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Abstract

In social and economic surveys, it can be difficult to directly reach
units of the target population, and indirect sampling is often advocated
to solve this issue. In indirect sampling, the sample is drawn from a frame
population that is linked to the target population, and estimation of tar-
get population parameters is typically achieved through the Generalized
Weight Share Method (GWSM). This method provides a weight, for every
unit of the target population, that depends on the one hand, on the sam-
pling weights in the frame population and, on the other hand, on the link
weights between the frame population and the target population. In the
present study, we focus on the situation in which the units from the frame
population are linked to one and only one unit from the target population
(Many-to-One case). This situation is encountered at the French postal
service where addresses are sampled instead of postman rounds. We aim
at understanding of the impact of the link weights on the efficiency of the
GWSM estimators. We derive variance expressions and optimality results
for a large class of sampling designs. Moreover, we note that the Many-to-
One case can lead to too many links to observe. We alleviate the problem
by introducing an intermediate population and double indirect sampling.
The question of the loss of precision in this situation is discussed in detail
through theoretical results and simulations. These findings help to ex-
plain the loss of precision of double GWSM estimators observed recently
at the French postal service.

Keywords: Generalized Weight Share Method, Optimal link weights, Stratified

sampling, Variance estimation
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1 Introduction

In France, at the postal service (La Poste), only part of the postal traffic goes
though an automatized processing. The monthly postal traffic is unknown and
is estimated through probability-based surveys. For many years, La Poste has
drawn samples directly in the population of postman rounds, which is consid-
ered to be the population of interest or the target population. Since 2008,
the organization of postman rounds has changed and is no longer stable over
time. Sampling directly in the target population has become impossible, and
the sampling design has evolved to an indirect sampling design where the frame
population is the population of postal addresses.

Indirect sampling has been extensively studied in the survey sampling liter-
ature; see Deville and Lavallée (2006), Lavallée (2007), Kiesl (2016) and Haziza
and Beaumont (2017) for a general theory and reviews with many references
inside. As described in Kiesl (2016), indirect sampling has many applications,
including household panels: Kalton and Brick (1995); Rendtel and Harms (2009)
and hard-to-reach populations: Deville and Maumy-Bertrand (2006) for tourism
and De Vitiis et al. (2014) for the homeless population. The use of indirect
sampling at La Poste, has been introduced in Dessertaine and Fluteaux (2004)
and Lardin-Puech (2014). A useful estimation method in the context of indi-
rect sampling is the Generalized Weight Share Method (GWSM), as detailed in
Deville and Lavallée (2006). It consists of using the links that relate the frame
and the target populations, and considering a total over the target population
to be a total over the frame population. The use of standard methods, such as
the Horvitz-Thompson estimator, is then possible and leads to the GWSM esti-
mator. Kalton and Brick (1995), Deville and Lavallée (2006) and Kiesl (2016),
among others, studied in detail the properties of the GWSM estimator, and
in particular the question of the impact of the link structure and link weights
on its variance. Optimality, in the sense of variance minimization with respect
to the link weights for unbiased GWSM estimators, is discussed at length in
Deville and Lavallée (2006). The conclusion is that optimal GWSM estimators,
that do not depend on the variable of interest, cannot be derived for general
link structure. In the present study, we propose to focus on a particular link
structure described below that is of interest at La Poste, and go further into the
understanding of indirect sampling.

At the French postal service, every postal address is linked to only one post-
man round for a given day. This link structure is of a particular type, called
Many-to-One (MtO), where each unit in the frame population is linked to one
and only one unit in the target population. This situation is also encountered in
households surveys where individuals are sampled instead of households. This
link structure is studied in detail in the present paper. We derive the optimal
GWSM estimator that minimizes the variance among the unbiased GWSM es-
timators, for a large class of indirect MtO sampling designs. This class includes
Poisson sampling, simple random sampling without replacement, and stratified
designs, including the design implemented at La Poste. Moreover, we derive a
simple formula to evaluate the increase in variance when using a non-optimal
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GWSM estimator compared to the optimal one.
The weight share method is simple but requires that the links between the

indirectly sampled units in the target population, and the frame population,
are known. The problem faced by the French postal service with MtO links,
is that every unit in the target population is linked to a very large number
of units in the sampling frame. At La Poste, all addresses delivered during a
sampled postman round must be known. On average, there are approximately
500 addresses per postman round, and it is not possible to enumerate all of the
addresses in the morning, before the departure of the postman.

To get around this problem, La Poste has set up a double indirect sampling
design, using the outgoing mail sorting boxes as an intermediate population.
This method is much faster than simple indirect sampling. Only the addresses
of the sampled boxes and the boxes of the sampled rounds are to be observed,
which is approximately 60 items on average, compared to the 500 for simple
indirect sampling. Given the situation at La Poste, double indirect sampling
is an alternative to a time consuming simple indirect sampling design. This
alternative is necessary to be able to collect the data. However, using this
method, La Poste observed a deterioration in the precision of the estimators.
The goal of the present paper is to understand the loss of precision observed
at La Poste, but also to give guidelines for the implementation of an efficient
double indirect sampling design.

In Section 2 of the present paper, we consider a large class of indirect MtO
sampling designs. We derive the optimal GWSM estimator and give a simple
expression of the difference in the variances between the optimal GWSM esti-
mator and any non-optimal unbiased GWSM estimator. For Poisson sampling,
we also prove that the optimal GWSM estimator is less precise than the direct
estimator. The result on optimal GWSM estimator is used in Section 3, where
we introduce and compare double indirect MtO sampling with simple indirect
MtO sampling with optimal link weights. In the same section, we detail situa-
tions where there is a gain, in terms of the smaller number of links to observe,
from using double indirect sampling compared to simple indirect sampling. In
Section 4, we define several setups and illustrate, through a Monte Carlo study,
the impact of double indirect sampling on the precision of the estimators. De-
pending on the link structure, we observe that there could be no loss at all,
or, on the contrary, an enormous loss of precision. In Section 5, we also give
numerical results in a context similar to La Poste. These results allow us to
explain the loss of precision observed at La Poste, when using a double indirect
sampling design compared to a simple direct sampling design. Section 6 con-
cludes the paper while the proofs are given in the Appendix.
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2 Indirect sampling

2.1 GWSM

In some surveys, it is not possible to sample directly from the target population
UT . However, a sampling frame can exist for a population UF , that is related
to UT in such a way that any unit in UT is linked to at least one unit in UF .
Indirect sampling refers to selecting a sample sF from UF by using standard
selection methods and derive estimators for parameters defined on UT . In the
case of the La Poste survey, the population of interest is made of postman
rounds on a given day in France, but no sampling frame for the rounds exists.
A sampling frame for postal addresses is however available, and each postman
round contains at least one address.

Let us denote by NT (resp. NF ) the size of UT (resp. UF ) and by lik the
link between i ∈ UF and k ∈ UT , with lik = 1 if the units i and k are linked,
and lik = 0 otherwise. Units from UF can be linked in several ways to units
from UT (Deville and Lavallée, 2006). We can have “Many-to-One” (MtO) links
as on the left panel of Figure 1, namely each unit from the frame population
UF is linked to only one unit from the target population UT . We can have
”One-to-Many” links as on the middle panel of Figure 1, namely each unit from
UT is linked to only one unit from UF . Finally, we can have “Many-to-Many”
(MtM) links as on the right panel of Figure 1, with units from UF linked to
several units in UT and reciprocally. In the La Poste survey, an address almost
always belongs to only one round and the links are MtO. Following Deville and
Lavallée (2006), we start by making the assumption that the links between UF
and UT can be observed for every unit in UF and every unit in UT .

Figure 1: The different types of links between UF and UT .

