zi are projected to a high dimensional
space with a mapping φ(·) associated with a kernel k such that k(zi, zj) = φ(zi)·φ(zj). The
kernel is chosen to be the radial basis function kernel, i.e. k(zi, zj) = exp(−γ||zi − zj ||22).
This guarantees that the problem is linear in this redescription space so that the decision
function is a hyperplane of equation w · φ(z) − ρ = 0. An additional parameter ν adjusts
the upper bound on the fraction of permitted training errors, allowing to account for the
presence of ”non-normal” samples in the training samples.

Based on this ν-property and assuming that the lesion area represents a negligible
fraction of patient images, we propose to build one normality model per patient p, by
randomly sampling n voxel locations throughout the m brain voxel locations with n� m.
Patches centered on these n locations are fed through the SAE network to constitute a
subset Zp = (zpi )1≤i≤n that serves to estimate the decision function fp of parameters wp

and ρp for patient p. Once the decision function is computed, we can infer an outlier score
for each of the m voxels of the patient image, by extracting the patch centered on this voxel,
feeding it then to the SAE to derive its latent representation z, which is in turn inputted to
the decision function fp to estimate its distance to the normal distribution support. This
allows deriving an anomaly score map for the whole brain of patient p.

Note that, unlike in (Alaverdyan et al., 2020), this whole outlier detection step is done
only at inference stage on each individual patient image and does not need any training
on the normal training set X . We hypothesize that computing the normal distribution at
patient level will enable detection performance gain as it allows to be independent of the
registration quality in this step and also can capture some of the particularity of the patient
normal distribution (e.g. large occipital lobe volume, brain shrinkage, etc.).

2.3. Post-processing of the anomaly score maps

We found in early experiments that the method was generating a high number of false
positives in the cerebrospinal fluid (CSF), whether near the border of the cortex or in the
ventricles, as we believe these regions are highly affected by the quality of the registra-
tion. To mitigate this effect we use the FMRIB’s Automated Segmentation Tool (FAST)
by (Zhang et al., 2001) to segment the grey and white matter, allowing us to exclude the
CSF from the anomaly maps. Details of this post-processing can be found in appendix E.

3. Experiments

3.1. Database and splitting

Two different databases are used in this study. The control dataset consists of a series
of 75 paired T1 weighted and FLAIR MRI scans acquired on healthy volunteers on a 1.5T
Siemens Sonata scanner and mCT PET scanner (Siemens Healthcare, Erlangen, Germany).
This database was approved by our institutional review board with approval numbers X
and X (blinded for review). It serves to learn the normality distribution of the UAD
models. The WMH Segmentation Challenge training1 dataset contains 60 paired
T1 weighted and FLAIR images each associated to the corresponding 3D lesion mask image.

1. Note that the test subset, which contains 110 exams, was not available at the time of this study.
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These data were acquired on 3 scanners of different vendors in 3 different hospitals in the
Netherlands and Singapore, namely 20 exams acquired on a 3 T Philips Achieva of UMC
Utrecht, 20 exams exams acquired on a 3 T Siemens TrioTim of NUHS Singapore and
20 exams acquired on a 3 T GE Signa HDxt of VU Amsterdam. All 3D images of the
2 databases were co-registered to the MNI space based on SPM12 processing tools, thus
leading to 3D volumes of size 157x189x136 with 1mm3 isotropic voxel size.

3.2. Hyper-parameters of the UAD method

The encoder was composed of 4 convolutionnal blocks with the following characteristics :
kernel size of (5, 5), (3, 3), (3, 3) and (3, 3), strides, respectively, of (1, 1), (1, 1), (3, 3) and
(1, 1), number of filters, respectively, of 3, 4, 12 and 16, no padding and GeLu activation.
Each block was followed by a batch normalization block. The decoder was the symmetric
counterpart of the encoder, except the last block which did not use batch normalization and
used sigmoid activation function. The input of the encoder consisted of patches of each of
the 2 modalities combined as channels. The siamese network was trained with 18 750 000
patches of size 15×15×2 (250 000 patches per subject). We used Adam optimizer (Kingma
and Ba, 2015) for 30 epochs, with default hyperparameters, best model selection based on
validation loss and training batch size of 1000. For the OC-SVM, n was set to 500 (sampling
ratio n

m ' 0.02%). We used ν = 0.03 and the hyperparameter γ was set such that 1
γ was

equal to the product of variance and dimension of the zi.