Let y be the variable of interest measured on UT , and let yk be its value
for the k-th unit in UT . We are interested in estimating ty =

∑
k∈UT

yk, the
total of y over UT . A sample sF is drawn from UF according to a sampling
design pF (·). We can associate to sF the vector (I1, . . . , INF

)′ where Ii is the
sample membership indicator of the individual i from UF defined as Ii = 1 if
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i is selected and Ii = 0 otherwise. We denote by πi = Pr(i ∈ sF ) the first-
order inclusion probability of unit i and by πii′ = Pr(i, i′ ∈ sF ) the second-
order inclusion probability of units i and i′. We suppose that all of the units i
have a positive inclusion probability πi > 0 and we denote by di = 1/πi their
sampling weights. Two standard sampling designs are considered in the present
paper: simple random sampling without replacement (SRSWOR) of size nF ,
and Poisson design with inclusion probabilities πi, i ∈ UF . For SRSWOR, pF
assigns an equal probability to all without replacement samples of size nF and
zero otherwise. The sampling weights are equal to di = NF /nF for all i in
UF . For Poisson sampling, the variables Ii’s are independent and distributed as
Bernoulli random variables with parameter πi.

The sample sF in UF leads to a sample sT in UT , which is made of the
units in UT linked to at least one unit in sF . However, the sampling design
pT (·) which governs the selection of sT , as well as the associated first-order
inclusion probabilities, may be difficult to derive (Deville and Lavallée, 2006).
Fortunately, as we will see in the next paragraph, for the GWSM estimators only
pF (·) and the associated inclusion probabilities are needed for the estimation of
ty and pT (·) will not be used.

Consider, for all i ∈ UF and k ∈ UT , some non negative link weight θik
associated to the link lik between UF and UT , such that θik is positive when
lik = 1 and θik = 0 otherwise. We define the standardized link weights θ̃ik =
θik/

∑
i′∈UF

θi′k which satisfy the constraint
∑
i∈UF

θ̃ik = 1. To compute the

standardized link weights θ̃ik for a given k in UT , one needs to know
∑
i∈UF

θik,
which implies that the units i in UF linked with k must be known. We can
take as an example θik = lik, and in this case, standardization implies that
the number of units i in UF linked with k is known. More general weights can
also be considered; see Deville and Lavallée (2006) and Haziza and Beaumont
(2017). The total ty can then be written as the total on UF of the variable∑
k∈UT

θ̃ikyk, i ∈ UF , as follows:

ty =
∑
k∈UT

yk =
∑
k∈UT

(∑
i∈UF

θ̃ik

)
yk =

∑
i∈UF

(∑
k∈UT

θ̃ikyk

)
.

The estimation of ty can be obtained by considering standard estimators based
on the sample sF selected from UF . The Horvitz-Thompson (HT) estimator of
ty is given by

t̂y1 =
∑
i∈sF

di

(∑
k∈UT

θ̃ikyk

)
(1)

and it estimates unbiasedly the total ty, provided that the link weights θ̃ik, i ∈
UF , are standardized. This estimator is the Generalized Weight Share Method
(GWSM) estimator, and it was studied by Deville and Lavallée (2006). It can
also be written as follows:

t̂y1 =
∑
k∈UT

t̂θ̃kyk
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where t̂θ̃k =
∑
i∈sF

diθ̃ik is the HT estimator of the total tθ̃k =
∑
i∈UF

θ̃ik = 1, for

all k in UT . To calculate t̂y1, we only need to standardize the link weights that
correspond to the sampled units k in UT .

Let us denote

∆ii′ =
πii′ − πiπi′

πiπi′
, i, i′ ∈ UF .

The variance of the GWSM estimator t̂y1 is given by:

Var(t̂y1) =
∑
i∈UF

∑
i′∈UF

∆ii′

∑
k∈UT

θ̃ikyk
∑
k′∈UT

θ̃i′k′yk′ .

Interestingly, this variance can be rewritten as:

Var(t̂y1) =
∑
k∈UT

∑
k′∈UT

ykyk′ Cov(t̂θ̃k , t̂θ̃k′ ), (2)

where
Cov(t̂θ̃k , t̂θ̃k′ ) =

∑
i∈UF

∑
i′∈UF

∆ii′ θ̃ikθ̃i′k′ .

The variance expression (2) is similar to the variance in the case of a direct sam-
pling design on UT . However, while for direct sampling, the covariance involved
in the double sum is between the sample membership indicators weighted by
the sampling weights, for indirect sampling, the covariance is between the HT
estimators of the link weights totals.

Deville and Lavallée (2006) were interested in finding the optimal weights
θ̃optik that minimize the variance Var(t̂y1) for any survey variable y, namely

Var(t̂opty1 ) ≤ Var(t̂y1), for all y, (3)

where

t̂opty1 =
∑
i∈sF

di

(∑
k∈UT

θ̃optik yk

)

is the GWSM estimator obtained by using the optimal link weights θ̃optik , i ∈
UF , k ∈ UT . Such a criterion is called strong optimality criterion and the opti-
mal weights derived in this way, if they exist, should not depend on the survey
variable y. However, the optimal link weights satisfying (3) might not exist, even
for particular sampling designs such as Poisson or SRSWOR sampling designs
(see Deville and Lavallée, 2006). Therefore, Deville and Lavallée (2006) sug-
gested the weak optimality criterion which consists in finding the weak-optimal
weights θ̃woptik which minimize the variance Var(t̂y1) for the particular variables
y such that yk = 1 for a unit k ∈ UT and yk′ = 0 for k′ 6= k ∈ UT . We obtain
for these particular variables:

t̂y1 =
∑
i∈sF

diθ̃ik = t̂θ̃k .
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Thus, the weak-optimal weights θ̃woptik are the weights that minimize the variance
of t̂θ̃k :

(θ̃woptik )i∈UF
= arg min

θ̃ik,i∈UF

Var(t̂θ̃k), for all k ∈ UT . (4)

Deville and Lavallée (2006) derived weak-optimal link weights for Poisson and
SRSWOR, and noticed that the weak optimality is a necessary condition for
strong optimality.

2.2 MtO links and optimal weight links

The strong minimization problem previously mentioned becomes easier to han-
dle when the links between UF and UT are Many-to-One. With MtO links,
every unit from UF is linked to only one unit from UT , and we can order the
units in UF with respect to their common linked unit in UT . For a given unit
k ∈ UT , let us denote by UFk, with size NFk =

∑
i∈UF

lik, the set of units i
in UF that are linked to k. In what follows, we consider that units in UF are
ordered according to these subpopulations. Let ∆ = (∆ii′)i,i′∈UF

be the ma-
trix of size NF ×NF . Thanks to this ordering, we can consider the submatrix
∆kk′ = (∆ii′)i∈UFk,i′∈UFk′

of ∆ corresponding to elements in positions i and i′

such that i (resp. i′) is linked to k (resp. k′), for all k (resp. k′) in UT . For
simplicity, we denote ∆k the ∆kk square submatrix with size NFk. With MtO
links, the submatrices ∆kk′ , k, k

′ ∈ UT , form a partition of ∆, namely

∆ = (∆kk′)k,k′∈UT
.

Let 1k be the NFk-dimensional vector of ones. For MtO links, a sampling
design is said to satisfy the ∆-property if, for all k ∈ UT , ∆k is invertible and,
for k 6= k′ ∈ UT , we have

∆k,k′ 6=k = ckk′1k1
t
k′ with ckk′ not depending on i and i′. (5)

The ∆-property holds for Poisson sampling, SRSWOR and stratified SR-
SWOR under conditions detailed below.

For Poisson sampling from UF with inclusion probabilities πi, i ∈ UF , ∆k is
diagonal with positive terms, thus invertible, and ckk′ = 0 for all k 6= k′ ∈ UT .
For SRSWOR of size nF from UF , ∆k is invertible as soon as NT > 1, as can
be seen in Deville and Lavallée (2006), page 174. If we denote f = nF /NF , we
have

ckk′ = −1− f
f

1

NF − 1
,

which does not depend on i and i′, for all k 6= k′ ∈ UT . For stratified SRSWOR
with H strata of size Nh in UF , h = 1, . . . ,H, let us denote fh = nh/Nh. The
submatrix ∆k,k′ 6=k cannot generally be written as ckk′1k1

t
k′ , especially if k is

linked to one unit i from stratum h and one unit i′ from stratum h′ 6= h. The
∆-property holds if we assume that, for all k in UT , all units i linked to k belong
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to the same stratum h and if, for each stratum h, there are at least two units
of UT linked to h. Then ∆k is invertible, and we have

ckk′ =


−1− fh

fh

1

Nh − 1
, if all units in UF linked to k and k′ are in the same stratum h

0 otherwise.

Thus, ckk′ does not depend on i and i′, for all k 6= k′ ∈ UT .

The first part of Proposition 2.1 gives an expression of the variance of the
GWSM estimator while the second part gives the optimal link weights, in the
MtO case, for sampling designs that satisfy the ∆-property.

Proposition 2.1. If the links are MtO and the sampling design satisfies the
∆-property, then:

Var(t̂y1) =
∑
k∈UT

y2kVar(t̂θ̃k) +
∑
k∈UT

∑
k′ 6=k∈UT

ykyk′ckk′ . (6)

where t̂θ̃k =
∑
i∈sF diθ̃ik is the HT estimator of the total tθ̃k = 1 for all k ∈ UT .

Moreover, the optimal link weights verifying the strong-optimality criterion
given in (3) are given by

(θ̃optik )i∈UFk
= ∆−1k 1k

(
1tk∆

−1
k 1k

)−1
, for all k ∈ UT .

The second term in the right-hand term of (6), does not depend on the link
weights. As a consequence, minimizing the variance of t̂y1, regardless of the
variable y is, is equivalent to minimizing Var(t̂θ̃k) for all k in UT . Using the
terminology introduced by Deville and Lavallée (2006) (see also relations (3) and
(4)), this result means that, for MtO links and sampling designs that satisfy
the ∆-property, weak -optimality of the link weights is equivalent to strong-
optimality and the link weights will be simply called optimal in the following.

For Poisson sampling, we have ∆ii = (1−πi)/πi and the optimal link weights
are equal to:

θ̃optik =
lik/∆ii∑

i′∈UF
li′k/∆i′i′

, (7)

for all i ∈ UF and k ∈ UT . For SRSWOR sampling, the optimal link weights
are equal to θ̃optik = lik/

∑
i′∈UF

li′k, for all i ∈ UF and k ∈ UT . Details on the
derivation of these optimal link weights can be found in Deville and Lavallée
(2006). For stratified SRSWOR with the assumptions previously mentioned, it
is easy to prove that the optimal link weights are the same as those for SR-
SWOR by following the proof in Deville and Lavallée (2006).

Consider now the GWSM estimator t̂y1 given in (1) and computed with

some standardized link weights θ̃ik, i ∈ UF , k ∈ UT . Consider also the optimal
GWSM estimator denoted by t̂opty1 , and computed with the optimal link weights
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θ̃optik . For MtO links and designs that satisfy the ∆-property, it is possible to

derive a new formula for the loss of efficiency between t̂y1 and t̂opty1 . This loss
can be expressed as a simple function of the variances of the HT estimator of
tθ̃k−θ̃optk

=
∑
i∈UF

(θ̃ik − θ̃optik ) = 0, k in UT .

Proposition 2.2. If the links are MtO and the sampling design satisfies the
∆-property, then the loss of efficiency compared with optimal link weights θ̃optik ,
i ∈ UF , k ∈ UT , is given by:

Var(t̂y1)−Var(t̂opty1 ) =
∑
k∈UT

y2kVar(t̂θ̃k − t̂θ̃optk
) =

∑
k∈UT

y2kVar(t̂θ̃k−θ̃optk
),

where t̂θ̃optk
=
∑
i∈sF diθ̃

opt
ik is the HT estimator of the total tθ̃optk

=
∑
i∈UF

θ̃optik =

1, and t̂θ̃k−θ̃optk
=
∑
i∈sF di(θ̃ik− θ̃

opt
ik ) is the HT estimator of the total tθ̃k−θ̃optk

=

0, for all k ∈ UT .

As mentioned before, the matrices ∆ derived with Poisson and SRSWOR
designs satisfy the ∆-property. Thus, we can compute easily the loss of efficiency
between t̂y1 and t̂opty1 as formulated in the following corollary.

Corollary 2.1. If the links are MtO and if the sampling designs are Poisson
or SRSWOR, then the loss in efficiency between t̂y1 and t̂opty1 has the expression
given in Proposition 2.2. For Poisson sampling, we have:

Var(t̂y1)−Var(t̂opty1 ) =
∑
k∈UT

y2k
∑
i∈UF

1− πi
πi

(θ̃ik − θ̃optik )2.

For SRSWOR, we have:

Var(t̂y1)−Var(t̂opty1 ) = c
∑
k∈UT

y2k
∑
i∈UF

(θ̃ik − θ̃optik )2,

where c = N2
F

(
1

nF
− 1

NF

)
1

NF − 1
.

The previous expression for SRSWOR can be easily adapted to stratified
SRSWOR under the assumptions mentioned previously.

2.3 Comparison of direct and optimal indirect MtO sam-
pling designs

It is not possible to compare theoretically the variances of simple indirect and
direct estimators for general sampling designs even if we restrict ourselves to
MtO links.

However, for Poisson sampling, we prove in Proposition 2.3 that the vari-
ance of the direct HT estimator is always smaller than the variance of the simple
GWSM estimator when using optimal link weights. Let us consider a Poisson
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sampling design in UF with first-order inclusion probabilities πi, i ∈ UF . Be-
cause of the independence between the inclusion indicators, this sampling design
induces a Poisson sampling design on UT . Accounting for the MtO links be-
tween UF and UT , we can calculate the probability of inclusion of every unit
k ∈ UT . We have that

πk = P ( at least one i ∈ UF linked to k is sampled in sF ) = 1−Πi∈UF
(1−πi)lik .

Proposition 2.3. Let us consider a sample sF drawn in a population UF , using
a Poisson sampling design with inclusion probabilities 0 < πi < 1. Let UT be an-
other population associated to UF through MtO links lik. The sample sT deduced
from sF using the MtO links between UF and UT can be considered as drawn in
UT , using Poisson sampling with inclusion probabilities πk = 1−Πi∈UF

(1−πi)lik .
The variance of the direct HT estimator, t̂y =

∑
k∈sT yk/πk, is smaller than the

variance of the GWSM estimator t̂opty1 =
∑
i∈sF

∑
k∈UT

θ̃optik yk/πi calculated with
optimal link weights given in Equation (7).

As already stated, for Poisson sampling and MtO links, the optimal link
weights lead to the smallest possible variance of the simple GWSM estimator
for any variable of interest. So, under the assumptions of Proposition 2.3, the
simple indirect estimator is always less precise than the direct estimator.

The MtO case is interesting because it is possible, at least for Poisson sam-
pling, to compare the direct and the indirect sampling designs. Moreover, for
several standard sampling designs, it is possible to define optimal link weights
and to calculate the exact loss of precision when using non-optimal link weights.
However, when the number of units in the frame population linked with a unit
in the target population is large, all of the links might be not observable, and
an MtO indirect sampling could be very costly or even unfeasible. This problem
arises for the La Poste survey in which the number of addresses per postman
round is 500, on average, and where it is not possible to enumerate all addresses
before the departure of the postman in the morning. One solution is to use a
double indirect sampling design as detailed in the next section.

3 Double indirect sampling

3.1 Double GWSM

Double indirect sampling or indirect sampling in two steps (see Deville and
Lavallée, 2006) consists of introducing an intermediate population UM in be-
tween the frame and the target populations, and using the same principle as
for simple indirect sampling. There could be various reasons for introducing
such a population. One reason could be that the target population UT units are
only reachable through UM . Another reason could be to simplify derivations.
For example, Deville and Lavallée (2006) introduces an artificial intermediate
population to simplify the search of an optimal standardized link matrix. In
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the La Poste survey, the objective is rather to decrease the number of links
to observe. At La Poste, the intermediate population is a population of mail
sorting boxes. Every morning, postmen sort the letters into boxes and deliver
the letters from their allocated boxes (see Figure 2). The population of boxes
is used as an intermediate population UM to link the addresses from the frame
population UF to the postman rounds from the target population UT .