3.3. Comparison to other detection methods

We compare our UAD pipeline to what is, to our knowledge, the best performing unsuper-
vised models for anomaly detection and segmentation on the WMH challenge dataset (Baur
et al., 2021; Pinaya et al., 2022).
VQVAE and Transformer Pinaya et al proposed to combine the discrete latent repre-
sentation of a Vector Quantized Variational Auto-Encoder (VQ-VAE) with a Transformer
(Vaswani et al., 2017) to perform anomaly detection by restoration of lesions on MRI im-
ages. The VQ-VAE (van den Oord et al., 2017) is trained to reconstruct whole 2D transverse
slices and learn a meaningful discrete latent representation vector of the data. In a second
step, the Transformer serves as an autoregressive model to learn the sequences of indices of
the quantized latent vectors on the ”normal” images only. For each element of the sequence,
if the probability of the encoding vector predicted by the autoregressive model is lower than
an arbitrary value, this vector is resampled. The new restored sequence then feeds the
decoder of the VQ-VAE to get the final image where it is assumed that the anomalies have
been “healed”. The error map between this output image and the original one is interpreted
as an anomaly score to segment the lesions in the brain. An additional step upsamples the
mask of the elements that have been resampled by the Transformer and uses it as a mask
to filter the residuals maps.
We adapt this approach to our context of experimentation, using the control dataset X
to train the models. The slices were padded to a size of 192x192 and we used the same
architectures for the VQ-VAE, resulting in a latent space of size 24x24x256. The same data
augmentation and learning parameters are used and the model was trained for 500 epochs
with a batch size of 128. During our experimentations, we found that using Performer
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(Choromanski et al., 2020) was less efficient and accurate than the regular Transformer, so
we chose the latter. It is composed of 8 layers, embedding size of 256 and was train trained
for 200 epochs with a batch size of 32, learning rate of 1e-4. The threshold for resampling
encoding vectors was set to 0.005. For computational limitations, the improvement induced
by the multiplication of pathways in latent space for the Transformer was not evaluated,
we only report performance achieved when using the basic raster order.
Auto-encoder The performances are also compared to the auto-encoder of (Baur et al.,
2021), which has the particularity to include two skip connections in the middle of the
network. Anomaly maps are obtained after applying a 5x5x5 median filter on the error
maps between the input and the associated reconstruction. The same data augmentation –
small random translation, contrast and intensity shifts – is applied on the padded slices and
the model is trained during 500 epochs with Adam optimizer with default hyperparameters
and a batch size of 128.
Multiple OC-SVM To assess the benefits of our patient-specific OC-SVM approach,
we use the latent representation obtained with a SAE on the control dataset to tune one
OC-SVM per voxel as in (Alaverdyan et al., 2020).