Figure 2: The frame, intermediate and target populations at La Poste.

Let NM be the size of the intermediate population UM . Let lFM
ij be the link

between i ∈ UF and j ∈ UM and let lMT

jk be the link between j ∈ UM and
k ∈ UT . A unit i from the frame population UF could be linked to a unit k
from the target population UT by means of the unit j from the intermediate
population. The three populations UF , UM and UT could be linked in various
ways, as in simple indirect sampling with MtO, OtM and MtM links (see Figure
1).

As in Section 2, we consider non negative link weights θik associated with
the links lik between UF and UT such that θik is positive when lik = 1 and
θik = 0 otherwise. We consider also the non negative weights θFM

ij associated
with the links lFM

ij between UF and UM such that θFM
ij is positive when lFM

ij = 1
and θFM

ij = 0 otherwise. Finally, θMT

jk are non negative weights associated with
the links between UM and UT and are defined in a similar way. With this double
indirect sampling design, it can be seen that the links between units i from UF
and k from UT are weighted by

∑
j∈UM

θFM
ij θMT

jk , and this link weight could be
different from the link weight θik used in simple indirect sampling.

Let θ̃ik be the standardized link weight used in simple indirect sampling
from UF to UT , namely

∑
i∈UF

θ̃ik = 1 for all k ∈ UT . We denote by θ̃FM
ij ,

respectively θ̃MT

jk , the link weights between UF and UM , respectively UM and
UT , such that the link weights used in double indirect sampling between the
frame population UF and the target population UT are normalized, namely∑
i∈UF

∑
j∈UM

θ̃FM
ij θ̃MT

jk = 1 for all k ∈ UT . Note that this standardization does

not require us to standardize each set of links θ̃FM
ij and θ̃MT

jk . However, to obtain
these standardized link weights, for a given k in UT , one needs to know the sum
of the link weights of units from UF linked to k passing by the intermediate
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population UM , namely
∑
i∈UF

∑
j∈UM

θFM
ij θMT

jk should be known. The finite
population total ty of y can then be written as a total on the frame population
UF as follows:

ty =
∑
k∈UT

yk =
∑
k∈UT

∑
i∈UF

∑
j∈UM

θ̃FM

ij θ̃MT

jk

 yk =
∑
i∈UF

∑
k∈UT

∑
j∈UM

θ̃FM

ij θ̃MT

jk yk

 .

An estimator of ty can be derived easily by using the unbiased HT estimator as
follows:

t̂y2 =
∑
i∈sF

di

∑
k∈UT

∑
j∈UM

θ̃FM

ij θ̃MT

jk yk

 . (8)

We call t̂y2 the double GWSM estimator, and its variance is given by:

Var(t̂y2) =
∑

i,i′∈UF

∆ii′

∑
k∈UT

∑
j∈UM

θ̃FM

ij θ̃MT

jk yk
∑
k′∈UT

∑
j′∈UM

θ̃FM

i′j′ θ̃
MT

j′k′yk′ .

3.2 MtO links

In this subsection, we focus on MtO links between the frame and the target
populations. Comparing expressions (1) and (8), we can deduce that the double
GWSM estimator t̂y2 can be viewed as a simple GWSM estimator with link

weights θ̃ik =
∑
j∈UM

θ̃FM
ij θ̃MT

jk .
Assuming that the sampling design verifies the ∆-property, we can apply

Proposition 2.2 to determine the differences of the variances between double and
simple GWSM. Thus, Proposition 2.2 shows that, for any variable of interest y,
the optimal simple GWSM estimator is always better than the double GWSM
estimator. The loss of efficiency of the double GWSM estimator with respect
to the optimal simple GWSM estimator depends on the variances of the HT
estimators

∑
i∈sF di(

∑
j∈UM

θ̃FM
ij θ̃MT

jk − θ̃
opt
ik ) for k ∈ UT . This loss depends on

the configuration of the link weights used in the double indirect sampling. If
the double indirect sampling weights,

∑
j∈UM

θ̃FM
ij θ̃MT

jk , are close to the optimal

simple indirect sampling weights, θ̃optik , for all i ∈ UF , then the use of a double
GWSM estimator will cause a small loss in precision. Otherwise, the loss could
be substantial.

In the following subsection, we describe a particular double indirect sampling
design that requires fewer links than its simple indirect sampling counterpart
while maintening the same precision.

3.3 MtO-MtO links and double standardization

Consider the MtO-MtO case where the links between the frame and the inter-
mediate population are MtO, and the links between the intermediate and the
target population are also MtO. This case implies that the links between UF
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and UT are MtO. In this situation, the double GWSM estimator has a simple
expression, since a unit i from the frame population is linked to a single unit j
from the intermediate population, which is itself linked to a single unit k from
the target population. Thus, for a given sampled unit i ∈ UF , the sums over
the intermediate and the target populations in the double GWSM estimator
t̂y2 given by (8), contain only one non-zero element equal to θ̃FM

ij θ̃MT

jk yk. To

compute t̂y2, we need to compute only the standardized link weight θ̃FM
ij θ̃MT

jk

that corresponds to the unique unit k ∈ UT linked to the sampled unit i ∈ UF
through the unique j ∈ UM .

In this MtO-MtO setup, the choice of the standardization method arises
and has an impact on the number of links to observe. One can consider link

weights θ̃FM
ij and θ̃MT

jk that are either both standardized
(∑

i′∈UF
θ̃FM

i′j = 1 and∑
j′∈UM

θ̃MT

j′k = 1
)

, or globally standardized
(∑

i′∈UF

∑
j′∈UM

θ̃FM

i′j′ θ̃
MT

j′k = 1
)

. Note

that if both link weights are standardized (double standardization), then they
are also globally standardized, but the converse is not true. As detailed below,
using MtO-MtO with double standardization could allow for a reduction in the
number of links to observe compared to the MtO-MtO with global standardiza-
tion, or even compared to the simple MtO GWSM.

Figure 3: Number of observed links for each standardization

With double standardization, we can derive θ̃FM
ij and θ̃MT

jk separately. To

compute θ̃FM
ij , the links between UF and the units j ∈ UM indirectly sampled

through i ∈ sF need to be observed, which gives the total number of links
to observe equal to NFj =

∑
i′∈UF

lFM

i′j . Similarly, to compute θ̃MT

jk , the links
between UM and the indirectly sampled k ∈ UT must be observed which leads to
NMk =

∑
j′∈UM

lMT

j′k links to observe. Thus, for MtO-MtO GWSM with double
standardization and for a given unit i ∈ sF , the total number of links to observe
is equal to NFj + NMk. The right plot of Fig. 3 shows the links to observe
(black links) on a small example for MtO-MtO with double standardization.
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For MtO-MtO with global standardization, we need to observe the links
between UF and the units j ∈ UM linked to the indirectly sampled units k ∈ sT ,
namely we need to know

∑
i′∈UF

∑
j′∈UM

lFM

i′j′ l
MT

j′k =
∑
j′∈UM

NFj′ l
MT

j′k . We also
need the number of links between UM and the indirectly sampled k ∈ UT ,
namely we need to know NMk =

∑
j′∈UM

lMT

j′k . Thus, for MtO-MtO links with
global standardization, we need to observe

∑
j′∈UM

NFj′ l
MT

j′k +NMk links. The
middle plot of Fig. 3 shows the links to observe (black links), for a given unit
i ∈ sF , for MtO-MtO with global standardization.