3.4. Evaluation methodology

For each method presented, we obtain an anomaly score map, whether it is the score of
the decision function of OC-SVM, the restoration error for the VQ-VAE + transformer or
the reconstruction error for the AE. We evaluate classical pixel-level metrics : the area
under the ROC curve (AU ROC), as well as the area under the precision recall curve (AU
PRC), which intrinsically takes into account large class imbalance and does not use the
false positive rate. We also compute the AU ROC corresponding to false positives rates
lower than 30% (AUC ROC 30) as in (Bergmann et al., 2021). Anomaly maps outlining
30% or more of FP voxels are indeed degenerated and of no use in the medical imaging
context where the anomalies take only a small portion of the total volume (0.35% in the
WMH database). The small lesional fraction also justifies the use of the ν-property used in
section 2.2. As in (Bergmann et al., 2021), we also investigate the area under the Per Region
Overlap curve (AU PRO), which reports variations of the average PRO as a function of
the FP rate, where the PRO is defined as the sensitivity of each individual lesion, and the
average PRO is the average values over all lesions in the patient. The PRO acts as a true
positive rate (sensitivity) normalized per lesion size, meaning a correctly detected small
lesion will count as much as a large one. This metric is particularly relevant in the context
of anomaly detection in medical imaging, where we want to detect every lesions regardless
of the size, unlike AU ROC which is biased towards detecting large lesions. Finally, as a
mean of comparison to (Pinaya et al., 2022), we also investigate the best achievable Dice,
which is simply the maximum value of the Dice metric obtained with the optimal threshold
applied on the score maps. Non parametric Kruskall-Wallis analysis of variance followed by
Dunn’s tests for multiple comparisons were performed to compare the different metrics.

4. Results

Visual assessment of the anomaly maps achieved by the UAD models is showcased on
Figure 2 and Appendix C. Table 1 reports performance achieved by our proposed SAE+OC-
SVM method with and without accounting for detections in the CSF (see section 2.3)
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3
hospitals

VQ-VAE
+ Transformer

(Pinaya)

AE
(Baur)

SAE
+ multiple
OC-SVM
(Alaverdyan)

SAE
+ OC-SVM
(Ours)

SAE
+OC-SVM
+CSF seg
(Ours)

AU ROC 0.69 ± 0.13 0.53 ± 0.09 0.52 ± 0.19 0.80 ± 0.09 0.81 ± 0.10

AU ROC 30 0.40 ± 0.20 0.20 ± 0.12 0.19 ± 0.16 0.48 ± 0.20 0.59 ± 0.17

AU PRC 0.065 ± 0.079 0.028 ± 0.030 0.023 ± 0.031 0.084 ± 0.099 0.165 ± 0.168

AU PRO 0.55 ± 0.10 0.50 ± 0.08 0.43 ± 0.17 0.71 ± 0.11 0.80 ± 0.07

AU PRO 30 0.19 ± 0.13 0.15 ± 0.07 0.09 ± 0.13 0.33 ± 0.18 0.48 ± 0.13

d Dice e 0.11 ± 0.10 0.06 ± 0.05 0.05 ± 0.05 0.14 ± 0.13 0.22 ± 0.17

Table 1: Mean metric on every patient from the 3 different hospitals for each method. In
bold are shown the best model and those for which the statistical difference with the best

model for Dunn’s test is not significative (p-value ≥ 0.01).

Input (T1 + FLAIR) Ground Truth VQ-VAE +
Transformer AE SAE + OC-SVM SAE + OC-SVM +

CSF seg 
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Figure 2: Showcase of the different methods studied on 3 examples from the 3 hospitals

compared to the methods presented in 3.3. Reported metrics correspond to the mean
values and standard deviations computed over the pooled 60 exams of the WMH training
database. On overall, performance of the SAE+ OC-SVM are better than all three other
methods for all the metrics.

As explained in section 2.3, we emphasize that the PRO metric, widely used in the
computer vision domain, is well-suited for the evaluation of outlier detection tasks. The
good PRO performance achieved with our model is thus a positive indicator of its capacity
to detect subtle brain anomalies.