Consider now simple MtO indirect sampling. A unit i from the frame pop-
ulation can be linked to a single unit k from the target population, and the
sum over the target population in the simple GWSM estimator t̂y1 given by (1)

contains only a non-zero element equal to θ̃ikyk. To compute t̂y1, for each unit

i ∈ sF , we need to compute the standardized link weight θ̃ik that corresponds
to the unique unit k ∈ UT linked to i ∈ sF . This circumstance implies that we
need to observe the links between the indirectly sampled unit k of the target
population and the frame population; namely we need to observe a number of
links equal to NFk =

∑
i′∈UF

li′k. The left plot of Fig. 3 shows the links to
observe (black links) for a given unit i ∈ sF in MtO indirect sampling.

It is possible to compare the number of links between MtO-MtO with double
standardization with simple MtO if we assume that NFk = NFjNMk, NFj > 2
and NMk > 2. We then have

NFj +NMk < NFjNMk = NFk, (9)

and the double GWSM with double standardization always requires fewer links
to observe than the simple GWSM. Moreover, the smallest number of links to
observe with the double GWSM with double standardization is achieved when
NFj = NMk = N

1/2
Fk , which is the most favorable situation for the double

GWSM.
The assumption NFk = NFjNMk is true if the numbers of links NFj are

equal for all j linked to the same k in UT . Indeed, if we let Ck denote a positive
constant, that does not depend on j, such that NFj = Ck for all units j ∈ UM
linked to k in UT , then,

NFk =
∑
j∈UM

lMT

jk NFj = Ck
∑
j∈UM

lMT

jk = CkNMk = NFjNMk. (10)

This remark is interesting as it stands in that when the number of links between
UF and UM is the same for each unit in UT , there will be fewer links to observe
when using MtO-MtO with double standardization, regardless of what are the
links between UM and UT (see Setups 1 and 3 in Section 4).

Furthermore, if the link weights are the link indicators, namely θFM
ij = lFM

ij ,
θMT

jk = lMT

jk , θik = lik, and NFk = NFjNMk, then the double GWSM and the
simple GWSM estimators are equal. Indeed,∑

j∈UM

θ̃FM

ij θ̃MT

jk =
∑
j∈UM

lFM
ij

NFj

lMT

jk

NMk
=

lik
NFk

= θ̃ik. (11)
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In such a situation, the double GWSM with double standardization and the
simple GWSM have the same precision, but the double GWSM ensures a gain in
terms of the smaller number of links to observe. However, if the conditionNFk =
NFjNMk is not fulfilled, (see Setups 2 and 4 in Section 4 for further details),
the double GWSM could be less efficient than the simple GWSM estimator.

For the double GWSM with global standardization, the number of links to
observe is

∑
j′∈UM

lMT

j′kNFj′ + NMk = NFk + NMk, which is greater than the
number of links to observe for both, the simple GWSM and the double GWSM
with double standardization.

In Fig. 3, NFk = 10, NFj = 5 and NMk = 2. The number of links to observe
is 10 for the simple GWSM (left plot of the figure), 12 for the double GWSM
with global standardization (middle plot) and 7 for the double GWSM with
double standardization (right plot). In the La Poste situation, where the double
GWSM with double standardization is used, the gain is much larger because on
average NFk = 500, NFj = 10 and NMk = 50. Thus, we have NFj +NMk = 60
links to observe for the double GWSM with double standardization while it is
NFjNMk = 500 for the simple GWSM and NFk + NMk = 550 for the double
GWSM with global standardization.

Double GWSM with global standardization is of poor interest in the context
of La Poste. The loss of precision is not compensated by a gain in the number of
links to observe. In what follows, we focus only on double GWSM with double
standardization.

4 Simulation study

We have shown in Subsection 3.1 that, in the case of MtO links and sampling de-
signs with the ∆-property, the loss of precision of the double GWSM compared
to the optimal simple GWSM depends on the variance of the HT estimators∑
i∈sF di(

∑
j∈UM

θ̃FM
ij θ̃MT

jk − θ̃
opt
ik ) for all k ∈ UT . In other words, the increase

in the variance depends on the configuration of the double GWSM link weights∑
j∈UM

θ̃FM
ij θ̃MT

jk , compared to the optimal simple link weights θ̃optik . In this sec-
tion, we conduct a Monte Carlo study to analyze the influence of the link weights
on the efficiency of the double GWSM estimator.

4.1 Population and link setups

We have generated three populations, UF , UM and UT as well as the links be-
tween them, to meet the framework assumed in Subsection 3.1 as well as at
the La Poste situation. At La Poste, the target population UT is the popu-
lation of rounds, the frame population UF is the population of addresses, and
the intermediate population UM is the population of boxes. All links are MtO,
which means that an address can only be in one box and a box in only one
round. There are on average 50 boxes per round and 500 addresses per round.
The three populations UF , UM and UT were generated in the following way. The
target population of rounds UT of size NT = 6 958 was obtained from La Poste’s
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historical data. Then, based on UT , we generated the intermediate population
of boxes UM of size NM = 347 900 = 50 × 6 958, and the frame population of
addresses UF , of size UF = 3 479 000 = 500× 6 958, together with the links.

We are interested in estimating the total ty =
∑
k∈UT

yk of a study variable y
which is a particular measure of the postal traffic obtained from La Poste’s his-
torical data. For confidentiality reasons, the study variable y was transformed.

We considered different setups of MtO links between UF and UM and be-
tween UM and UT . For ease of comparison, we kept unchanged the links between
UF and UT in all scenarios. In this double indirect sampling design, additional
care must be taken to ensure that, if unit i ∈ UF is linked to k ∈ UT in simple
indirect sampling case, then it must be linked to k ∈ UT for double indirect
sampling also. There is a link between UF (resp. UF , UM ) and UT (resp. UM ,
UT ) when an address (resp. an address, a box) is part of a round (resp. a
box, a round). The first set of links was generated between UF and UT , and
is such that the number of addresses NFk in a round k of UT is equal to 500,
for all rounds k ∈ UT . Thus, NFk =

∑
j∈UM

lMT

jk NFj = 500, where NFj is
the number of addresses in the box j. This configuration means that all units
from the target population have the same number of links with the frame pop-
ulation. As detailed in Subsection 4.2, the advantage of this simplification is
that, under some supplementary assumptions on the populations and on the
inclusion probabilities that are true in our setting, the simple GWSM estimator
has the same expression as a direct HT estimator. To study the effect of the
links structure on the efficiency of the double GWSM estimator, we created four
different setups of links with the intermediate population. The links between
UF and UM (resp. UM and UT ) were generated either uniformly or not. The
links between UF and the boxes j of UM are called “uniform” when there is
the same number of addresses, NFj , in all boxes j of UM that are part of the
same round k of UT . They are called “non-uniform” when we generate one
address in all boxes of UM that are part of the same round of UT , except for
one box j0 which contains the remaining addresses. This last situation is a type
of extreme unbalanced case for the number of links between UF and UM . The
links between UM and UT are “uniform” when there is the same number of
boxes NMk per round. The “non-uniform” case is generated by considering two
boxes for 6 286 rounds and 499 boxes for the remaining 672 rounds. Note that
we cannot choose non-uniform links between UM and UT with one box or 500
boxes in a round together with non-uniform links between UF and UM similar
to the ones proposed above. The reason is that we have set a constraint of 500
addresses per round. Under this constraint, having one box (resp. 500 boxes)
in a round implies having 500 addresses (resp. one address) in each box of the
round, which corresponds to uniform links between the addresses and the boxes.

The four setups are detailed below (see also Figure 4 for graphical examples):

• Setup 1: Uniform/Uniform: the number of links between UF (resp. UM )
and UM (resp. UT ) is uniform. In this setup, the double GWSM and
the simple GWSM estimators are equal, as proved in Subsection 3.3 (see
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(11)).

• Setup 2: non-uniform/Uniform: the links between UF and UM are non-
uniform while the links between UM and UT are uniform.

• Setup 3: Uniform/non-uniform: the links between UF and UM are uniform
while the links between UM and UT are non-uniform. In this setup, the
NFj must be rounded as illustrated on Figure 4 (bottom left panel) where,
for the second unit in UT , there are 6 addresses to divide between 4 boxes,
and thus, 2 boxes contain 1 address each, while the other 2 boxes contain
2 addresses each. Ignoring the rounding of the NFj , the relation NFk =
NFjNMk holds (see also equation (10)), which allows for the equality of
the simple and double GWSM estimators.

• Setup 4: non-uniform/non-uniform: the links between UF and UM , and
between UM and UT are non-uniform.

4.2 Sampling designs and GWSM estimators

We consider two sampling designs that satisfy the ∆-property: the SRSWOR of
sizes n = 500 and n = 1 000, as well as the Bernoulli design (which is a Poisson
design with equal inclusion probabilities) with expected sample sizes equal to
500 and 1 000.

Let yk, k ∈ UT , be a measure of the postal traffic in round k, as mentioned
at the beginning of section 4.1. For each link setup, we compare the double
GWSM estimator to the simple GWSM estimator, both computed on samples
sF drawn from the frame population UF of addresses:

t̂y1 =
∑
i∈sF

1

πi

∑
k∈UT

θ̃ikyk, t̂y2 =
∑
i∈sF

1

πi

∑
j∈UM

θ̃FM

ij

∑
k∈UT

θ̃MT

jk yk.

For the simple GWSM estimator, we consider the optimal link weights, which
are equal to θ̃ik = lik/NFk for SRSWOR and Bernoulli samplings. For the
double GWSM, we consider θ̃FM

ij = lFM
ij /NFk and θ̃MT

jk = lMT

jk /NMk.
The above simulation setting facilitates the comparison between the double

GWSM estimator and the simple GWSM estimator by ensuring that only the
double GWSM varies, while the simple GWSM remains fixed. In fact, the setting
makes the simple GWSM very close to the direct HT estimator in the 4 setups.
We compare also the double GWSM estimator to the direct HT estimator as
calculated from samples s∗T drawn directly from the target population UT of
rounds using SRSWOR of size nT :

t̂HT =
∑
k∈s∗T

yk
πk
.

If the πi are small, the probability of drawing two or more units from UF that are
linked to the same k in UT is small and we can approximate πk by NFkπi. In this

17



Figure 4: The four setups

situation, every unit from the target population is generally linked with at most
one unit from the sample sF , and thus, for all k ∈ sT , we have

∑
i∈sF lik ' 1.

This hypothesis is true at La Poste because given the large number of postal
addresses in the frame population, we never sample several addresses from the
same round. Thus, we have:

t̂y1 =
∑
i∈sF

1

πi

∑
k∈UT

θ̃ikyk =
∑
k∈UT

yk
∑
i∈sF

1

πi
θ̃ik

'
∑
k∈sT

yk
NFk
πk

∑
i∈sF lik

NFk
'
∑
k∈sT

yk
πk

which means that, in our setting, the simple GWSM estimator is approximately
equivalent to the direct HT estimator for the sample sT . Since this formula does
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Design Setup n RBMC(t̂y2) RRMSEMC(t̂y1) RRMSEMC(t̂HT )

SRSWOR
100 000
simulations

Setup 1
500 0.15 100.00 103.96
1000 0.09 100.00 109.78

Setup 2
500 -0.53 337.89 347.14
1000 0.44 334.51 365.85

Setup 3
500 0.07 100.01 105.35
1000 0.12 100.02 106.12

Setup 4
500 2.67 1173.36 1216.95
1000 0.33 1093.90 1198.97

Table 1: Relative bias and efficiency of the DGWSM estimate under different
links setups.

not depend on the simulation setup, the simple GWSM does not vary between
the setups.

4.3 Measures of efficiency and results

We have considered R = 100 000 samples according to the SRSWOR and
Bernoulli sampling designs with sizes or expected sizes 500 and 1 000. We have
computed the Monte Carlo relative bias of the simple GWSM and the double
GWSM estimators:

RBMC(t̂y1) = 100× 1

R

R∑
r=1

t̂
(r)
y1 − ty
ty

and RBMC(t̂y2) = 100× 1

R

R∑
r=1

t̂
(r)
y2 − ty
ty

,

where t̂
(r)
y1 and t̂

(r)
y2 are the simple and the double GWSM estimates respectively,

computed for the r-th sample, r = 1, . . . , R. As a measure of efficiency, we have
computed the relative root mean square error (RRMSE) of t̂y2 with respect to
t̂y1, and with respect to t̂HT :

RRMSEMC(t̂y1) =

√
MSEMC(t̂y2)

MSEMC(t̂y1)
and RRMSEMC(t̂HT ) =

√
MSEMC(t̂y2)

MSEMC(t̂HT )

where

MSEMC(t̂y2) = R−1
R∑
r=1

(
t̂
(r)
y2 −R−1

R∑
r=1

t̂
(r)
y2

)2

,

and MSEMC(t̂y1), and MSEMC(t̂HT ) are defined similarly.
Table 1 contains the simulation results for the SRSWOR design. Similar

results were obtained for Bernoulli sampling and are not reported here. The
results are also very comparable for both sampling sizes. As expected, both
GWSM estimators have a low Monte Carlo relative bias in all setups.

Moreover, we observe small differences between the RRMSE of the double
compared to the simple GWSM, and the double GWSM compared to the direct
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HT estimators in all setups. This result was expected since the simple GWSM
expression corresponds to a direct HT expression (see details at the end of
Subsection 4.2). Small differences arise because the samples s∗T , drawn directly
in the target population, differ from the samples sT that are obtained through
the samples sF using the links between UF and UT .

For Setups 1 and 3, as shown in Subsection 3.3, t̂y1 = t̂y2. Thus, RRMSEMC(t̂y1) =
100% and MSEMC(t̂y1) = MSEMC(t̂y2). The small loss of precision between
the GWSM estimators in Setup 3 occurs because the relation NFk = NFjNMk

is not exactly satisfied due to rounding errors.
For Setups 2 and 4, the equation NFk = NFjNMk does not hold at all. In

Setup 2, if the sampled address i is alone in the box j, then NFjNMk = 1 ∗ 50
which is far from NFk = 500. If i is in the box containing 451 addresses, then
NFjNMk = 451 ∗ 50 which is also far from NFk. In Setup 4, the difference
between NFk and NFjNMk is even larger because we also let the NMk vary. We
note an important loss of precision of the double GWSM estimator compared
to the simple GWSM estimator in Setups 2 and 4.

The precision of the double GWSM estimator depends on how close the
values NFjNMk and NFk are, for every j linked to the same k. As proved
in equation (10), the uniform link structure between UF and UM implies that
NFk = NFjNMk, regardless of the link structure between UM and UT . This
remark helps to explain the good results for Setups 1 and 3 and the poor results
for Setups 2 and 4.

It is also interesting to compare the number of links to observe for the two
GWSM estimators in each setup. The simple GWSM estimator requires the
observation of 500 links per sampled round in each setup. To compute the
double GWSM estimator, there are 60 links to observe on average per sampled
round in Setup 1, 457 in Setup 2, 276 in Setup 3 and 500 in Setup 4 (the averages
are rounded values). For Setups 1 and 3, the equation NFk = NFjNMk (almost)
holds, and thus, there will always be a gain in the number of links to observe
(see equation (9)). It can be noted that this gain is even larger if the NMk are
uniform. For Setup 2, the gain in the number of links is limited, while there is
no gain in Setup 4.

The simulations illustrate that the link structure between the three pop-
ulations has a large impact on the double GWSM estimator in terms of the
precision, but also in terms of the number of links to observe. In the ideal sit-
uation of Setup 1, there is a clear advantage of using double indirect sampling
for an MtO-MtO situation, while it is not at all recommended in situations like
the one illustrated in Setup 4.