Results of Table 1 show the benefits of tuning one OC-SVM per patient instead of one
per voxel, as it significantly improves the performances compared to (Alaverdyan et al.,
2020). They also indicate that both our method and the VQ-VAE+Transformer model
outperform the simple AE model proposed by (Baur et al., 2021). The two last columns of
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Table 1 underline the impact of the proposed post-processing on the SAE+OC-SVM model
(on Figure 2, 5th column, we see that our method is likely to generate false detections in
the CSF, especially in the ventricles). Reported performance are on overall higher when
applying the CSF mask, this is mainly due to a significant reduction of the false positive
rate that is not counterbalanced by the paired slight decrease in sensitivity due to the
imperfect segmentation of the ventricles encompassing some true lesions located on its
border. However, most of the statistical tests did not conclude that the observed differences
were significant. To further investigate the comparative performance of the 3 UAD models,
we report results achieved by each of the 3 hospitals (Amsterdam, Singapore and Utrecht)
in Tables 2, 3, 4, of Appendix A. This study is, as far as we know, the first to report such a
detailed analysis by institution. It shows that all the models see their performance decrease
on the Utrecht dataset. This could be due to a greater difference between the images in
this dataset and those of the control dataset, especially for FLAIR images, highlighting
the need to have more heterogeneous controls during the representation learning step to
build more robust models. Computation of the global mean lesional volume of each center,
however, indicates a dataset shift with mean values of 13495, 26123 and 29296 mm3 for the
Amsterdam, Singapore and Utrecht centers, respectively. One possible explanation might
thus be that our method does not perform well when data are characterized by a low lesional
load. This requires further investigation.

5. Discussion and Conclusion

The reported DICE-score and AUPRC in (Pinaya et al., 2022) (Dice = 0.269, AUPRC
= 0.158) and (Baur et al., 2021) (Dice=0.45 and AUPRC = 0.37) are much higher than
the values reported in this study. However, they do not compare since they were achieved
based on UAD models trained on FLAIR data only while we accounted for both T1 and
FLAIR (concatenated as 2 input channels) in this study. The significant performance
gap is also likely to be explained by methodological differences among the studies. As an
example, training of the VQ-VAE + transformer models in (Pinaya et al., 2022) is based on
a selection of more than 15 000 FLAIR ”normal” volumes from the UK Biobank database,
some of them containing WMH lesions. This training dataset, constituted of the 4 central
slices of each volume, is thus highly different from ours based on 75 3D volumes of healthy
controls (including all transverse slices) who do not contain any WMH lesion. Training
of the Pinaya and Baur UAD models in this study included data augmentation focused on
intensity scaling and contrast adjustment, unlike ours. Such a strategy may help accounting
for the distribution shifts observed among images acquired on the 4 different scanners as
reported in Figure 3. As stated in the Introduction, our main purpose was to provide a
fair comparison between the different UAD models by training and testing these models
on the same datasets as well as using the same evaluation metrics and strategy. This
study demonstrated very promising performance of the proposed SAE+OC-SVM model in
par with state-of-the art UAD models. Further work will focus on implementing domain
adaptation strategies to account for data distribution shift among the different clinical
centers, as well as evaluating performance achieved with the FLAIR data only.

8



OC-SVM and siamese network for anomaly detection on WMH

Acknowledgments

This work was granted access to the HPC resources of IDRIS under the allocation 2022-
AD011012813R1 made by GENCI. It was partially funded by French program “Investisse-
ment d’Avenir” run by the Agence Nationale pour la Recherche (ANR-11-INBS-0006).

References

Z. Alaverdyan, J. Jung, R. Bouet, and C. Lartizien. Regularized siamese neural network
for unsupervised outlier detection on brain multiparametric magnetic resonance imaging:
Application to epilepsy lesion screening. Medical Image Analysis, 60:101618, 2020. doi:
10.1016/j.media.2019.101618.

John Ashburner and Karl J. Friston. Unified segmentation. NeuroImage, 26:839–851, 2005.

C. Baur, S. Denner, B. Wiestler, N. Navab, and S. Albarqouni. Autoencoders for unsuper-
vised anomaly segmentation in brain MR images: A comparative study. Medical Image
Analysis, 69, 2021. doi: https://doi.org/10.1016/j.media.2020.101952.

P. Bergmann, P. Kilian, F. Michael, S. David, and S. Carsten. The MVTec Anomaly
Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly
Detection. 129:1038–1059, April 2021. ISSN 0920-5691, 1573-1405. doi: 10.1007/
s11263-020-01400-4.

K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller. Rethinking
attention with performers, 2020.