5 Application to the French Post Data

Before 2008, La Poste sampled directly the postmen rounds to estimate the
monthly postal traffic. After a reorganization of the post offices in 2008, the
population of rounds became incomplete and La Poste had to use indirect sam-
pling through the frame population of addresses. Because of the large number
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of links to observe, a simple GWSM estimator was not possible. La Poste had
to consider a double MtO-MtO indirect sampling design and a double GWSM
estimator with double standardization. The use of double indirect sampling,
compared to the previous direct sampling method, led to a precision loss of the
estimators. The estimated standard deviations of the estimators were increased
by a factor between 2 and 3. To complete the theoretical results of Sections
2 and 3, we propose, through simulations and in a setup similar to La Poste,
to evaluate the loss of precision due to using double indirect sampling, and to
check if the calculated loss is of the same order as the loss observed in reality.

In this application, we focus on simple GWSM and double GWSM, which are
both computed on a sample of addresses, and a direct HT estimator computed
on a sample of rounds. The samples are drawn according to SRSWOR designs.
The sampling design at La Poste is more complex and involves a stratification
based on a typology of the post offices. This stratification of the postal addresses
ensures that a round cannot belong to two different strata of addresses, and that
every stratum contains at least two rounds. Thus, the ∆∆∆-property holds for this
sampling design (see details in Subsection 2.2 on stratified SRSWOR). The
estimators are also more complex and involve calibration and winzorisation.
Considering such complex designs and estimators is beyond the scope of the
present study, and we focus on the SRSWOR sampling design with direct HT,
and with simple and double indirect GWSM estimators.

We do not only look at the loss caused by the use of a double GWSM
compared to a simple GWSM. We also examine the loss caused by the use of
double indirect sampling compared to a direct sampling. The objective is to
capture the total loss in the precision observed at La Poste when changing their
sampling design from direct to doubly indirect.

The setup for the simulations below is close to the La Poste setup in the sense
that the number of addresses in a box, and the number of boxes in a round were
generated using observed distributions from La Poste data. Compared to the
four setups in Section 4, the number of addresses in a round was not fixed at
500, but computed using the number of addresses in a box and the number
of boxes in a round. The number of addresses in a box varies from 1 to 29
with two modes at 1 and 13, with rare observations at approximately 40 and
120. The number of boxes in a round varies from 28 to 73 with two modes at
approximately 35 and 70, and rare observations between 100 and 1000. The
average number of addresses in a box in this setup is 14, the average number
of boxes in a round is 60 and the average number of addresses in a round is
841. This setup is close to Setup 4 in Section 4, but it has less variability in
the number of links, with the number of addresses between 30 and 70 and the
number of boxes between 1 and 29, while the number of addresses and boxes
varies between 2 and 499 in Setup 4.

We consider two study variables y, and we are interested in estimating their
totals on the target population of rounds. The first study variable is equal to 1
for all units, which gives a total over the target population equal to NT , while
the second variable is a confidential measure of postal traffic obtained from La
Poste data. For the selection of indirect sample, we consider simple random
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Design n GWSM RB RRMSE RB RRMSE RRMSE
y = 1 y = 1 y =traffic y =traffic y =traffic

rel. to S rel. to S rel. to direct

SRSWOR 500 S -0.01 100 0.02 100 137.96
100 000 500 D -0.03 219.00 0.08 166.69 229.98
simulations 1000 S 0.00 100 -0.01 100 144.55

1000 D 0.00 220.89 -0.07 163.53 236.39

Table 2: Relative bias and comparison of RMSE, in percentages, for the dou-
ble (D) GWSM, the simple (S) GWSM and the direct estimates in a setup
comparable to La Poste.

sampling without replacement with respective sizes of 500 and 1000 selected
from the frame population of addresses. For the selection of direct sample, We
also consider a simple random sampling without replacement with respective
sizes 500 and 1000 selected in the target population of rounds.

As in Section 4, we compute, for R = 100 000 simulations, the Monte Carlo
relative bias (RB) as a percentage of the simple (S) and double (D) GWSM
estimators together with their mean square errors. For both variables (y = 1
and y =traffic), we use the RRMSE in percentage, to compare the double to
the simple GWSM (see the two RRMSE columns relative to S in Table 2).
For y =traffic, we also compare the double GWSM to the direct estimator
(see the RRMSE relative to direct in the last column of Table 2). We note
that, for y = 1, the MSE of the direct estimator is zero since the estimator
is calibrated on the size of the population. Thus, the RRMSE of the double
GWSM compared to the direct is infinite and not reported. We notice that
there is almost no difference between the results obtained for the two sample
sizes. As expected, given that all estimators are unbiased, the relative biases of
the simple and double GWSM estimators in Table 2 are small for both variables
of interest. Moreover, we observe a loss in precision by using the double GWSM
estimator instead of the simple GWSM estimator for both variables. This loss
is less important than those observed in Setups 2 and 4, since the differences in
the weights between the double GWSM and the simple GWSM are smaller here
and have less variability than in Setups 2 and 4. In Table 1 (see the last two
columns), for Setup 2 (resp. Setup 4), the standard deviations are multiplied by
a factor between 3 and 4 (resp. 10 and 13). In Table 2, the standard deviations
are multiplied by a factor between 1 and 2 (resp. 2 and 3) for the “traffic” (resp.
1) variable when comparing D and S. The additional loss of precision between
the S and the direct HT estimators is not negligible, and gives a factor between
1 and 2 for the “traffic”variable (1.38 for the sample size nF=500 and 1.45 for
nF = 1000). In total, the standard deviations increase by a factor between 2 and
3 (approximately 2.3) when changing from direct to double indirect sampling.
Interestingly, the loss of precision that we observe is of the same order as the
loss observed in practice at La Poste.
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6 Conclusion

The MtO situation in indirect sampling allows us to obtain optimal link weights
for some classical sampling designs such as simple random sampling without re-
placement, Poisson sampling and stratified SRSWOR. In this context, it is also
possible to derive an exact expression for the loss of precision when the link
weights are not optimal. This expression shows that the increase of variance of
the GWSM estimator depends on how far the link weights estimators are from
the optimal link weights estimators. When the number of links to observe is
large, it is possible to introduce a double indirect sampling design that allows us
to reduce the number of links to observe when using a double standardization.
As illustrated by our simulations, the double GWSM with double standardiza-
tion proves to be especially interesting in some specific cases. It allows for a
reduction in the number of observed links while maintaining the level of pre-
cision of a simple GWSM. However, it can be less useful in other cases, with
a considerable loss of precision and not an important reduction of the number
of links to observe. In the La Poste situation, there is a clear reduction in the
number of addresses to observe per round, but at the cost of a large loss of
precision. One perspective to improve on the precision of the estimators at La
Poste is to keep the double indirect sampling design but use simple indirect
GWSM and to predict the unobserved link weights as proposed for example
by Xu and Lavallée (2009) and Falorsi et al. (2019). Indeed, double indirect
sampling helps on saving costs and should be maintained. However, the use of
the double GWSM with double standardization may lead to a significant loss of
precision. Thus, a perspective that is currently under study at La Poste is to
predict the number of unobserved links that are needed for the simple GWSM
by using a model along with auxiliary information available at the level of the
intermediate population of boxes.
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7 Appendix

Proof of Proposition 2.1

We compute first the variance of the simple GWSM assuming MtO links and
a sampling design that satisfy the ∆-property. We follow Deville and Lavallée
(2006) and use matrix notations. Let Θ̃k = (θ̃ik)i∈UF

be the NF -dimensional
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vector of standardized link weights. With MtO links, we can write Θ̃k as follows:

Θ̃k =

 0

θ̃k
0

 , k ∈ UF , (12)

where θ̃k = (θ̃ik)i∈UFk
is the NFk-dimensional vector of positive weighted links

with NFk =
∑
i∈UF

lik, the number of units i in UF linked to k in UT . The

variance of the GWSM estimator t̂y1 given in (2) can be written as follows:

Var(t̂y1) =
∑
k∈UT

∑
k′∈UT

ykyk′Cov(t̂θ̃k , t̂θ̃k′ )

=
∑
k∈UT

∑
k′∈UT

ykyk′Θ̃
t
k∆Θ̃k′

=
∑
k∈UT

∑
k′∈UT

ykyk′ θ̃
t
k∆kk′ θ̃k′ , (13)

where ∆ =

(
πii′ − πiπi′

πiπi′

)
i,i′∈UF

and ∆kk′ = (∆ii′)i linked to k,i′ linked to k′ is

the submatrix of ∆ of size NFk ×NFk′ corresponding to elements in positions
i and i′ such that i is linked to k and i′ to k′.

The variance of t̂y1 is given in (13), and the ∆ property states that, for any
units k and k′ in UT , we have ∆kk′ = ckk′1

t
k1k′ . By using also the fact that,

for all k ∈ UT , θ̃k satisfies the standardization constraint:

1tkθ̃k = 1 for all k ∈ UF , (14)

where 1k is the NFk-dimensional vector of ones, we have:

Var(t̂y1) =
∑
k∈UT

y2kθ̃
t
k∆kθ̃k +

∑
k∈UT

∑
k′ 6=k∈UT

ykyk′ θ̃
t
k∆kk′ θ̃k′

=
∑
k∈UT

y2kθ̃
t
k∆kθ̃k +

∑
k∈UT

∑
k′ 6=k∈UT

ykyk′ckk′ θ̃
t
k1k1

t
k′ θ̃k′

=
∑
k∈UT

y2kVar(t̂θ̃k) +
∑
k∈UT

∑
k′ 6=k∈UT

ykyk′ckk′ . (15)

This is exactly (6) and finishes the proof of the first part of Proposition 2.1.

For the derivation of the optimal link weights, the proof is similar to the
proof given in Deville and Lavallée (2006) (section 6.2) for deriving the optimal
weighted links. In our situation, the links between the frame population UF
and the target population UT are of type MtO. Thus, we don’t need to use a
factorization step as in Deville and Lavallée (2006).

Our aim is to find the link weights θ̃optk , k ∈ UF that minimize

Var(t̂y1) =
∑
k∈UT

∑
k′∈UT

ykyk′ θ̃
t
k∆kk′ θ̃k′
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under the standardization constraint (14). The variance Var(t̂y1) is minimized

for vectors θ̃k verifying the following equation (see Deville and Lavallée, 2006,
equation 6.4):

yk
∑
k′∈UT

∆kk′ θ̃k′yk′ = λk1k, k ∈ UF , (16)

where λk, k ∈ UF the Lagrange multipliers. Let us show that the optimal
weights are given by:

θ̃optk =
(
1tk∆

−1
k 1k

)−1
∆−1k 1k, k ∈ UF ,

where ∆k = ∆kk. Equation (16) can be rewritten as:

y2k∆kθ̃k + yk
∑

k′ 6=k∈UT

∆kk′ θ̃k′yk′ = λk1k, k ∈ UF ,

which implies

θ̃k = y−2k ∆−1k

λk1k − yk ∑
k′ 6=k∈UT

∆kk′ θ̃k′yk′

 , k ∈ UF . (17)

By using the fact that ∆k,k′ 6=k = ckk′1k1
t
k′ and the standardization constraints

(14), we get:

θ̃k = y−2k ∆−1k 1k

λk − yk ∑
k′ 6=k∈UT

ckk′yk′

 , k ∈ UF . (18)

Multiplying by 1tk the equation (18) and using again the standardization con-
straints (14), we obtain the following expression for the Lagrange multipliers:

λk = y2k
(
1tk∆

−1
k 1k

)−1
+ yk

∑
k′ 6=k∈UT

ckk′yk′ , k ∈ UF . (19)

Finally, by plugging the expression of λk given in (19) in the expression of
θ̃k from (18), we obtain:

θ̃optk = y−2k ∆−1k 1k

λk − yk ∑
k′ 6=k∈UT

ckk′yk′


= y−2k ∆−1k 1k

y2k (1tk∆−1k 1k
)−1

+ yk
∑
k′ 6=k

ckk′yk′ − yk
∑
k′ 6=k

ckk′yk′


= ∆−1k 1k

(
1tk∆

−1
k 1k

)−1
.

This finishes the proof of 2.1.
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Proof of Proposition 2.2

Result (15) holds for any standardized set of weights. Thus, the result also holds
for the set of optimal weights θ̃optik , and we can write:

Var(t̂opty1 ) =
∑
k∈UT

y2kVar(t̂θ̃optk
) +

∑
k∈UT

∑
k′ 6=k∈UT

ykyk′ckk′ . (20)

Using equations (15) and (20), we get:

Var(t̂y1)−Var(t̂opty1 ) =
∑
k∈UT

y2k

(
Var(t̂θ̃k)−Var(t̂θ̃optk

)
)
.

Let us show that for the optimal weights derived in Proposition 2.1, we have:

Var(t̂θ̃k)−Var(t̂θ̃optk
) = Var(t̂θ̃k − t̂θ̃optk

).

The optimal set of weights is given by θ̃optk = ∆−1k 1k
(
1tk∆

−1
k 1k

)−1
, k ∈ UF .

Var(t̂θ̃k)−Var(t̂θ̃optk
) = θ̃tk∆kθ̃k − (θ̃optk )t∆kθ̃

opt
k

=
(
θ̃k − θ̃optk

)t
∆k

(
θ̃k − θ̃optk

)
+ θ̃tk∆kθ̃

opt
k + (θ̃optk )t∆kθ̃k

−2(θ̃optk )t∆kθ̃
opt
k .

Now, θ̃tk∆kθ̃
opt
k = (θ̃optk )t∆kθ̃k since they are real quantities. Straightforward

calculations using the standardization constraint (14), give us that θ̃tk∆kθ̃
opt
k =(

1tk∆
−1
k 1k

)−1
. Moreover, (θ̃optk )t∆kθ̃

opt
k =

(
1tk∆

−1
k 1k

)−1
, and we finally get

that

Var(t̂θ̃k)−Var(t̂θ̃optk
) =

(
θ̃k − θ̃optk

)t
∆k

(
θ̃k − θ̃optk

)
= Var(t̂θ̃k − t̂θ̃optk

) = Var(t̂θ̃k−θ̃optk
)

which ends the proof of Proposition 2.2.

Proof of Proposition 2.3

For all i ∈ UF , we recall that we assume 0 < πi < 1, and πk = 1 − Πi∈UF
(1 −

πi)
lik . For Poisson sampling,

θ̃optik =
lik

πi

1−πi∑
i′∈UF

li′k
πi′

1−πi′

.

Using the variance expressions for Poisson sampling, we have that proving
Var(t̂y) < Var(t̂opty1 ) is equivalent to prove∑

k∈UT

y2k
1− πk
πk

<
∑
k∈UT

y2k
∑
i∈UF

1− πi
πi

(θ̃optik )2.
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This inequality is true if, for all k ∈ UF , we have:

1− πk
πk

<
∑
i∈UF

1− πi
πi

(θ̃optik )2

which is true as proved next.

1− πk
πk

<
∑
i∈UF

1− πi
πi

(θ̃optik )2 ⇔ Πi∈UF
(1− πi)lik

1−Πi∈UF
(1− πi)lik

<
∑
i∈UF

1− πi
πi

(θ̃optik )2

⇔
∑
i∈UF

lik
πi

1− πi
<

1−Πi∈UF
(1− πi)lik

Πi∈UF
(1− πi)lik

⇔ 1 +
∑
i∈UF

lik
πi

1− πi
<

1

Πi∈UF
(1− πi)lik

⇔ 1 +
∑
i∈UF

lik
πi

1− πi
< Πi∈UF

(
1 +

πi
1− πi

)lik
.

This last inequality is true since
πi

1− πi
> 0, and this finishes the proof of

Proposition 2.3.
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