Alexander Hammers, Richard Allom, Matthias J. Koepp, Samantha L. Free, Ralph My-
ers, Louis Lemieux, Tejal N. Mitchell, David J. Brooks, and John S. Duncan. Three-
dimensional maximum probability atlas of the human brain, with particular refer-
ence to the temporal lobe. Human Brain Mapping, 19(4):224–247, 2003. doi: https:
//doi.org/10.1002/hbm.10123.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015.

F. Meissen, B. Wiestler, G. Kaissis, and D. Rueckert. On the pitfalls of using the residual
as anomaly score. In Medical Imaging with Deep Learning, 2022.

I. Mérida, J. Jung, S. Bouvard, D. Le Bars, S. Lancelot, F. Lavenne, C. Bouillot, J. Redouté,
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Appendix A. Metrics tables for the 3 different hospitals

Amsterdam
VQ-VAE

+ Transformer
(Pinaya)

AE
(Baur)

SAE
+ multiple
OC-SVM
(Alaverdyan)

SAE
+ OC-SVM
(Ours)

SAE
+OC-SVM
+CSF seg
(Ours)
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Table 2: Mean metric on every patient from the Amsterdam hospital for each method. In
bold are shown the best model and those for which the statistical difference with the best

model for Dunn’s test is not significative (p-value ≥ 0.01).

Singapore
VQ-VAE

+ Transformer
(Pinaya)

AE
(Baur)

SAE
+ multiple
OC-SVM
(Alaverdyan)

SAE
+ OC-SVM
(Ours)

SAE
+OC-SVM
+CSF seg
(Ours)

AU ROC 0.73 ± 0.11 0.46 ± 0.03 0.51 ± 0.20 0.81 ± 0.09 0.84 ± 0.09

AU ROC 30 0.44 ± 0.15 0.13 ± 0.02 0.19 ± 0.19 0.49 ± 0.20 0.64 ± 0.18

AU PRC 0.074 ± 0.071 0.018 ± 0.014 0.034 ± 0.045 0.090 ± 0.085 0.212 ± 0.160

AU PRO 0.54 ± 0.07 0.45 ± 0.04 0.47 ± 0.20 0.75 ± 0.09 0.84 ± 0.05

AU PRO 30 0.17 ± 0.07 0.10 ± 0.04 0.12 ± 0.17 0.37 ± 0.16 0.55 ± 0.09

d Dice e 0.14 ± 0.11 0.04 ± 0.03 0.06 ± 0.07 0.16 ± 0.12 0.27 ± 0.17

Table 3: Mean metric on every patient from the Singapore hospital for each method. In
bold are shown the best model and those for which the statistical difference with the best

model for Dunn’s test is not significative (p-value ≥ 0.01).

Utrecht
VQ-VAE

+ Transformer
(Pinaya)

AE
(Baur)

SAE
+ multiple
OC-SVM
(Alaverdyan)

SAE
+ OC-SVM
(Ours)

SAE
+OC-SVM
+CSF seg
(Ours)

AU ROC 0.58 ± 0.11 0.49 ± 0.06 0.45 ± 0.16 0.76 ± 0.08 0.75 ± 0.10

AU ROC 30 0.22 ± 0.12 0.13 ± 0.04 0.12 ± 0.11 0.39 ± 0.13 0.49 ± 0.12

AU PRC * 0.038 ± 0.042 0.019 ± 0.016 0.020 ± 0.017 0.062 ± 0.070 0.091 ± 0.094

AU PRO 0.44 ± 0.04 0.58 ± 0.08 0.41 ± 0.14 0.71 ± 0.11 0.78 ± 0.05

AU PRO 30 0.07 ± 0.02 0.20 ± 0.07 0.06 ± 0.06 0.35 ± 0.15 0.46 ± 0.10

d Dice e * 0.07 ± 0.07 0.04 ± 0.04 0.05 ± 0.04 0.11 ± 0.10 0.14 ± 0.12

Table 4: Mean metric on every patient from the Utrecht hospital for each method. In bold
are shown the best model and those for which the statistical difference with the best

model for Dunn’s test is not significative (p-value ≥ 0.01).
* : Non-significant Kruskal–Wallis test (no best model)
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Appendix B. Databases overview

Figure 3: Examples cases of T1 and FLAIR images of the control database and of the 3
hospitals sharing data thhough the WMH database
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Appendix C. Additional results visualization
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Figure 4: Showcase of the different methods studied on 3 examples (different from figure
2) from the 3 hospitals

Input (T1 + FLAIR) Ground Truth VQ-VAE +
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Figure 5: Showcase of the different methods studied on 3 examples (different from figure 2
and 4) from the 3 hospitals
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Appendix D. Influence of the patch size on SAE+OCSVM performances

As to study the influence of the patch size on our method, we ran additional experiments
with patch size 9x9, 21x21 and 27x27 to complete the main method with patch size 15x15.
Results are reported bellow. Please note that for the 9x9 experiment we had to tweak the
auto-encoder by removing the maxpooling and upsampling blocks.

3
hospitals

SAE + OCSVM
(9x9)

SAE + OCSVM
(15x15)

SAE + OCSVM
(21x21)

SAE + OCSVM
(27x27)

AU ROC * 0.81 ± 0.14 0.80 ± 0.09 0.78 ± 0.09 0.75 ± 0.12

AU ROC 30 * 0.53 ± 0.25 0.48 ± 0.20 0.48 ± 0.16 0.41 ± 0.19

AU PRC * 0.150 ± 0.171 0.084 ± 0.099 0.094 ±0.098 0.056 ± 0.062

AU PRO 0.70 ± 0.14 0.71 ± 0.11 0.71 ± 0.11 0.61 ± 0.13

AU PRO 30 0.34 ± 0.20 0.33 ± 0.18 0.35 ± 0.16 0.22 ± 0.15

d Dice e * 0.20 ± 0.18 0.14 ± 0.13 0.15 ± 0.13 0.10 ± 0.09

Table 5: Mean metric on every patient from the 3 different hospitals for each method. In
bold are shown the best model and those for which the statistical difference with the best

model for Dunn’s test is not significative (p-value ≥ 0.01).
* : Non-significant Kruskal–Wallis test (no best model)

Appendix E. Pre-processing and CSF segmentation detailed steps

Pre-proccessing Preprocessing of the T1w MR images was performed based on the
reference methods implemented in SPM12. The spatial normalization was performed using
the unified segmentation algorithm (UniSeg) (Ashburner and Friston, 2005) which includes
segmentation of the different tissue types, namely grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF), correction for magnetic field inhomogeneities and spatial
normalization to the standard brain template of the Montreal Neurological Institute (MNI).
In this work, we used the default parameters for normalization and a voxel size of 1 × 1 ×
1 mm. Next, FLAIR image of each subject was rigidly co-registered to its corresponding
individual T1w MR image in the native space and then transformed to the MNI space by
applying the transformation field produced by the UniSeg algorithm on the T1w image.

The cerebellum and brain stem were excluded from the spatially normalized images. The
masking image in the reference MNI space was derived from the Hammersmith maximum
probability atlas (Hammers et al., 2003).

On top of that, each image X was intensity-normalized into Xnorm with : Xnorm =
X−min(X)

max(X)−min(X) .

CSF segmentation
As stated in section 2.3, we used the FMRIB’s Automated Segmentation Tool (FAST)

by (Zhang et al., 2001) to segment the grey and white matter, allowing us to exclude the
CSF from the anomaly maps, as we found a high number of false positive in our method
belong in these regions.
FAST is here used to provide two CSF segmentation maps, one based on the T1 image and
the second based on the T1 and FLAIR images. The union of the two segmentations, after
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being masked by a gross brain segmentation to remove the skull, is then processed with
some basic mathematical morphology operators, namely : two dilatations followed by two
erosions, using a basic cross-shaped structuring element of width 1 voxel. A last erosion
on the convex hull of the segmentation is performed to remove a thin outer border of the
cortex. Note that this whole processing is done in 3D.
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